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ABSTRACT Blockchain technology is an emerging distributed ledger technology that has exploratory
applications in many areas. The consensus algorithm, as the core module of the blockchain, has an important
impact on the security, scalability, and efficiency of the blockchain network. The consensus algorithm is
also a popular topic in current blockchain technology research. In existing consortium blockchains and
public blockchains, the blockchain has low efficiency or poor fault tolerance because of the limitations of
the consensus algorithm. To both ensure the fault tolerance of the blockchain and improve the scalability
and throughput, in this paper, we propose a new type of consensus algorithm: mixed Byzantine fault
tolerance (MBFT). MBFT uses sharding and layered technology. MBFT functionally partitions the nodes that
participate in the consensus process and improves the scalability and efficiency without sacrificing security.
MBFT also introduces a random node selection mechanism and a credit mechanism to improve security
and fault tolerance. We analyze the security and experiment on transaction throughput in a real network

environment. The results prove that MBFT has good security and scalability and high throughput.

INDEX TERMS Blockchain, consensus algorithm, Byzantine fault tolerance, distributed system.

I. INTRODUCTION

The consensus algorithm is the core technology of the
blockchain. The consensus algorithm is a set of mechanisms
that are designed to ensure the accuracy and consistency
of the data stored. To achieve lower transaction verifica-
tion delays and higher fault tolerance, the consensus algo-
rithm used on the blockchain is primarily determined by the
requirements of the service and performance. In traditional
distributed systems, the most commonly used consensus
algorithm is based on Paxos [1]. This type of algorithm can
quickly complete data synchronization in distributed systems
with a limited number of nodes and tolerate crash faults.
Specifically, the traditional distributed system does not need
to consider that malicious nodes could tamper with the data
and only needs to tolerate the fault of a portion of nodes hav-
ing downtime. However, in a blockchain, the situation is more
complicated. The number of nodes participating in account-
ing in the blockchain system is large, and the nodes do not
trust each other. Some of the accounting nodes may be con-
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trolled and may tamper with the data or deliberately destroy
the entire system by sending an error message [2]. In this case,
the consensus algorithm employed by the blockchain system
needs to have Byzantine fault tolerance [3]. The earliest con-
sensus mechanism used in the blockchain was Proof of Work
(PoW), which is adopted by Bitcoin [4]. The core idea of PoW
is to allocate billing rights and billing rewards according to
computing power. In the PoW blockchain system, when the
computing power is sufficiently large, the system can obtain
sufficient security and availability.

As an emerging technology, blockchain technology con-
tains many existing computer technologies such as point-
to-point communication, consensus algorithms, distributed
storage, and encryption algorithms. Given its rapid develop-
ment, blockchain technology has become increasingly widely
used. The blockchain is considered a disruptive, innovative
business model, similar to mainframes, personal computers,
the Internet and cloud computing, which triggered techno-
logical innovation [5]. The application of the blockchain
has extended to the finance industry, the Internet of Things,
medical care, supply chain management, digital asset trading,
property right protection and many other fields [6]-[9].
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However, blockchain technology also suffers from many
problems such as inadequate transactions per second (TPS),
fast anonymous transactions, and decentralization. The cur-
rent blockchain’s TPS is relatively low because the consensus
process takes a long time. For example, in a blockchain
that uses the PoW consensus algorithm, all nodes need to
perform hash calculations and compete for package blocks.
To improve the TPS, new technologies, such as sharding
technology, are being adopted in the blockchain. Sharding
technology was originally used for databases. The data in a
database are cut into multiple parts and then stored in mul-
tiple servers; this can improve the search performance of the
server. In the blockchain, sharding technology is a mechanism
for assigning transactions to different consensus groups and
ultimately summarizing all the results. Elastico, which was
proposed by Luu et al., first used sharding technology [10].
Subsequently, Kogias et al. proposed Byzcoin [11], therein
benefiting from an adaptation of practical Byzantine fault
tolerance (PBFT) [12] and decoupling the election of a new
leader from transaction verification, an approach inspired by
Bitcoin-NG [13]. The Zilliga proposed in 2017 inherits the
characteristics of Elastico and combines the PoW and PBFT
algorithms. Kokoris-Kogias et al. optimized the basis of
Byzcoin and merged protocols, such as RandHound, therein
proposing OmnilLedger [14]. These algorithms retain the
PoW consensus, require a certain amount of hashing power
to ensure security, and need to solve the problems of distrust
and competition among nodes. The transaction confirmation
delay is large. Moreover, due to the openness of the public
blockchain, the system must adopt an economic incentive to
attract nodes to participate in transaction verification. Conse-
quently, these algorithms are not very suitable for consortium
blockchain.

