
Received March 26, 2020, accepted May 5, 2020, date of publication May 11, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993494

Learning Depth for Scene Reconstruction Using
an Encoder-Decoder Model
XIAOHAN TU 1,2, CHENG XU 1,2, SIPING LIU 1,2, GUOQI XIE 1,2, (Senior Member, IEEE),
JING HUANG 1,2, RENFA LI 1,2, (Senior Member, IEEE),
AND JUNSONG YUAN 3, (Senior Member, IEEE)
1Key Laboratory for Embedded and Network Computing of Hunan Province, Changsha 410082, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA

Corresponding author: Cheng Xu (chengxu@hnu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61772185.

ABSTRACT Depth estimation has received considerable attention and is often applied to visual simultaneous
localization and mapping (SLAM) for scene reconstruction. At least to our knowledge, sufficiently reliable
depth always fails to be provided for monocular depth estimation-based SLAM because new image features
are rarely re-exploited effectively, local features are easily lost, and relative depth relationships among depth
pixels are readily ignored in previous depth estimation methods. Based on inaccurate monocular depth
estimation, SLAM still faces scale ambiguity problems. To accurately achieve scene reconstruction based on
monocular depth estimation, this paper makes three contributions. (1) We design a depth estimation model
(DEM), consisting of a precise encoder to re-exploit new features and a decoder to learn local features
effectively. (2)We propose a loss function using the depth relationship of pixels to guide the training of DEM.
(3) We design a modular SLAM system containing DEM, feature detection, descriptor computation, feature
matching, pose prediction, keyframe extraction, loop closure detection, and pose-graph optimization for
pixel-level scene reconstruction. Extensive experiments demonstrate that the DEM and DEM-based SLAM
are effective. (1) Our DEM predicts more reliable depth than the state of the arts when inputs are RGB
images, sparse depth, or the fusion of both on public datasets. (2) The DEM-based SLAM system achieves
comparable accuracy as compared with well-known modular SLAM systems.

INDEX TERMS Convolutional neural networks, depth estimation, decoder, encoder, simultaneous localiza-
tion and mapping.

I. INTRODUCTION
Considered as an important computer vision topic, depth
estimation focuses on predicting depth from RGB images
(monocular images), sparse depth, or the fusion of both
(RGBd) [1]. The predicted depth is often used for various
tasks, such as visual simultaneous localization and map-
ping (SLAM), robot localization, obstacle avoidance, and
semantic segmentation [2]. When applying depth prediction
to SLAM, monocular camera-based SLAM will be low-cost
and attractive as comparedwith RGBD camera-based SLAM.
Essentially, depth estimation creates a virtual RGBD sensor
for monocular SLAM, helping SLAMcontribute to industries
such as robots and self-driving cars.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Recently, most previous work uses convolutional neural
networks (CNNs) to predict depth from sparse depth [3],
monocular RGB images [1], [4], [5], [6], or the fusion of
both [7], [8]. These prior methods tend to leverage CNN
models like ResNets [9] to learn visual features, such as
the research [5]–[8]. Here, ResNets are often adopted as
encoders [5], [8], and these encoders reuse image features in
depth estimation. After encoders, decoders including linear
interpolation are commonly used to output high-resolution
depth maps, yet the decoders easily lose local image features.
In essence, recent encoders and decoders suffer from accu-
racy limitation imposed by their respective shortcomings of
effectively re-exploring new features and learning local fea-
tures in depth prediction. Additionally, researchers often esti-
mate depth with CNNs driven by ground-truth metric depth,
usually ignoring the use of relative depth relationships among
pixels in RGB images. We find that CNNs are trained better

89300 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4330-240X
https://orcid.org/0000-0002-1323-3175
https://orcid.org/0000-0003-0019-5154
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-8812-2691
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0002-7901-8793

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

by loss functions combining relative depth relationship with
ground-truth metric depth. The relative depth relationship can
help loss functions minimize prediction error and penalize
larger outliers in depth estimation. For reliable depth results
using the relative depth relationship, we need to redesign a
loss function.

Monocular depth estimation often provides depth for
SLAM to reconstruct scenes such as studies [10], [11],
but inaccurate monocular depth estimation brings more
error to SLAM. In addition to this problem, other chal-
lenges still exist in depth estimation-based SLAM. Specifi-
cally, Tateno et al. [10] only refined depth predictions from
high-gradient pixels, yet depth predictions of low-gradient
pixels also need to be improved to reconstruct reliable scenes.
Luo et al. [11] needed images with a fixed baseline and just
serve horizontal motion of cameras. Tang et al. [12] faced
multi-frame matching setup problems and had difficulty in
practical application. Therefore, to better perform monocular
reconstruction without issues such as multi-frame matching,
a plug-and-play SLAM should be developed, alleviating scale
ambiguity.

This paper proposes a dependable encoder, decoder, loss
function, and SLAM system. The encoder is designed with
dual path networks (DPNs) [13] to reuse and re-exploit fea-
tures. Specifically, DPNs inherit advantages of ResNets [9]
and DenseNets [14] by respectively adopting their residually
and densely connected paths. Through the altered DPN struc-
ture, our encoder can re-explore new features flexibly. The
decoder is proposed with transposed convolution and convo-
lution layers to recover details lost by linear interpolation in
existing decoders. Our decoder can learn dense depth maps
accurately.

To further boost depth estimation accuracy, we develop
a loss function by using relative relationships among
depth points in RGB images, guiding the training of
the encoder-decoder model (DEM). The loss function
encourages our predicted depth to agree with ground-truth
depth. Relying on DEM, monocular SLAM is designed,
consisting of eight independent modules: DEM, feature
detection, descriptor computation, feature matching, pose
prediction, keyframe extraction, loop closure detection, and
pose-graph optimization. These modules are easy-to-use and
plug-and-play.

Experiments show that the DEM and DEM-based SLAM
are more accurate than the state of the arts under the same
condition. For example, the RMSE of DEM is 17.4% better
than that of the representative work [15] with monocular
RGB inputs from the NYU-Depth-v2 dataset.1 The RMSE
of DEM is decreased by 29.3% than that of the classic
method [8] with RGB inputs from the KITTI dataset.2 Our
RMSE is 18.1% lower than that of the state of the art [16]
with RGBd-500 inputs (each RGB input image contains
500 valid depth samples) on KITTI. As shown in Fig. 1(c),

1https://cs.nyu.edu/ silberman/datasets/nyu_depth_v2.html
2http://www.cvlibs.net/datasets/kitti

FIGURE 1. Monocular depth prediction on KITTI. (a) the RGB input; (b) the
prediction in the work [8] from the RGB input; (c) our prediction from the
RGB input.

pixel-level depth maps are estimated from RGB images by
DEM. The prediction of DEM is identified more easily than
that of the study [8] in Fig. 1(b). Based on depth esti-
mated by DEM, our SLAM achieves greater improvement
in accuracy on the TUM dataset than others such as SLAM
[10]–[12], [17], [18]. Additionally, our SLAM is low-cost as
compared with RGBD camera-based SLAM [19], [20]. The
results demonstrate that the DEM and DEM-based SLAM are
effective.

To summarize, our main contributions are as follows.
• First, we propose the DEM architecture containing a
reliable encoder and decoder. Specifically, the encoder
effectively reuses and re-explores features relying on
existing CNNs. The decoder learns local features which
are easily lost by linear interpolation in other decoders.
Our decoder is capable of combining different encoders
and consistently improves depth estimation perfor-
mance.

• Second, a loss function is designed to guide the train-
ing of DEM. Our results verify that the loss function
achieves comparable accuracy, whether inputs are RGB
images or sparse depth. Additionally, we deploy and
evaluate DEM on embedded devices. Here, DEM sat-
isfies real-time (9 frames per second) and low-power
(6.9W) constraints with RGB image inputs of size 480×
640 on embedded devices.

• Third, relying on DEM, we develop a low-cost SLAM
system including plug-and-play modules for effective
scene reconstruction. The DEM-based SLAM esti-
mates real object scales and reconstructs scenes reli-
ably, although using monocular images. Our SLAM
achieves more promising results than others on the TUM
dataset. We confirm the DEM-based SLAM is useful
to researchers who reconstruct scenes with monocular
cameras because DEM is precise, monocular cameras
employed by our SLAM are generally cheaper than
RGBD cameras, and our SLAM modules are easy-to-
use.

To our knowledge, the gap between depth predic-
tion and its application in SLAM is reduced by this
work.

VOLUME 8, 2020 89301

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

II. RELATED WORK
In this section, we overview recent studies that are most
relevant to our work on two subjects: depth prediction and
depth estimation-based SLAM systems.

Previous research on depth estimation can be divided
into three categories: RGB-based, multimodal data-based,
and sparse depth-based depth estimation. The RGB-based
depth estimation often relies on traditional machine learn-
ing methods or CNNs. For example, Saxena et al. [21],
[22] used traditional markov random fields to predict depth.
Karsch et al. [23] leveraged a non-parametric approach to
estimate depth of dynamic foreground objects in video
and static backgrounds in a single image. These pioneer
studies laid the foundation for RGB-based depth estima-
tion. Eigen et al. [4] first used CNNs to infer depth
from RGB images. Then, Eigen and Fergus [24] extended
two-scale networks to three-scale networks for depth predic-
tion. Roy and Todorovic [25] presented random forests and
CNNs to infer depth. Wang et al. [26] employed perceptual
losses to estimate depth.

Some work [16], [27] focused on fast depth estimation,
but these methods still have a scale ambiguity problem
because they improve inference speed at the cost of less
accuracy. Other research estimated depth with ResNets such
as [5], [6], [8], [15], [28], [29], [30]–[33], [34]. In these
studies, ResNets effectively reused features through resid-
ually connected paths. Different from ResNets, DenseNets
[14] efficiently re-explored new features by densely con-
nected paths. Then, inheriting the backbone architecture of
ResNets and DenseNets, DPNs [13] simultaneously reused
and re-explored features with residually and densely con-
nected paths. In general, effective feature exploration and uti-
lization inDPNs can bringmore accuracy to depth estimation,
but fewer methods leverage DPNs to predict depth.

Multimodal data-based depth estimation commonly uses
inputs containing two or three modalities of data [7], [8],
[35]–[37]. The method [7] converted depth estimation into
distance prediction between reference and true depth maps,
performing more effectively than the depth prediction [35].
Wang et al. [36] inferred depth by iteratively changing inter-
mediate representation in pre-trained depth estimation mod-
els. Li et al. [37] employed depth samples and RGB images to
estimate depth. Sparse depth-based depth prediction also used
deep learning models [3], [8], [38] to predict depth. Specifi-
cally, Chodosh et al. [3] employed alternating direction neu-
ral networks and compressed sensing techniques to extract
features. The research [8], [38] selected CNNs to recover
dense depth maps with linear interpolation which easily lost
depth features. These problems still need to be addressed
for effective depth estimation and depth estimation-based
SLAM.

Existing visual SLAM often relies on data from
stereo cameras, monocular cameras [10], [11], [17], [18],
[39], or RGBD cameras [12], [19], [20]. In research
[10]–[12], [20], [39], the SLAM systems all employ
deep learning techniques to extract features. Specifically,

in approaches [12], [20], keypoints and descriptors are
learned by CNN and RNN (recurrent neural network) for
SLAM. In methods [10], [11], [39], only CNN was inte-
grated into SLAM to improve scene reconstruction. By using
CNN-based depth estimation, the studies [10], [11], [39]
focused on issues in conventional triangulation and consec-
utive view matching. For example, Yang et al. [39] lever-
aged a monocular camera to reconstruct dense maps with
generative adversarial networks. Tateno et al. [10] used
CNN to estimate depth maps, which were adopted as the
initial guess of keyframes. Then, they revised depth through
triangulation and high-gradient pixel matching, but depth
estimation of low-gradient pixels is unrefined in CNN-SLAM
[10]. Luo et al. [11] fused online-adapted CNN with direct
monocular SLAM. The work [11] alleviated scale ambiguity
and low map completeness, but it is only applicable to hori-
zontalmotion of cameras. To solve these problems and further
boost the performance of monocular camera-based SLAM,
we propose the depth estimation-based SLAM system for
precise scene reconstruction.

III. METHOD
To predict depth maps accurately, we design the depth esti-
mation model (DEM) in Section III-A. In Section III-B,
a loss function is proposed to guide the training of DEM.
In Section III-C, we present the SLAM system based on
DEM.

A. DEM
To improve depth estimation, we develop the DEM
architecture containing an encoder and a decoder. Here,
the capabilities of DEM are verified by three modalities of
data as inputs, namely, RGB images, sparse depth, or RGBd
data. The type of inputs is the same for model training and
inference. The DEM architecture with RGB inputs is dis-
played as an example in Fig. 2.
Encoder: The encoder is implemented to extract image

features. We investigate classic models, including different
layers of CNNs, such as ResNet-18, ResNet-34, ResNet-50,
DenseNet-121, DPN-68, DPN-92, and DPN-131. In these
CNNs, ResNet-50 is employed as an encoder by famous
studies [6], [8], [32], [33]. Although few methods use DPNs
to predict depth, we modify DPN-92 as the encoder of
DEM after considering the tradeoff between multiply-and-
accumulate operations and accuracy of DPNs. The initial
DPNs [13] are only proposed based on RGB inputs. To pro-
cess different modalities of inputs, we alter the structure
of DPN-92. Additionally, the original DPNs are usually
used for three tasks: semantic segmentation, image classi-
fication, and object detection. For depth estimation tasks
in this paper, we modify DPN-92 to achieve encoding
effectively.

DPN-92 is changed as an encoder in four steps. 1) The first
layer in DPN-92 is modified with configuration parameter
options. Thus, DPN-92 can learn features from RGB images,
sparse depth, or RGBd data. The parameter options change

89302 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

FIGURE 2. The DEM architecture based on RGB image inputs of size 480 × 640. Our DEM consists of an encoder (highlighted in blue) and a decoder
(highlighted in red). The training images are augmented to generate RGB images of size 228 × 304. In this figure, a cube represents a feature map. The
dimension of each feature map is denoted as #features@height×width. In the encoder, a dotted box means a block in DPN-92, such as block1, block2,
block3, and block4. The dotted line in a dotted box represents the shortcut connection between blocks. Concat among dotted boxes means the concat of
feature maps. The decoder includes four upsampling layers, two 7 × 7 convolution layers, a 7 × 1 convolution layer, and a 4 × 4 transposed convolution
layer. The output of DEM is a pixel-level depth map of size 1@228 × 304.

with the type of inputs. 2) To connect decoders and predict
pixel-level depth maps, we remove the last classifier layer in
DPN-92. 3) Followed by DPN-92, we use convolution with
a kernel size of 1 × 1 and batch normalization (BN) layers.
4) The pre-trained model of DPN-92 on the ImageNet dataset
is selected to initialize the encoder of DEM. The initialization
improves prediction accuracy. We will verify the benefit of
the initialization in Table 4.
Decoder: To output high-resolution and precise depth

maps, we propose a decoder, as shown in the red part of Fig. 2.
The decoder is designed in the following steps. 1) To upsam-
ple feature maps from encoders, we use four upsampling
layers consisting of transposed convolutions. 2) To further
extract features, three convolution layers are employed. These
convolution layers also adjust the size of depth images to
produce feature maps of size 114 × 152. 3) To generate
pixel-wise depth images of size 228 × 304, a transposed
convolution layer is leveraged. In dense depth prediction, our
decoder is superior because the pixel-level depth maps are
learned by transposed convolution and convolution layers.
By contrast, the state of the arts [5], [8], [32] use decoders
including linear interpolation.

In the decoder where linear interpolation is used, local
image features are easily lost and image features are rarely
learned and extracted. These two disadvantages are caused
by curve fitting using linear polynomials in the linear inter-
polation. For example, a simple linear interpolation method
is as follows: obtaining the depth value x on the straight
line that is determined by the coordinates of two known
depth points (x0, y0) and (x1, y1), where the value x is in
the interval [x0, x1]. Similarly, bilinear interpolation adopted
in existing decoders is essentially linear interpolation in two
directions. In linear interpolation methods, we can see that
the depth value x is not obtained by learning or leveraging
local features. In contrast, our decoder addresses the above
issue of losing local features easily and extracting no features.
The following experiments in Table 2 will demonstrate the
effectiveness of our decoder.

B. LOSS FUNCTION
To predict precise depth, we propose the loss function L
guiding the training of DEM. In general, it is challenging to

estimate depth with a monocular image due to scale ambigu-
ities. Although depth of objects in an image is ambiguous,
the depth between different points has a relative relationship.
The relationship of depth points is easy to access. Therefore,
we use the relationship among sparse depth samples to design
the loss function L as follows:

L = L1 + R, (1)

where L1 is

L1 =
1
N

N∑
s=1

∣∣Ps − Ts∣∣, (2)

and N denotes the number of pixels in a depth map; Ps and
Ts (s = 1, 2, 3, . . . ,N) represent depth values of pixels in
predicted and ground-truth maps, respectively.

The second part R is based on relationships among depth
samples as follows:

R =
1
M

M∑
m=1

∣∣(Tim − Tjm)− (Pim − Pjm)∣∣. (3)

Specifically, we randomly combine two depth points in the
set D consisting of sparse depth samples in a depth image.
Then, we obtain a combination of depth points from the setD.
The number of the combination is represented as M . The
pair in the combination is denoted as {(im, jm)}, where m =
1, 2, 3, . . . ,M . The locations of the first and second point of
a pair in the M -th combination are im and jm, respectively;
Pim and Pjm respectively represent depth values at points im
and jm in a predicted depth map; Tim and Tjm respectively
denote depth values at points im and jm in a ground-truth depth
map;

(
Tim − Tjm

)
and

(
Pim − Pjm

)
represent the relationship

of depth between im and jm in ground-truth and predicted
depth maps, respectively.

The second part R has three advantages. 1) R enhances
the effect of L1. Generally, R minimizes prediction error.
2) R pushes predicted depth further closer to true depth.
3) R assigns a large penalty for large outliers and still penal-
izes small outliers.

By combining R and L1, we obtain the loss function L.
Experimental results will demonstrate that L outperforms
other loss functions. In essence, L performs well by taking

VOLUME 8, 2020 89303

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

advantage of L1 and R. Specifically, the loss function L has
two benefits as follows.

First, our loss function L encourages estimated depth to
agree with the ground truth. The first part of L is effective.
The second part of L fully uses relative relationships among
different sparse depth points. The acquired relationships are
about uniform because we obtain sparse depth points ran-
domly and automatically. Through the use of relative rela-
tionships, L is robust and reduces the impact of outliers.
Second, our loss function L exceeds other loss functions,

such as L2 and berHu. As a common loss function for regres-
sion problems,L2 may adjust models based on outliers which
cause poor depth estimation in previous research. Oppositely,
our loss function L is reliable. To demonstrate the effective-
ness of our loss function L, we present an empirical study.
The results are shown in Table 3.

C. SLAM SYSTEM BASED ON DEM
Our feature-based SLAM alleviates inherent ambiguity prob-
lems in monocular camera-based SLAM. As shown in Fig. 3,
each box denotes an independent module in SLAM. The
details are as follows. Single RGB images are captured by a
monocular camera. The RGB images are used by DEM (pre-
trained with RGB images) to predict depth maps. By DEM,
the real scales of objects are obtained. The keypoints in the
RGB images are detected by the ORB algorithm in OpenCV.3

Based on the detected keypoints, the BRIEF descriptors [40]
are computed. Through the modules of feature detection and
descriptor computation, we obtain feature points. In the fea-
ture matching module, the BRIEF descriptors are matched
between two frames of RGB images. Then, we find the
minimumdistance of the BRIEF descriptors. If the distance of
the BRIEF descriptors is less than six times the minimum dis-
tance, the matches are considered as good matches. Relying
on the good matches of feature points, we obtain the feature
points’ 3D (three-dimensional) positions by using depthmaps
estimated by DEM. The 3D positions and pixel coordinates
of feature points are as inputs of a pose prediction module.