The consensus mechanism based on PBFT is currently
mostly used in the consortium blockchain. This makes it nec-
essary to communicate multiple times between two nodes to
confirm a transaction. These communications can well main-
tain the consistency of the results; however, when the number
of nodes increases, the speed of synchronization is severely
decreased. Therefore, this paper proposes a new mixed
Byzantine fault tolerance consensus algorithm (MBFT) based
on the consensus algorithm that we have introduced briefly
in 2018 [15]. MBFT improves the scalability and perfor-
mance while ensuring fault tolerance. The main innovations
of this paper are as follows:

1) We use sharding technology and process a two-layer
consensus algorithm. In MBFT, we assign nodes to dif-
ferent consensus groups and design the new transaction
verification and fault-tolerant algorithm for each consen-
sus group. Each consensus group verifies only a portion of
the transactions. The TPS and scalability can be increased
linearly by increasing the consensus group. At the same
time, the blockchain system can still maintain 1/3 fault tol-
erance. The MBFT algorithm can reduce the forking of the
blockchain while ensuring high fault tolerance and consensus
speed.
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2) We design a consensus node selection algorithm.
By using the verifiable random function (VRF) and threshold
secret sharing algorithm, all nodes can jointly decide the
consensus nodes and prevent malicious nodes from using
mathematical methods to attempt to improve their probability
of being elected. The safety and stability of the blockchain
system are guaranteed.

3) We design a credit incentive mechanism for the con-
sortium blockchain. In a consortium blockchain, it is often
not suitable to use tokens or coins as an economic incentive.
We promote the stability of the network from the credit
dimension through a credit incentive mechanism linked to
consensus node election and network credit.

In this paper, we introduce blockchain technology and
analyze the consensus algorithm in Section II. Then, we intro-
duce the details of the consensus node selection algorithm
and MBFT algorithm in Section III. Then, we analyze the
scalability, safety, liveness and performance in Section IV.
Finally, we summarize this paper in Section V.

Il. BACKGROUND

A. THE ORIGIN OF BLOCKCHAIN

With the development of cryptography and Internet technolo-
gies, people are beginning to learn about cryptocurrencies.
As early as the 1980s, the cypherpunk movement had pre-
sented the idea of cryptocurrencies. Timothy May proposed
a non-traceable e-money, Crypto Credits, to reward hackers
who are committed to protecting citizens’ privacy. In 1990,
David Chaum proposed Ecash, a non-traceable cryptographic
network payment system based on blind signature technol-
ogy. In 1998, Dai Wei proposed an anonymous and distributed
electronic cryptocurrency system: B-money. In 2005, Nick
Szabo proposed the idea of BitGold [16].

In 2008, Nakamoto released the Bitcoin White Paper (Bit-
coin: A peer-to-peer Electronic Cash System). This paper
expounds his new conception of e-money and designs the
Bitcoin based on the bottom of the blockchain. Bitcoin uses
the PoW consensus algorithm to solve these problems by
introducing the gaming theory.