FIGURE 3. The SLAM System.

The pose prediction module is performed as shown
in Fig. 3. First, poses of monocular images are esti-
mated by the Random sample consensus Perspective-n-Point
(RANSAC PnP) algorithm in OpenCV. Second, we constitute
a nonlinear least-squares problem. To optimize the nonlinear

3https://opencv.org

Algorithm 1 Pose Prediction
Input:

The pixel and 3D coordinates of feature points in good
matches.

Output:
The frame f2’s optimized pose T defined by G2o and the
number of inliers h.

1: Relying on the 3D and pixel coordinates of feature
points, obtain poses using the RANSAC PnP algorithm
in OpenCV, and then acquire the 3D rotation vector r ,
the 3D translation vector t , and the number of inliers h;

2: Create a class ‘‘EdgeProjectXYZ2UVPose’’ relying on
Equation (6) to optimize only poses;

3: Create a new object pointer of a linear solver and initial-
ize it;

4: Create a new object pointer of a block matrix solver and
initialize it;

5: Select the Levenberg-Marquardt algorithm [42] as the
gradient descent method in G2o and sparse optimizer
‘‘poseOptimizer’’;

6: Create a new object pointer of the vertex ‘‘vertexPose’’
belonging to the class ‘‘VertexSE3Expmap’’;

7: Initialize the vertex and set the vertex index to 0;
8: Obtain the pose defined by G2o using r and t in Step 1

of Algorithm 1;
9: Set the pose defined by G2o to the initial value of G2o

optimization;
10: Add the vertex to the optimizer ‘‘poseOptimizer’’;
11: for i← 0 to h do
12: Create a new object pointer of an edge belonging to

the class ‘‘EdgeProjectXYZ2UVPose’’;
13: Initialize the edge and set the edge index to the number

i;
14: Initialize the 3D point and camera parameter variables

related to the edge;
15: Set the observation value of the edge to the 2D point

coordinates corresponding to the inlier i;
16: Define a 2×2 information matrix and use a 2×2 unit

matrix to initialize it;
17: Add the edge to the optimizer ‘‘poseOptimizer’’;
18: end for
19: Start optimization for 10 iterations and obtain the frame

f2’s optimized pose T defined by G2o;
20: return T and h.

least-squares problem, we use G2o [41] to minimize
two-dimensional (2D) reprojection errors. The minimization
of 2D reprojection errors can generate poses of monocu-
lar images. To help accurate pose estimation of monocu-
lar images, the results of the RANSAC PnP algorithm are
employed as the initial values of the pose optimization in
G2o, as shown in Algorithm 1. The initial values in G2o
boost the optimization quality of poses. We will describe how
to constitute least-squares problems using 2D reprojection

89304 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

errors and optimize the nonlinear least-squares problem by
minimizing 2D reprojection errors.

Following the method [19], we constitute the nonlinear
least-squares problem. Suppose that 3D positions of n feature
points in good matches are denoted as Fi = [Xi,Yi,Zi]T and
i = 1, 2, 3, . . . , n. The feature points’ pixel coordinates are
set to gi = [si, ti]T and i = 1, 2, 3, . . . , n. The Lie algebra of
an image pose is defined as ξ . The scale factor and camera
intrinsics are li and K . Then, the relationship between the
feature point’s 3D position Fi and the feature point’s pixel
coordinate gi is given as

li [si, ti, 1]T = K exp
(
ξ∧
)
[Xi,Yi,Zi, 1]T . (4)

The homogeneous coordinate of the feature point’s 3D
position Fi is represented as Fi = [Xi,Yi,Zi, 1]T. The homo-
geneous coordinate of the feature point’s pixel coordinate gi is
denoted as gi = [si, ti, 1]T. Following Equation (4), we obtain

ligi = K exp
(
ξ∧
)
Fi. (5)

The 2D reprojection error occurs on the left and right
sides of Equation (5) because poses of monocular images
are unknown, and noise exists among different image obser-
vation points. We represent the process of summing the 2D
reprojection errors, constituting a least-squares problem, and
finding the relatively optimal pose which minimizes the 2D
reprojection errors as follows:

ξ∗ = argmin
ξ

1
2

n∑
i=1

∥∥∥∥gi − 1
li
K exp

(
ξ∧
)
Fi

∥∥∥∥2
2
. (6)

Through the minimization of 2D reprojection errors,
the least-squares problem is optimized, as presented in
Algorithm 1. Here, G2o [41] minimizes the 2D reprojec-
tion error by setting vertexes and edges. The Levenberg-
Marquardt algorithm [42] is selected as the gradient descent
method in G2o. We perform G2o optimization for 10 iter-
ations. When completing G2o optimization, we acquire
reliable poses between frames.

The modules of feature detection, descriptor computation,
feature matching, and pose prediction make up the front-end
of our SLAM, namely, visual odometry (VO). As part of
our SLAM, the VO estimates the poses of monocular images
through G2o optimization, but the VO only focuses on local
consistency of camera trajectories. To achieve a globally
consistent scene reconstruction, a complete SLAM system is
needed as shown in Fig. 3.

Our SLAM system is developed containing VO, keyframe
extraction, loop closure detection, and pose-graph optimiza-
tion. 1) The keyframe extraction selects keyframes to rebuild
point cloud maps of scenes. It is unnecessary that a map
is built relying on every frame because the relative motion
distance between each frame is small. 2) The loop closure
detection identifies drift in SLAMby realizing that a previous
area in a map is re-visited or not. 3) The pose-graph opti-
mization minimizes drift and optimizes keyframe poses for

Algorithm 2 Keyframe Extraction
Input:

A frame sequence A with n frames.
Output:

The keyframe sequence B with o keyframes.
1: o← 0;
2: for ri← 1 to n do
3: Obtain the pose T and the number of inliers h between

the current frame ri and its previous frame in the
keyframe sequence A using Algorithm 1 based on
Equation (6);

4: Calculate the 3D rotation vector r and translation vec-
tor t relying on the pose T ;

5: Calculate the relative motion distance dis between the
current frame ri and its previous frame using r and t
by Equation (7);

6: if (In < 8 or dis < 0.1 or dis > 0.21) then
7: continue; //Discard the current frame ri;
8: end if
9: o← o+1; // Add the current frame ri to the keyframe

sequence B;
10: end for
11: return The keyframe sequence B with o keyframes.

consistent maps. By using the above three modules, global
consistency is guaranteed in our SLAM.

To this end, the main difference between our SLAM and
VO is threefold. 1) The keyframe extraction, loop closure
detection, and pose-graph optimization are included in our
SLAM, while VO does not include these. 2) The SLAM
acquires a globally consistent estimate of a scene map, while
VO focuses on local consistency. 3) The SLAM optimizes
poses, reduces drift, and achieves global consistency without
any prior information when reconstructing point cloud maps
of scenes. By contrast, the VO predicts poses incrementally
and does not solve a drift problem. We will describe the
modules of keyframe extraction, loop closure detection, and
pose-graph optimization in detail.

As shown in Algorithm 2, in the keyframe extraction mod-
ule, we extract keyframes and obtain a keyframe sequence B.
Here, the frame sequence consists of n frames. The frame
used in our SLAM contains a frame index ri, and i = 1, 2,
3, . . . , n, an RGB map, a depth map estimated by DEM,
keypoints extracted by the feature detection module, and
descriptors of keypoints corresponding to the frame. Simi-
larly, the keyframes used by our SLAM have the same struc-
ture as the frames. The first frame in the frame sequence A is
put into the keyframe sequence B.

In Algorithm 2, when the number of inliers and relative
motion distance between the current frame and its previous
frame in A are suited, the keyframe will be added to the
keyframe sequence B. The number of inliers can be obtained
from Algorithm 1. The threshold on the number of inliers is
set to 8 based on our experience. The relative motion distance

VOLUME 8, 2020 89305

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

is computed by the equation

dis = a× |min (Er , 2π − Er) | + b× |Et |, (7)

where Er represents the L2-norm of the rotation vector r , and
Et denotes the L2-norm of the translation vector t . Here, a and
b denote weighting factors. We define a = 1/3 and b = 2/3
in the keyframe extraction module.

The number of inliers and Equation (7) help us decide if a
frame is a keyframe. Specifically, according to Equation (7),
we judge whether the relative motion distance between two
frames is within a certain range. According to the number
of inliers, we determine whether there is enough matching
accuracy between adjacent frames.

The loop closure detection is performed to detect
accumulated scale drift, as shown in Algorithm 3. Specif-
ically, the keyframe extraction results are used as inputs
of Algorithm 3. If a keyframe in the keyframe sequence
B closely matches six random keyframes in C and seven
last keyframes in C, the keyframe in B will be put into
the keyframe sequence C. The matches are selected or
not according to the number of inliers and Equation (7).
In Equation (7), we define a = 1/3 and b = 2/3 for the
loop closure detection module. The threshold on the number
of inliers is set to seven based on our experience. When the
process in Algorithm 3 is completed, we obtain the more
accurate keyframe sequence C than B.
By using the keyframe sequence C as inputs, we per-

form pose-graph optimization with G2o. The detailed
G2o optimization is presented in Algorithm 4. Based on
Algorithm 4, the pose-graph optimization module optimizes
a pose graph with loop closure constraints, as shown in
Algorithm 5. Specifically, if a keyframe in the keyframe
sequence C accurately matches six random keyframes in
D and seven last keyframes in D, the keyframe in C will
be put into the keyframe sequence D. The matches are
detected based on the number of inliers and Equation (7).
In Equation (7), we fix a = 2/3 and b = 1/3 for the
pose-graph optimization module relying on our experience.
The threshold on the number of inliers is set to seven. The
method to detect matched keyframes is the same as that in
Algorithm 3. The matched keyframe is optimized by G2o
for 80 iterations. Through the G2o optimization, loops are
re-detected and corrected. After the pose-graph optimiza-
tion module, we obtain the keyframe sequence D including
optimized poses.

To reconstruct dense scenes, we backproject depth maps
predicted by DEM from the optimized poses in the keyframe
sequence D. Relying on optimized poses and accurate depth
maps outputted by DEM, the point cloud map of an unknown
environment is built with monocular images. The reconstruc-
tion results can be acquired without indoor or outdoor con-
straints through the DEM-based SLAM.

The DEM-based SLAM has three advantages of low
manufacturing cost, high accuracy, and easy use. 1) The
SLAM is low-cost as compared with RGBD camera-based
SLAM such as [19], [20]. This is because depth is acquired

Algorithm 3 Loop Closure Detection
Input:

The keyframe sequence B with o keyframes.
Output:

The new keyframe sequence C with m keyframes.
1: Create the new keyframe sequence C with m keyframes

and initialize m to 0;
2: for ri← 0 to o do
3: if (m < 7) then
4: for i← 0 to m do
5: Obtain poses T and the number of inliers h

between the frame ri in keyframe sequences B
and frame i in keyframe sequencesC using Algo-
rithm 1, and calculate the 3D rotation vector r and
translation vector t based on the pose T , and then
use r and t to calculate dis based on Equation (7);

6: if (In < 7 or dis > 2.1 or dis < 0.1) then
7: continue;
8: end if
9: end for
10: else
11: for i← m− 7 to m do
12: Perform Step 5 to Step 8 of Algorithm 3;
13: end for
14: end if
15: if (m < 6) then
16: for i← 0 to m do
17: Perform Step 5 to Step 8 of Algorithm 3;
18: end for
19: else
20: for i← 0 to 6 do
21: Randomly extract the frame i in the keyframe

sequence C and perform Step 5 to Step 8 of
Algorithm 3;

22: end for
23: end if
24: m ← m + 1; // Add the frame ri to the keyframe

sequence C;
25: end for
26: return The keyframe sequence C with m keyframes.

from DEM with monocular cameras in our SLAM. In con-
trast, RGBD camera-based SLAM uses RGBD cameras to
obtain depth. The RGBD cameras are generally more expen-
sive than monocular cameras. 2) Although using a cheap
monocular camera in our SLAM, we alleviate absolute scale
ambiguities. The initialization trouble of monocular cameras
is also avoided by our SLAM. As compared with other
monocular camera-based SLAM, the reconstruction accu-
racy is greatly improved by the DEM-based SLAM. 3) Our
monocular camera-based SLAM is easy-to-use, requiring no
additional multi-frame matching setup and indoor/outdoor
limits. As described earlier, each module in our SLAM is

89306 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

Algorithm 4 G2o Optimization
Input:

Two frames f1 and f2.
1: Create new object pointers of a linear solver and a block

matrix solver and initialize them;
2: Select the Levenberg-Marquardt algorithm [42] in G2o

as the gradient descent method;
3: Create a sparse optimizer ‘‘optimizer’’;
4: Create a new object pointer of a vertex belonging to the

class ‘‘VertexSE3’’;
5: Initialize the vertex and define the vertex number as the

index of frame;
6: Set the initial value of the optimization to the unit matrix;

7: Fix the first vertex and add the vertex to the optimizer
‘‘optimizer’’;

8: Create a new object pointer of a vertex belonging to the
class ‘‘VertexSE3’’;

9: Initialize the vertex;
10: Define the vertex number as the index of frame f2;
11: Set T to the initial value of the optimization;
12: Add the vertex to the optimizer ‘‘optimizer’’;
13: Create a new object pointer of an edge and initialize it;
14: Set the first and second vertexes connecting the edge to

the indexes of frames f1 and f2;
15: Set the robust kernel function to the Huber loss function

in G2o;
16: Define the 6× 6 information matrix and set the diagonal

value of the information matrix to 100;
17: Set the observation of the edge to the transformation

matrix obtained from the output T of Algorithm 1;
18: Add the edge to the optimizer ‘‘optimizer’’;
19: Start optimization for 80 iterations;
20: return NONE .

plug-and-play, runs independently, and feeds the results to the
next module directly.

IV. EXPERIMENTS
In Section IV-A, two publicly available datasets are presented
to train and test DEM. In Section IV-B, online data augmen-
tation is shown, training DEM for further accurate depth pre-
diction. In Section IV-C, we preprocess the datasets to obtain
different modalities of inputs for algorithms. In Section IV-D,
error metrics are discussed.

A. DATASETS
In this section, we describe the indoor NYU-Depth-v2 and
outdoor KITTI datasets for experiments.

1) NYU-Depth-v2 DATASET
The NYU-Depth-v2 dataset is used to train and assess
models. The dataset includes 120,000 pairs of RGB and
depth images captured by Microsoft Kinect v1 sensors. The
largest ranging distance of Microsoft Kinect v1 is 10 meters.

Algorithm 5 Pose-Graph Optimization Using Algorithm 4
Input:

The keyframe sequence C with m keyframes.
Output:

Optimized poses in the keyframe sequence D.
1: Create the keyframe sequence D with s (s=0) keyframes

and perform Step 1 to Step 7 of Algorithm 4;
2: for ri← 0 to m do
3: Obtain optimized poses T and the number of inliers h

between the current frame ri and its previous frame in
the keyframe sequence C by using Algorithm 1, and
set vertexes and edges in G2o by performing Step 8 to
Step 18 of Algorithm 4;

4: if (s < 7) then
5: for i← 0 to s do
6: Perform Step 5 to Step 8 of Algorithm 3 and set

edges in G2o by performing Step 13 to Step 18 of
Algorithm 4;

7: end for
8: else
9: for i← s− 7 to s do
10: Perform Step 6 of Algorithm 5;
11: end for
12: end if
13: if (s < 6) then
14: for i← 0 to s do
15: Perform Step 6 of Algorithm 5;
16: end for
17: else
18: for i← 0 to 6 do
19: Randomly extract the frame i in the final

keyframe sequence D and perform Step 6 of
Algorithm 5;

20: end for
21: end if
22: s ← s + 1; // Add the frame ri to the final keyframe

sequence D;
23: end for
24: Perform Step 19 of Algorithm 4;
25: return The optimized poses in the keyframe sequence

D.

The dataset contains 464 scenes. In general, 249 scenes are
adopted for model training and 215 scenes are employed for
model testing. Following the classic work [8], 47,584 pairs
of RGB-depth maps on the training dataset are leveraged for
model training, and the testing dataset containing 654 pairs
of RGB-depth images is used to test models. For a fair
comparison, the same testing dataset is adopted to evaluate
all models in this paper.

2) KITTI ODOMETRY DATASET
The KITTI dataset is adopted to further evaluate DEM.
The KITTI contains depth and RGB images of urban, rural,

VOLUME 8, 2020 89307

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

and highway scenes. The depth images are captured by
LiDARs. The maximum ranging distance of depth images
is 100 meters. The odometry benchmark on KITTI includes
22 stereo sequences: 11 sequences are used for model train-
ing, and the others are for model testing. The resolution of
training and testing images is 376 × 1241 and 370 × 1226,
respectively. Following the research [8], we train DEM with
46k RGB-depth pairs from the training sequences and assess
DEM with random 3200 RGB maps in the testing sequence.
The testing dataset on KITTI is also leveraged by other
models for evaluation in this paper.

For a fair comparison, we process the training and test-
ing sequences on KITTI following the method [8]. First,
LiDAR measurements are projected on corresponding RGB
images from training and testing datasets, respectively.
Second, we remove sky parts in raw images on training
and testing datasets because measurements of the sky parts
are meaningless. Then, the training and testing RGB-depth
images of size 240 × 1200 are obtained. Third, online data
augmentation is performed for the training dataset. The online
data augmentation is described as follows.

B. DATA AUGMENTATION
To further achieve accurate depth estimation, we adopt online
data augmentation for model training. The online data aug-
mentation does not increase the number of images on training
datasets. Following the work [8], the online data augmenta-
tion consists of five steps.
• Flip: we flip depth and RGB images horizontally with a
50% probability.

• Scale: we scale up and down depth and RGB images
through a random scaling factor r ∈ [1.0, 1.5].

• Translation: we translate depth and RGB images in a
vertical direction.

• Rotation: we rotate depth andRGB images at the random
angle a ∈ [−4.5, 4.5].

• Color Normalization: we normalize RGB images by
mean subtraction and division.

After color normalization, RGB and depth images are
cropped from the center to obtain training images of the same
size as that of the method [8]. Specifically, on the NYU-
Depth-v2 dataset, training images of size 228 × 304 are
obtained through data augmentation. To ensure the input size
of model inference is consistent with that of model training,
we crop from the center of RGB maps on the NYU-Depth-
v2 dataset to acquire testing images of size 228×304. On the
KITTI dataset, training images of size 228×912 are obtained
by data augmentation. To ensure the input size of DEM is
consistent for training and inference, we crop from the center
of RGB images on the KITTI dataset to obtain testing images
of size 228× 912 for inference.

C. THREE MODALITIES OF INPUTS
After cropping images in Section IV-B, the obtained training
and testing images on the same dataset are processed to
generate three modalities of model inputs, i.e., RGBd data

containing sparse depth and RGB images, sparse depth, and
RGB images. The modalities of inputs are the same in model
training and inference processes.
• Inputs of RGBd data: RGBd inputs are processed for
model training and inference in two steps. 1) A few valid
depth points are uniformly and randomly sampled from
depth images on training and testing datasets, respec-
tively. For a fair comparison, the number of valid depth
samples is set to the same as that of research [8], [37].
2) RGB images and corresponding depth samples on
training and testing datasets are fused as RGBd data to
train and test models respectively. The RGBd data on the
same testing datasets are employed to evaluate models.