B. DEVELOPMENT OF CONSENSUS ALGORITHMS IN
BLOCKCHAIN
PoW was the earliest consensus algorithm used in a
blockchain. To ensure security and reduce forking, 10-minute
block time and a 1-MB block size were established. More-
over, to prevent double-spend attacks, transactions on a block
still need to wait for the confirmation of more than six sub-
sequent blocks. This results in Bitcoin providing only 7 TPS.
The TPS of ETH is in the tens of TPS, which cannot meet
the needs of high-frequency trading systems. To solve these
problems, many researchers have attempted to improve the
PoW mechanism. As an example, Ittay Eyal et al. proposed
a new consensus algorithm: Bitcoin-NG [13].

In Bitcoin-NG, miners still use PoW to compete with
hashing power. The winning miner collects transactions in
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the current blockchain network, validates them and publishes
them in micro blocks until the next new block is generated
by another miner. In this way, the number of additional
blocks is increased while keeping the hashing power compet-
itiveness unchanged. Transaction processing speed is simply
determined by the computing power of the miner currently
generating the block.

Based on Bitcoin-NG, Byzcoin added joint signature and
PBFT to make further improvements [11]. In Byzcoin,
the window size w (the number of consensus nodes) needs
to be selected first, and then, the w miners that generated the
most recent blocks are selected as members of the consensus
group. The window moves forward with the emergence of
new miners, and the total number of members in the con-
sensus group will keep w unchanged. The latest miners are
the leader nodes of the consensus group. Then, the PBFT
algorithm is executed in the consensus group to generate
micro-blocks at a certain speed until the next mining block
is generated and a new leader node appears.

Sunny King er al. first realized proof of stake (PoS) in
PPcoin (PPC), issued in August 2012 [17]. In PoS, digital
money has a currency age page, which is equal to the number
of coin holdings x holding time. The longer that each node
holds the currency, the more rights it has in the network.
Simultaneously, the holder of the currency will obtain a
certain income according to the age of the currency. This
mechanism encourages miners to increase the holding time of
their coins. Here, proof on the blockchain no longer depends
entirely on workload, effectively solving the problem of
resource waste under PoW mechanisms. Moreover, in the
PoS mechanism, the security increases with the total value of
the blockchain network. Attacks on this blockchain require
attackers to hold a large number of digital currencies for a
long time. The costs of attacks have increased considerably.

Compared with PoW, the PoS consensus algorithm is
energy efficient and has both high efficiency and decen-
tralized computing power. However, such an algorithm is
also more easily forked and exposed to vulnerabilities of
long-range attacks and Nothing at Stake attacks [18]. Many
researchers have also focused on improving the PoS algo-
rithm. Algorand [19] and Ouroboros [20] are both improved
algorithms that are based on PoS and use VRF. In Algorand,
all eligible users can participate in an encrypted lottery. The
user’s account balance determines the probability of being
selected as a block producer. All lottery users form a block
consensus group. The nodes in the block consensus group
then apply PBFT-like algorithms to determine the final block
to be generated. In Ouroboros, all eligible nodes have a
chance to become block producers in the next stage. The
nodes publish encrypted random numbers in a specific stage
and then decrypt and publish the random numbers in the
verification stage. Then, VRFs are used to randomly select
the consensus nodes of each block in the next stage from
these nodes. These nodes generate blocks in a determined
order. Algorand and Ouroboros, which combine PoS, VRFs,
Secure Multi-Party Computation (SMPC) [21], PBFT and
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other improved algorithms, can effectively reduce system
forking and improve the speed of consensus, which is the
main direction of current academic research.

Bitshares proposed a Delegated Proof of Stake (DPoS)
technique in 2013 [22]. Each miner can vote for a represen-
tative according to their share rights and interests. The top
nodes of the network that participated in the election and
obtained the most votes obtain the right to package blocks.
They package these blocks in a predetermined order and thus
obtain a certain reward. A representative node of a successful
election needs to pay a certain amount of tokens and must
guarantee online time. DPoS combines the characteristics of
PoW and PoS. All nodes can choose their own voting objects,
which reduces computing resource utilization and improves
efficiency. Moreover, each participating node has the right
to vote. When there are sufficient nodes in the network,
the security and decentralization of DPoS can be guaranteed.