• Inputs of sparse depth: the same steps as those of RGBd
data are performed to generate sparse depth inputs on
training and testing datasets. The probability of depth
samples at each position is about identical in a depth
map because we sample depth points uniformly and
randomly. The number of valid depth samples is set
to the same as that of work [8], [37], [38] for a fair
comparison. In each depth image, the largest number of
valid depth samples is 200, which accounts for 0.04%
and 0.06% of the total on the KITTI and NYU-Depth-
v2 images, respectively. The above sampling proportion
suggests that our depth sample-based inputs are sparse.

• Inputs of RGB images: RGB images captured by cam-
eras or given by public datasets are used as inputs
of model training and testing. For a fair comparison,
the RGB images are the same to test DEM and other
methods. Compared with depth estimation using RGBd
data or sparse depth, predicting depth from a single RGB
image is challenging because scale ambiguity exists in
monocular depth estimation. Our DEM alleviates the
ambiguity and estimates pixel-level depth maps reliably
in outdoor or indoor scenarios.

D. ERROR METRICS
To evaluate DEM quantitatively, we use the error metrics
which are also adopted by studies [1], [4]–[6], [7], [8], [15],
[16], [24]–[26], [27], [28], [35], [37]–[39], [43]. The error
metrics consider global statistics between a ground-truth
depth image Y containingN depth pixels and a corresponding
predicted depth map P consisting of N depth pixels. These
error metrics are absolute relative difference (REL), root
mean square error (RMSE), and δm, which are

• REL = 1
|N |

∑
i,j
|yi,j−pi,j|

pi,j
,

• RMSE =
√

1
|N |

∑
i,j

∣∣yi,j − pi,j∣∣2,
where j and i are the ordinate and abscissa of a pixel
in a depth map; pi,j and yi,j denote a predicted and
ground-truth depth value of a pixel respectively, and

• δm =
card

({
pi,j:max

{
pi,j
yi,j
,
yi,j
pi,j

}
<1.25m

})
card({yi,j})

,
where δm represents a percentage of estimated pixels in
which relative errors are in a threshold [8], and m = 1,
2, or 3. Here, i and j are the abscissa and ordinate of

89308 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

a pixel in a depth map. The depth value of a pixel in
ground-truth and predicted depth maps is denoted as yi,j
and pi,j, respectively. The card is the cardinality of a set.

V. EVALUATING DEM
The performance of DEM is compared with state-of-the-art
studies. The encoder, decoder, and loss function of DEM
are evaluated on the NYU-Depth-v2 dataset in Section V-A.
In Section V-B, to illustrate the effectiveness and certain
generalization of DEM, we evaluate it on the NYU-Depth-
v2 and KITTI datasets. In Section V-C, the inference latency
of DEM is evaluated on different platforms. The computation
resources of DEM are assessed on embedded devices in
Section V-D.
Development Environment: In this section, models are

trained in the cloud platform equipped with NVIDIA Tesla
P100 graphics card and Intel i9 CPU. Following the work [8],
the batch size and epochs are set to 16 and 20 when DEM
is trained. The model inference is performed in the cloud
platform and embedded platform (NVIDIA Jetson TX2). The
type of inputs is the same for model training and inference.

A. EVALUATING ENCODERS, DECODERS, AND LOSS
FUNCTIONS
In this section, we demonstrate that our encoder, decoder, and
loss function are effective.

1) EVALUATING ENCODERS
As presented in Table 1, encoders are assessed. The same
RGB input images, decoders, and loss functions are adopted
in the same group. The loss function L1 is chosen for model
training. The decoder in different groups is fixed as Deconv3
for a fair comparison. Deconv3 denotes transposed convolu-
tion layers with a 3 × 3 kernel. Here, ResNet-18 represents
the encoder containing a convolution (Conv) layer, batch
normalization (BN) layer, and ResNet-18. Similarly, the fol-
lowing CNN networks are expressed in the same way. The
REL and RMSE are the-lower-the-better, and δm (m = 1, 2,
or 3) is the-higher-the-better. Then, RMSE is analyzed as a
representative.

TABLE 1. Evaluating encoders on the NYU-Depth-v2 dataset.

As listed in Table 1, our encoder is more accurate
than state-of-the-art encoders on the NYU-Depth-v2 dataset.
We highlight better results in bold. The results [1], [8], [16]
are obtained by implementing authors’ respective codes.

In the work [16], the encoder-decoder model ‘‘MobileNet-
NNConv5dw’’ is employed in this paper for compari-
son. We perform models including DPN-68, DPN-131,
ResNet-18, or DenseNet-121 and acquire their results. Com-
pared with models including DPN-68, DPN-131, ResNet-18,
or DenseNet-121, the RMSE of our encoder obtains at least
4.2% improvement. Compared with models [1], [8], [16],
our RMSE is 6.8% lower. These results quantitatively justify
that our encoder is more suitable than others when predicting
depth.

2) EVALUATING DECODERS
As shown in Table 2, our decoder provides more reliable
depth than state-of-the-art decoders. All models use RGB
inputs on the NYU-Depth-v2 dataset for model training
and inference. The results of models [5], [24] are taken
from their respective papers. The results of studies [8],
[16] are obtained by running their corresponding models.
We implement the models including ResNet-18 and acquire
their results. In Row 2-4, our decoder is 0.5% more accurate
than Deconv3 and UpProj in RMSE. In Row 5-10, UpProj is
slightly better than UpConv. The results are consistent with
those in the work [8]. In the table, our RMSE is always lower
than that of research [5], [8], [16], [24] when the proposed
decoder is employed. As expected, our decoder outperforms
other decoders in accuracy.

TABLE 2. Evaluating decoders on the NYU-Depth-v2 dataset.

In summary, our decoder has three advantages. First,
the decoder outputs high-resolution depth maps. Second,
the decoder recovers local features, extracts features, and
learns features through learnable transposed convolution and
convolution networks. In contrast, the local features are easily
lost by linear interpolation in decoders such as [5], [8]. Third,
properly matched different encoders, the decoder is conve-
nient to improve depth prediction accuracy. The proposed
encoder and decoder compose the depth estimation model
(DEM).Without additional pre-processing or post-processing
steps, we train the end-to-end DEM with the proposed loss
function.

3) EVALUATING LOSS FUNCTIONS
As shown in Table 3, our loss function provides compa-
rable accuracy. The results of studies [5], [8], [16], [37]

VOLUME 8, 2020 89309

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

are obtained by implementing their corresponding models.
We performmodels including ResNet-18 and ResNet-34, and
acquire their results. The NYU-Depth-v2 dataset is leveraged
for model training and inference. The modalities of inputs are
the same for model training and inference.

In all groups of Table 3, our loss function outperforms
state-of-the-art loss functions. For example, the RMSE of
our loss function is at least 0.8% lower than that of L1, L2,
and berHu, in the RGB group where inputs are RGB images
for model training and testing. The results in the sd group
also confirm that our loss function L is effective in depth
estimation. Here, in the sd group, inputs of model training
and testing are sd-200 (200 valid depth points generated
by random sampling in each image) on the NYU-Depth-v2
dataset.

TABLE 3. Evaluating loss functions on the NYU-Depth-v2 Dataset.

Consequently, when the proposed loss function L is
adopted, the accuracy of depth estimation is higher than that
of the state of the arts. Our accurate results in Table 3 benefit
from the use of relative relationships by the proposed loss
function L. The relationships among sparse depth samples
encourage prediction to agree with ground truth. The abla-
tion experiments of our encoder, decoder, and loss functions
verify that they all enable finer depth estimation. We will
compare the encoder-decoder model DEM with other studies
in the next section.

B. COMPARISON WITH STATE OF THE ARTS
In this section, we verify the performance of DEM and
discuss prediction results on two benchmark datasets.

1) COMPARISON ON THE NYU-Depth-v2 DATASET
Different models are evaluated on the NYU-Depth-v2 testing
dataset. In Table 4 and Table 5, the results of models [1],
[5]–[7], [8], [15], [24], [25], [28], [32], [36], [39], [43] are
taken from their respective papers. The results of models
[16], [33], [37] are acquired by implementing their respec-
tive methods. In the work [32], we select the first training
setup because it consumes less calculation than other training
setups. In the research [33], we adopt the original parameter
setup to obtain better results than other parameter setups. The
‘‘w/o pre-trained weights’’ in Table 4 and Table 5 represents
that our encoder is initialized without pre-trained weights in
model training. The ‘‘semi’’ denotes that the study [39] takes
semi-dense maps as inputs.

TABLE 4. Comparison using RGB/RGBd inputs on the
NYU-Depth-v2 dataset.

In Table 4, the results denote that DEM achieves con-
siderable improvement as compared with other approaches.
Specifically, our RMSE is respectively 10.4%, 14.5%, 16.4%,
4.6%, 17.4%, 23.6%, 34.1%, 16.0%, 15.4%, 36.0%, and
15.8% lower than that of research [1], [5], [6], [8], [15],
[16], [24], [25], [28], [32], [43] when inputs are RGB images
for model training and evaluation. When model inputs are
RGB images and (20, 50, or 200) sparse samples, DEM

89310 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

is also more accurate than others. Additionally, the encoder
initialized with pre-trained weights outperforms that without
pre-trained weights in DEM. The above contrast confirms
that our encoder, decoder, and loss function are effective in
depth estimation when inputs are RGB images or RGBd data
(RGB images and sparse samples).

In Table 5, we use sd-20, sd-50, and sd-200 as model
inputs. The sd-20 denotes inputs contain only 20 valid depth
samples for model training and inference. The sd-50 and sd-
200 are expressed in the sameway. The depth estimation qual-
ity improves as the proportion of depth samples increases. All
accuracy of DEM is comparable as compared with the state of
the arts. For example, our RMSE is respectively 3.1%, 3.9%,
4.1%, 67.6%, 34.9%, and 1.3% lower than that of methods
[1], [8], [16], [33], [37], [38] when model inputs are sd-20.
The accuracy of DEM is also higher than that of other studies
when model inputs are sd-50. Our RMSE is respectively
13.9%, 22.8%, 82.4%, and 42.8% better than that of work
[8], [16], [33], [37] when model inputs are sd-200.

TABLE 5. Comparison using sparse depth inputs on the
NYU-Depth-v2 dataset.

In Fig. 4, the visual results also show that DEM boosts
the accuracy of depth prediction. Here, depth maps are pre-
dicted with RGB images or sd-200 inputs on the NYU-Depth-
v2 dataset. The modalities of inputs are the same in training
and inference processes. The results of Ma and Karaman [8]
are taken from their paper. The difference between methods
is marked by boxes or circles in Fig. 4. In each group, our
depth maps are clearer than others. Specifically, the objects
predicted by DEM have distinct edges and corners. The esti-
mated details of a sofa, chair, and table are easy to distinguish
in Fig. 4(b). The sofa, table, and mural in Fig. 4(d) also have
complete contours. In contrast, the sofa and table predicted
by the work [8] are unclear, as listed in the first and second
columns of Fig. 4(c). The objects [8] in Fig. 4(e) are still

FIGURE 4. Predictions on the NYU-Depth-v2 dataset. From top to bottom:
(a) monocular RGB images; (b) our estimation relying on RGB images;
(c) RGB-based predictions [8]; (d) our estimation relying on sd-200 data;
(e) the estimation in the work [8] based on sd-200 data; (f) ground truth.

ambiguous. These visual results further confirm that DEM
considerably improves depth estimation.

2) COMPARISON ON THE KITTI DATASET
On the outdoor KITTI testing dataset, we evaluate DEM and
compare it with the state of the arts, as shown in Table 6. The
KITTI dataset is challenging because the largest ranging dis-
tance of the KITTI dataset is ten times that of NYU-Depth-v2.
The input modalities in model training are the same as those
in model inference. The results of models [4], [7], [8], [26],
[27], [32], [35], [36] are taken from their respective papers.
The result of the research [22] is taken from the paper [4].
The results ofmodels [16], [33] are acquired by implementing
their respective methods.

In Table 6, DEM performs better than other methods. For
example, our RMSE is respectively 38.1%, 29.3%, 49.2%,
29.6%, 14.6%, 41.0%, 14.5%, and 18.5% lower than that of
models [4], [7], [8], [16], [26], [32], [33], [35] when model
inputs are RGB images. The RMSE of DEM is 65.2% better
than that of Cadena et al. [35], and our depth samples are
less than those of the method [35] when model inputs are
RGB images and 500 depth samples. Additionally, our output

VOLUME 8, 2020 89311

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

TABLE 6. Comparison results on the KITTI dataset.

size of DEM is 48.1 times that of the method [35]. Hence,
more accurate and high-resolution depth maps are predicted
with DEM than other models. The RMSE of DEM is reduced
by 23.7% compared with the research [7]. In addition, DEM
has 55.6% fewer depth samples than the work [7]. Relative to
the state of the arts [8], [16], [33], [36], DEM also has higher
accuracy. These results demonstrate the encoder, decoder, and
loss function of DEM are more precise than others.

3) COMPARISON OF GENERALIZATION ERROR ON THE
Make3D TESTING DATASET.
To verify the generalization of DEM, we train DEM on one
dataset such as KITTI and test it on another dataset like
Make3D. For comparison, the baseline is selected from the
paper [22]. The results of Saxena et al. are taken from their
paper [21]. Similar to DEM, the state of the arts [8], [16] are
trained on KITTI and tested on Make3D. When model inputs
are RGB images, the REL of DEM is 24.2% lower than that of
the baseline [22]. The RMSE of DEM is respectively 40.1%
and 2.7% better than that of methods [16], [21]. When model
inputs are RGB images and 500 sparse samples, our RMSE is
respectively 12.7% and 35.9% lower than that of the studies
[8], [16]. Different from DEM, the classic work [21] and the
baseline [22] use Make3D to train and test models, but DEM
performs better than them. These results show that DEM has
a certain generalization ability.

C. EVALUATING RUNTIME ON DIFFERENT PLATFORMS
The inference time of DEM is evaluated in the cloud platform
and embedded platform. The inference time is measured three
times, and then the average of inference time of each image is
computed. The inputs on NVIDIA Jetson TX2 are the same as
those in the cloud platform for training and inference. In the
sd group of Table 8, sd-50 denotes model inputs containing
only 50 valid depth samples in an image for training and
inference. In the RGBd group, RGBd-50 means the inputs

TABLE 7. Comparison of generalization error on the Make3D dataset.

TABLE 8. Runtime of DEM.

include RGB images and 50 valid depth samples for training
and evaluation. All values are in milliseconds (ms) in Table 8.
The accuracy metrics are not shown here because they have
been listed in Table 4 and 5. The accuracy has no difference in
the cloud platform and embedded platform when inputs and
models are the same.

Table 8 shows that DEM satisfies real-time (9 frames
per second) constraints when inputs are RGB images of
size 480 × 640 on TX2. Specifically, in the RGBd group,
the runtime of the RGBd group is the longest in all groups
on TX2 or in the cloud platform because DEM predicts depth
with sparse depth points and RGB images. In the sd group,
the short runtime is spent whether in the cloud or on TX2,
owing to only valid depth points used as inputs of DEM. In the
RGBgroup, the runtime is better than that of the RGBd group.
Here, the runtime of DEM on the KITTI dataset is a little
longer than that on the NYU-Depth-v2 dataset because the
size of inputs on the KITTI dataset is larger than that on the
NYU-Depth-v2 dataset. The runtime of RGB input images
of size 480×640 meets real-time requirements on TX2. This
result is reasonable since the RGB group predicts depth maps
with RGB inputs alone. Additionally, RGB images are easily
obtained from low-cost monocular cameras. Therefore, RGB
images are chosen as inputs of DEM to test computation
resources on embedded devices.

D. EVALUATING COMPUTATION RESOURCES ON
EMBEDDED DEVICES
To evaluate computation resources of DEM on the
representative embedded device NVIDIA Jetson TX2,
we measure metrics such as the number of parameters, mem-
ory utilization, CPU/GPU consumption with their frequency,
power consumption, and energy consumption, as listed
in Table 9. These metrics are widely used to evaluate com-
putation resources of algorithms on embedded systems [44],
[45]. The result of ResNet-FC-160 × 128 [5] is acquired by
implementing the method ResNet-FC-160×128 on TX2. The

89312 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

TABLE 9. Evaluating computation resources on embedded devices.

result of Ma and Karaman [8] is obtained by running their
code on TX2.

For comparison, the computation resources of methods [5],
[8] are evaluated under the same condition as that of
DEM. When stably predicting depth maps of 654 RGB
images (the NYU-Depth-v2 testing dataset) by using
MAXP_CORE_ARM mode on TX2, we record the metrics
of memory utilization, CPU/GPU consumption with their
frequency, and power consumption, and we then compute
average values of them. The power consumption is computed
by multiplying voltage and current. The voltage and current
are measured by a power supply. When completing depth
estimation of 654 RGB images, we record the runtime and
compute the energy consumption. The energy consumption is
computed bymultiplying the power consumption and runtime
of 654 RGB images.

On all metrics in Table 9, parameters are the-less-the-
better. The memory utilization, CPU/GPU consumption,
CPU/GPU frequency, power consumption, and energy con-
sumption are the-lower-the-better. The CPU/GPU frequency
changes with CPU/GPU workloads dynamically. The per-
centage of CPU/GPU consumption is relative to the
CPU/GPU frequency. Additionally, in the RGB group of
Table 9, inputs of all methods are RGB images for model
training and inference. In the RGBd group of Table 9, inputs
of all methods are RGB images and sparse depth samples for
model training and evaluation.

As presented in Table 9, DEM is suited to run on embedded
devices. In contrast to the state of the art, DEM boosts the per-
formance of depth prediction with low consumption of GPU,
power, and energy. Specifically, in RGB and RGBd-200
groups, we perform better than those of the work [5], [8], [34]
on metrics such as runtime and consumption of GPU, power,
and energy. The memory utilization and CPU consumption
in the research [8] slightly outperform ours. Also, DEM
is less complex and has 28.6% fewer parameters than the
algorithm [8]. These results demonstrate that DEM is good at
reducing the runtime and consumption of GPU, power, and
energy. Therefore, DEM is real-time with low consumption
of GPU, power, and energy for fast depth estimation on
embedded devices.

VI. APPLICATION OF DEM AND EVALUATION OF SLAM
In Section VI-A, we apply DEM to LiDAR super-
resolution. The application result is qualitatively compared

with the state of the art. In Section VI-B, we quantitatively
assess the application of DEM in LiDAR super-resolution.
In Section VI-C, we qualitatively evaluate the DEM-based
SLAM. In Section VI-D, the DEM-based SLAM is quantita-
tively comparedwith well-known SLAM systems, and results
are analysed in detail.

A. APPLYING DEM TO LiDAR SUPER-RESOLUTION
As shown in Fig. 5, we apply DEM to LiDAR super-
resolution following the representative study [8]. On the
KITTI dataset, RGBd-20000 data (20000 depth samples
in each image) are used as inputs of models for train-
ing and inference. The results of Ma and Karaman [8]
are acquired by running their code. The good application
in LiDAR super-resolution represents easily recognizable
objects in Fig. 5. In Fig. 5(c), faraway cars and trees are
recognized by our estimation. In Fig. 5(b), the car and tree
at a long distance cannot be identified. The object shape in
our prediction is clear. For instance, nearby cars in Fig. 5(c)
are distinguished easily. The window of the car is identified
more clearly in our results than that in the research [8]. These
significant differences between Fig. 5(b) and Fig. 5(c) imply
that DEM is more reliable than the method [8]. Addition-
ally, the estimation of DEM has fine contours of objects,
compared with the ground-truth depth projected from LiDAR
measurements in Fig. 5(d). Our experiments justify that DEM
can be applied to LiDAR super-resolution well.