Some blockchains also use new data structures, e.g., the
directed acyclic graph (DAG) used by the Greedy Heaviest
Observed Subtree GHOST [23] and IOTA. The DAG skips
block packaging by directly linking each transaction. This
improves throughput through high concurrent transaction
confirmation. In addition, there are algorithms that choose to
replace the PoS method with other decentralized mechanisms
such as the Proof of Space consensus mechanism and the
Proof of Elapsed Time (POET) consensus mechanism [24].

C. THRESHOLD SECRET SHARING ALGORITHM

In 1979, Shamir [25] and Blakley et al. [26] gave the ear-
liest threshold secret sharing algorithm using algebra and
geometry, respectively. The Shamir threshold secret sharing
scheme divides the secret information S into n pieces of sub-
secret information S1,S2,...,Sn and distributes the sub-
secret to n participants, and k or more sub-secrets can be used
to reconstruct the secret information S. Any sub-secret of
k —1 or less cannot obtain any information of S, where k < n.
The Shamir threshold secret sharing scheme assumes that
both the distributor and the sharer are honest; the verifiable
secret sharing scheme removes this assumption and therefore
has greater security in practical applications. The two most
famous verifiable secret sharing schemes are the first non-
interactive (¢, n) threshold verifiable secret sharing scheme
(Feldman-VSS) proposed by Feldman in 1987 [27], which
did not require a trusted authority, and the first information-
based secure non-interactive verifiable secret sharing scheme
(Pedersen-VSS) later proposed by Pedersen.

IIl. DESIGN OF MBFT CONSENSUS ALGORITHM

There is a large difference between consortium blockchains
and public blockchains. A public blockchain runs across the
Internet. All nodes can access a public blockchain, and all the
information on the blockchain is publicly shared. The con-
sortium blockchain mainly runs in a relatively closed envi-
ronment. The nodes have different roles and functions. Some
nodes with high trustworthiness are approved and are respon-
sible for verifying transactions and packaging the blocks. The
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remaining nodes are the synchronization node, which is only
responsible for synchronizing the existing block information;
the client is only connected to the synchronization node.
Among the consortium blockchains, IBM’s main open-source
project, Hyperledger Fabric [28], is a representative open-
source consortium blockchain and is structurally consistent
with the typical consortium blockchain architecture. In ver-
sion 0.6 of Hyperledger Fabric, the functions of authorization
and endorsement are integrated into the consensus node. All
nodes are consensus nodes. This design leads to a heavy
burden on the nodes and has a large impact on the TPS. After
version 1.0, the functions of the nodes were separated. The
nodes are divided into endorsers, orderers, and committers,
which separate the functions of the nodes and improve the
efficiency of the consensus. However, the consensus algo-
rithm that it uses is based on Kafka and cannot tolerate
Byzantine mistakes. Kafka can only address crash faults; it
cannot withstand Byzantine faults.

To improve the TPS of the consortium blockchain and to
consider fault tolerance, this paper proposes a new consensus
algorithm - Mixed Byzantine fault tolerant (MBFT). The
nodes are divided into verifying nodes, backup nodes, and
clients. The nodes in the blockchain maintain a verifying node
list. The verifying node list contains the public keys of all
the verifying nodes. The node identifies the identity of the
verifying node through the public key in the verifying node
list. The consensus algorithm is the core of the blockchain,
which affects the security and efficiency of the blockchain.
This chapter introduces the consensus group, transaction ver-
ification process, and incentive mechanism in MBFT.

A. DETAILS OF MBFT

Traditional public blockchains, such as Bitcoin and Ethereum
[29], need to address complicated network environments.
Nodes do not have a trust relationship with each other, and the
network communication environment is unstable. Thus, most
public blockchains use a final consistency consensus algo-
rithm, such as PoW or PoS, to ensure security through gamifi-
cation. In the context of the consortium blockchain, the above
problems have been addressed to an extent. For exam-
ple, there are “‘weak trusts” between nodes in the consor-
tium blockchain. In the consortium blockchain, some nodes
authenticated by enterprise credit endorsements or asset
mortgages are responsible for the verification and consensus
of transactions.