FIGURE 5. Applications in LiDAR super-resolution. Inputs of all
algorithms are RGBd-20000 data for model training and inference.
(a) RGB images; (b) dense depth prediction in the work [8] based on
RGBd-20000 data; (c) our depth estimation relying on RGBd-20000 data;
(d) ground-truth depth projected from LiDAR measurements.

VOLUME 8, 2020 89313

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

FIGURE 6. Reconstruction results using the NYU-Depth-v2 testing scenes;
(a) RGB images; (b) the ground-truth map; (c) the result of the
research [8]; (d) the result of the DEM-based SLAM; (e) the result of the
front-end of SLAM [8]; (f) the result of the front-end of DEM-based SLAM.

B. EVALUATING APPLICATIONS QUANTITATIVELY
The mean absolute error (MAE) metric is computed to
quantitatively evaluate applications of DEM in LiDAR
super-resolution again. The MAE represents the average of
absolute deviations between ground-truth and predicted depth
maps. The MAE of DEM is 0.745 when the inputs for model
training and testing are RGBd-500 data (500 depth samples
in each image) on the KITTI dataset. With RGBd-500 inputs
on KITTI for model training and testing, we run the source
code [8]. Then, the MAE [8] is obtained (1.209). In con-
trast, our MAE is 38.4% lower than that of the study [8].
In Table 6, we also quantitatively demonstrated the applica-
tion of DEM in super-resolution performs better than that of
the work [8]. Specifically, DEM outperforms the state-of-the-
arts on metrics of RMSE, REL, δ1, δ2, and δ3 in Table 6.
These assessments quantitatively show that applying DEM
to LiDAR super-resolution is effective.

C. EVALUATING DEM-BASED SLAM QUALITATIVELY
As shown in Fig. 6, the DEM-based SLAM is evaluated
qualitatively. The reconstruction results of SLAM are pre-
sented in Fig. 6(c) and Fig. 6(d). To demonstrate the local

consistency in SLAM systems, the front-end of SLAM is
shown in Fig. 6(e) and Fig. 6(f). The results in Fig. 6(c)
and Fig. 6(e) are obtained by implementing the representative
method [8]. Here, we use inputs of monocular RGB images
on the NYU-Depth-v2 dataset for model training and testing.
The outputs of DEM from RGB images are employed by our
SLAM. In contrast, the work [8] employs inputs of RGB and
sparse depth on the NYU-Depth-v2 dataset for model training
and testing. The outputs of model testing relying on RGB and
sparse depth are leveraged as inputs of the SLAM system [8].

In Fig. 6, the reconstruction results of the DEM-based
SLAM are close to the ground truth, although using monoc-
ular RGB images as inputs. Compared with the state of the
art [8] from RGB and sparse depth inputs, the DEM-based
SLAM reconstructs the detail of walls from RGB images,
as displayed in Fig. 6(d). By contrast, the work [8] has little
reconstruction of walls in Fig. 6(c). The reconstruction of
textureless regions like walls shows that the DEM-based
SLAM is dependable. Additionally, more complete objects
are shown in the front-end of our SLAM in Fig. 6(f) than those
in Fig. 6(e). The favorable results in Fig. 6(d) and Fig. 6(f)
benefit from our reliable DEM and SLAM.

To further justify the effectiveness of the DEM-based
SLAM, we provide visual results of optimized poses obtained
in the pose prediction module of our SLAM. The monocular
camera is moved a distance and then returned to the vicinity
of an initial position. The poses of the end and starting
point are presented in Fig. 7(a) and Fig. 7(b). The pose
deviation is large between the origin and end point without
pose optimization in Fig. 7(b). This deviation is reduced by
optimizing poses with RANSAC PNP initial values, as shown
in Fig. 7(a). These results confirm our poses are accurate by
using G2o optimization with RANSAC PNP initial values in
the pose prediction module. The optimized poses boost the
accuracy of the DEM-based SLAM.

FIGURE 7. Poses from SLAM. (a) The starting and ending pose predicted
by G2o optimization with RANSAC PNP initial values; (b) The starting and
ending poses estimated by the original RANSAC PnP.

D. EVALUATING DEM-BASED SLAM QUANTITATIVELY
The TUM dataset4 and Absolute Trajectory Error (ATE)
RMSE (m) are adopted to test SLAM quantitatively. The
ATE RMSE metric is computed as the RMSE between the
ground truth and the estimated translation for each evaluated
sequence. TheATERMSE is lowwhen SLAMperformswell.
As common evaluation metrics of SLAM, ATE RMSE is

4https://vision.in.tum.de/data/datasets/rgbd-dataset

89314 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

widely leveraged in previous research [10]–[12], [17], [18],
[19], [20].

On the public TUM dataset, the sequences of fr1_desk,
fr3_long_office, and fr3_str_tex_far are chosen for SLAM
evaluation. On these sequences, monocular RGB images are
employed as inputs of the DEM-based SLAM. Here, DEM
is trained on the NYU-Depth-v2 dataset and directly for
inference on the TUM dataset. The outputs of DEM are used
by the DEM-based SLAM for reconstruction.

The ATE RMSE of the DEM-based SLAM is com-
pared with that of well-known SLAM [10]–[12], [17], [18],
[19], [20] on the TUM sequences. The results are shown
in Table 10. For comparison, the ATE RMSE of monocular
ORB-SLAM [17] and RGBD ORB-SLAM2 [19] is obtained
by running their code on the TUM sequences. The ATE
RMSE of work [10]–[12], [18], [20] is taken from their
respective papers.

In Table 10, the DEM-based SLAM performs well with
near state-of-the-art accuracy. The results of RGBD ORB-
SLAM2 are used as an upper bound of accuracy because
RGBD ORB-SLAM2 yields small error relying on inputs
of RGB images and ground-truth depth maps. In contrast
to RGBD ORB-SLAM2, the DEM-based SLAM recon-
structs scenes through only monocular RGB images, but the
DEM-based SLAM outperforms deep learning-based SLAM
methods [10]–[12], [20]. The extensive experiments demon-
strate that the DEM-based SLAM is reliable.

TABLE 10. Absolute trajectory error RMSE (m) on TUM sequences.

VII. CONCLUSION
In this paper, we propose the encoder-decoder model (DEM)
to estimate depth, the loss function to guide the training
of DEM, and the DEM-based SLAM system to recon-
struct scenes with monocular cameras. The encoder reuses
and re-exploits features effectively; the decoder recovers
details that are generally lost by linear interpolation in other
decoders; the loss function encourages estimated depth to
agree with the ground truth. Our methods achieve compa-
rable results on public datasets. Particularly, DEM outper-
forms state-of-the-art algorithms in accuracy, whether inputs
are monocular images, sparse depth, or the fusion of both.
Our DEM runs in nearly real-time (9 frames per second)
and is efficient in the consumption of GPU, power, and
energy on embedded devices. Additionally, the application

of DEM in LiDAR super-resolution performs better than
previous algorithms. Based on DEM, the proposed SLAM
system reconstructs more accurate scenes than existing depth
estimation-based SLAM. Future researchwill use lightweight
depth estimation models to decrease the consumption of
memory and CPU.

REFERENCES
[1] X. Tu, C. Xu, S. Liu, G. Xie, and R. Li, ‘‘Real-time depth esti-

mation with an optimized encoder-decoder architecture on embedded
devices,’’ in Proc. IEEE 21st Int. Conf. High Perform. Comput. Commun.,
IEEE 17th Int. Conf. Smart City, IEEE 5th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Aug. 2019, pp. 2141–2149.

[2] W. Hong, Z. Wang, M. Yang, and J. Yuan, ‘‘Conditional generative adver-
sarial network for structured domain adaptation,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1335–1344.

[3] N. Chodosh, C. Wang, and S. Lucey, ‘‘Deep convolutional compressed
sensing for LiDAR depth completion,’’ in Proc. Asian Conf. Comput. Vis.
(ACCV), 2018, pp. 499–513.

[4] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using amulti-scale deep network,’’ inProc. Adv. Neural Inf. Process.
Syst., 2014, pp. 2366–2374.

[5] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, ‘‘Deeper
depth prediction with fully convolutional residual networks,’’ in Proc. 4th
Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 239–248.

[6] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, ‘‘Multi-scale contin-
uous CRFs as sequential deep networks for monocular depth estimation,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5354–5362.

[7] Y. Liao, L. Huang, Y. Wang, S. Kodagoda, Y. Yu, and Y. Liu, ‘‘Parse
geometry from a line: Monocular depth estimation with partial laser obser-
vation,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2017,
pp. 5059–5066.

[8] F. Ma and S. Karaman, ‘‘Sparse-to-dense: Depth prediction from sparse
depth samples and a single image,’’ in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), May 2018, pp. 4796–4803.

[9] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[10] K. Tateno, F. Tombari, I. Laina, and N. Navab, ‘‘CNN-SLAM: Real-time
dense monocular SLAM with learned depth prediction,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6565–6574.

[11] H. Luo, Y. Gao, Y. Wu, C. Liao, X. Yang, and K.-T. Cheng, ‘‘Real-time
dense monocular SLAM with online adapted depth prediction network,’’
IEEE Trans. Multimedia, vol. 21, no. 2, pp. 470–483, Feb. 2019.

[12] J. Tang, J. Folkesson, and P. Jensfelt, ‘‘Geometric correspondence network
for camera motion estimation,’’ IEEE Robot. Autom. Lett., vol. 3, no. 2,
pp. 1010–1017, Apr. 2018.

[13] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, ‘‘Dual path networks,’’
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4467–4475.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[15] D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe, and E. Ricci, ‘‘Structured
attention guided convolutional neural fields for monocular depth estima-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3917–3925.

[16] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, ‘‘FastDepth: Fast
monocular depth estimation on embedded systems,’’ in Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), May 2019, pp. 6101–6108.

[17] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, ‘‘ORB-SLAM: A versa-
tile and accurate monocular SLAM system,’’ IEEE Trans. Robot., vol. 31,
no. 5, pp. 1147–1163, Oct. 2015.

[18] J. Engel and T. Schöps, and D. Cremers, ‘‘LSD-SLAM: Large-scale direct
monocular SLAM,’’ in Proc. Eur. Conf. Comput. Vis., 2014, pp. 834–849.

[19] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[20] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, ‘‘GCNv2: Efficient
correspondence prediction for real-time SLAM,’’ IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3505–3512, Oct. 2019.

VOLUME 8, 2020 89315

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

[21] A. Saxena, S. H. Chung, and A. Y. Ng, ‘‘3-D depth reconstruction from a
single still image,’’ Int. J. Comput. Vis., vol. 76, no. 1, pp. 53–69, 2008.

[22] A. Saxena, M. Sun, and A. Y. Ng, ‘‘Make3D: Learning 3D scene structure
from a single still image,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 5, pp. 824–840, May 2009.

[23] K. Karsch, C. Liu, and S. B. Kang, ‘‘Depth transfer: Depth extraction from
video using non-parametric sampling,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 11, pp. 2144–2158, Nov. 2014.

[24] D. Eigen and R. Fergus, ‘‘Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2650–2658.

[25] A. Roy and S. Todorovic, ‘‘Monocular depth estimation using neural
regression forest,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 5506–5514.

[26] A.Wang, Z. Fang, Y. Gao, X. Jiang, and S. Ma, ‘‘Depth estimation of video
sequences with perceptual losses,’’ IEEE Access, vol. 6, pp. 30536–30546,
2018.

[27] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, ‘‘Fast robust
monocular depth estimation for obstacle detection with fully convolu-
tional networks,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2016, pp. 4296–4303.

[28] D. Xu, E. Ricci,W.Ouyang, X.Wang, andN. Sebe, ‘‘Monocular depth esti-
mation using multi-scale continuous CRFs as sequential deep networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 6, pp. 1426–1440,
Jun. 2019.

[29] D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe,
‘‘Learning deep structured multi-scale features using attention-gated CRFs
for contour prediction,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3961–3970.

[30] Y. Cao, Z. Wu, and C. Shen, ‘‘Estimating depth from monocular images
as classification using deep fully convolutional residual networks,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 28, no. 11, pp. 3174–3182,
Nov. 2018.

[31] L. He, C. Chen, T. Zhang, H. Zhu, and S. Wan, ‘‘Wearable depth camera:
Monocular depth estimation via sparse optimization under weak supervi-
sion,’’ IEEE Access, vol. 6, pp. 41337–41345, 2018.

[32] S. Gur and L. Wolf, ‘‘Single image depth estimation trained via depth from
defocus cues,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 7683–7692.

[33] J. Hu, Y. Zhang, and T. Okatani, ‘‘Visualization of convolutional neural
networks for monocular depth estimation,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 3869–3878.

[34] K. Xian, C. Shen, Z. Cao, H. Lu, Y. Xiao, R. Li, and Z. Luo, ‘‘Monocular
relative depth perception with Web stereo data supervision,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 311–320.

[35] C. Cadena, A. R. Dick, and I. D. Reid, ‘‘Multi-modal auto-encoders as joint
estimators for robotics scene understanding,’’ in Proc. Robot. Sci. Syst.,
AnnArbor, MI, USA, Jun. 2016, pp. 1–9.

[36] T.-H. Wang, F.-E. Wang, J.-T. Lin, Y.-H. Tsai, W.-C. Chiu, and M. Sun,
‘‘Plug-and-play: Improve depth prediction via sparse data propagation,’’
in Proc. Int. Conf. Robot. Automat. (ICRA), May 2019, pp. 5880–5886.

[37] Y. Li, K. Qian, T. Huang, and J. Zhou, ‘‘Depth estimation from monocular
image and coarse depth points based on conditional GAN,’’ in Proc.
MATEC Web Conf., vol. 175, 2018, p. 03055.

[38] Z. Huang, J. Fan, S. Cheng, S. Yi, X. Wang, and H. Li, ‘‘HMS-Net: Hierar-
chical multi-scale sparsity-invariant network for sparse depth completion,’’
IEEE Trans. Image Process., vol. 29, pp. 3429–3441, 2020.

[39] X. Yang, J. Chen, Z. Wang, Q. Zhang, W. Liu, C. Liao, and K.-T. Cheng,
‘‘Monocular camera based real-time dense mapping using generative
adversarial network,’’ in Proc. 26th ACM Int. Conf. Multimedia, 2018,
pp. 896–904.

[40] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, ‘‘BRIEF: Binary robust
independent elementary features,’’ in Proc. Eur. Conf. Comput. Vis., 2010,
pp. 778–792.

[41] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, andW. Burgard, ‘‘G2o:
A general framework for graph optimization,’’ in Proc. IEEE Int. Conf.
Robot. Automat., May 2011, pp. 3607–3613.

[42] J. J. Moré, ‘‘The Levenberg-Marquardt algorithm: Implementation and
theory,’’ in Numerical Analysis. Berlin, Germany: Springer, 1978,
pp. 105–116.

[43] D. Xu, W. Ouyang, X. Wang, and N. Sebe, ‘‘PAD-Net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation and
scene parsing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 675–684.

[44] G. Xie, G. Zeng, R. Kurachi, H. Takada, Z. Li, R. Li, and K. Li, ‘‘WCRT
analysis and evaluation for sporadic message-processing tasks in multicore
automotive gateways,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 2, pp. 281–294, Feb. 2019.

[45] K. Li, ‘‘Optimal power and performance management for heterogeneous
and arbitrary cloud servers,’’ IEEE Access, vol. 7, pp. 5071–5084, 2019.

XIAOHAN TU received the M.Sc. degree in
computer science and technology from Hunan
University, Changsha, China, in 2017, where she
is pursuing the Ph.D. degree from the Key Labo-
ratory for Embedded and Network Computing of
Hunan Province. She is also participating with the
Project of National Natural Science Foundation
of China, namely, CPS Instantiation-Research on
the Smart Inspection Robot of Catenary. She has
presented research articles in the IEEE interna-

tional conferences. Her research interests include cyber-physical systems,
computer vision, and machine learning. She is also a Reviewer of IEEE
ACCESS.

CHENG XU received the Ph.D. degree in computer
science and engineering from the Wuhan Univer-
sity of Technology, Wuhan, China, in 2006.

He is currently a Professor of computer science
and electronic engineering with Hunan University,
Changsha, China. He is also a Ph.D. Supervisor
with the College of Information Science and
Engineering, Hunan University. He has pre-
sented 28 articles and has hosted several national
and provincial nature fund projects. His current

research interests include cyber-physical systems, embedded systems, digital
video processing, computer vision, and machine learning.

Dr. Xu is a member of China Computer Federation.

SIPING LIU received the M.Sc. degree in com-
puter science and technology from Hunan Uni-
versity, Changsha, China, in 2017, where he is
currently pursuing the Ph.D. degree in computer
science and technology with the Key Laboratory
for Embedded and Network Computing of Hunan
Province. His research interests include embedded
systems, parallel computing, cyber-physical sys-
tems, and machine learning.

GUOQI XIE (Senior Member, IEEE) received the
Ph.D. degree in computer science and engineering
from Hunan University, China, in 2014.

He was a Postdoctoral Research Fellow with
Nagoya University, Japan, from 2014 to 2015.
He has been an Associate Professor with the
Department of Computer Engineering, College of
Computer Science and Electronic Engineering,
HunanUniversity, since 2017. His current research
interests include embedded and cyber-physical

systems, parallel and distributed systems, and software engineering and
methodology. He received the Best Paper Award at the IEEE ISPA 2016 and
the 2018 IEEE TCSCAward for Excellence (Early Career Researcher). He is
also serving on the Editorial Board of the Journal of Systems Architec-
ture, the Journal of Circuits, Systems, and Computers,Microprocessors and
Microsystems, and IEEE ACCESS. He is an ACM Senior Member.

89316 VOLUME 8, 2020

X. Tu et al.: Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model

JING HUANG received the Ph.D. degree in
computer science and technology from Hunan
University, Changsha, China, in 2018. He is cur-
rently working as a Postdoctoral Researcher with
Hunan University. His research interests include
parallel computing, high-performance computing,
distributed computing, energy-efficient comput-
ing, heterogeneous computing, cloud computing,
and machine learning.

RENFA LI (Senior Member, IEEE) is currently a
Professor of computer science and electronic engi-
neering with Hunan University, Changsha, China.
He is also the Director of the Key Laboratory
for Embedded and Network Computing of Hunan
Province, China. His current research interests
include computer architectures, embedded com-
puting systems, cyber-physical systems, and the
Internet of Things.

Dr. Li is a member of the Council of China
Computer Federation and a Senior Member of the Information Processing
Society of Japan.

JUNSONG YUAN (Senior Member, IEEE)
received the B.Eng. degree from the Special Pro-
gram for the Gifted Young, Huazhong Univer-
sity of Science and Technology (HUST), China,
the M.Eng. degree from the National University of
Singapore, and the Ph.D. degree from Northwest-
ern University.

He is currently an Associate Professor and
the Director of Visual Computing Laboratory,
Department of Computer Science and Engineering

(CSE), State University of New York at Buffalo, USA. His research interests
include computer vision, pattern recognition, video analytics, gesture and
action analysis, large-scale visual search, and mining.

Dr. Yuan received 2016 Best Paper Award from the IEEE TRANSACTIONS

ON MULTIMEDIA, the Doctoral Spotlight Award from the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’09), a Nanyang Assistant
Professorship from NTU, and the Outstanding EECS Ph.D. Thesis Award
from Northwestern University. He is the Program Co-Chair of ICME18 and
VCIP15 and the Area Chair of ACM MM18, ACCV1814, CVPR17, and
ICIP17. He is also a Senior Area Editor of the Journal of Visual Commu-
nication and Image Representation (JVCI) and an Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING (T-IP) and the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (T-CSVT). He has served as
a Guest Editor of the International Journal of Computer Vision (IJCV).

VOLUME 8, 2020 89317