The overall structure of the blockchain is shown in Fig. 1.
The nodes that can participate in transaction verification are
called verifying nodes. The verifying nodes are the core node
of the blockchain and are responsible for verifying transac-
tions in the entire blockchain and the packages of blocks.
In the consortium blockchain architecture, any node that
wants to be a verifying node needs to be confirmed by other
nodes in the network. Most verifying nodes vote together to
decide whether to accept a new verifying node. The backup
node is the candidate of the verifying node. When electing
the verifying node, the backup node can also participate in
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the election and become a new verifying node. The backup
node is responsible for verifying the block packaged by the
verifying node and both checking and reporting malicious
behavior by a verification node. Other nodes that do not par-
ticipate in transaction verification but can initiate transactions
are clients.

B. CONSENSUS IN LCG

The verifying nodes are classified into two layers: the low-
level consensus group (LCG) and the high-level consensus
group (HCG). Every transaction is sent to a backup node and
then allocated to an LCG. The communication cost is O(n).
When the consensus of LCG is reached, the primary nodes
in the LCGs will package the transactions and send the mini-
block to HCG. The nodes collect and verify the mini-blocks
from different LCGs and package a large block. The detailed
steps of the consensus in LCG are as follows:

Step 1. The client initiates a transaction request
(REQUEST , tx, t:)o, to the backup node, where tx is the
transaction requested to be executed, 7. is the timestamp of
the client initiating the transaction, and o, indicates that client
c signs the request.

Step 2. After receiving the request from the client,
the backup node verifies the identity of the client and the
timestamp ¢, on the blockchain. If the authentication is suc-
cessful and the time difference Ar between the transaction
request timestamp and the latest block is less than the pre-
defined time, the backup node generates the new request
message (REQUEST , tx, t.)sp; and sends it to the primary
node in the low-level consensus group determined by the
transaction allocation rule, where oy; is the signature of the
backup node i to the client request. The transaction allocation
rule is to perform the modulo operation on the first input of
each transaction, and the result is the assigned LCG number.

Step 3. The node in an LCG forwards the request to
the primary node in the group. The primary node needs
to verify the transaction. It confirms whether the signa-
ture of the backup node is correct and whether the trans-
action conflicts with other transactions in the transaction
waiting pool Epool, or packaging pool Ppool,; or that
has been recorded in the blockchain. If verification is
successful, the transaction is numbered and signed as
(TRANSACTION , (REQUEST , tx, t¢)gpi, cycle, mgp, where
cycle is the current cycle of the LCG, m is the number of
transactions from the current primary node, and o, is the
signature of the primary node p.

Step 4. The primary node in the LCG then broadcasts the
message to all nodes in the same consensus group. When
the node (In;) in the LCG receives the transaction message,
it first verifies the number of the transaction and the signature.
After confirming the information, the node adds the transac-
tion to the local transaction waiting pool Epool;,; and sends
(AGREE, cycle, m),,, to the primary nodes in the consensus
group. All the node stores received AGREE messages.

Step 5. If the primary node In; receives 2f + 1 AGREE mes-
sages for a certain transaction, the transaction is moved out of
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FIGURE 1. 2-layer Structure of the MBFT.

the local transaction waiting pool Epool e and the transaction,
together with the received 2f + 1 AGREE messages, is put into
the transaction packaging pool Ppool,,.

Step 6. ¢ second (the preset packaging time) after receiving
the newest large block, the primary node p in the consen-
sus group will package the transaction in the transaction
packaging pool Ppool;,; and send the block information
(MINIBLOCK , height, mini_blocklcg)ap to the other nodes in
the same consensus group, where # is the height of the current
block, and mini_block is the block that has been verified and
packed by the node.

Step 7. After receiving the block information packed by
the primary node, node i in the same consensus group per-
forms verification on the block information and each trans-
action included in the block. The node needs to confirm
that the transactions in the mini-block are proper or in
the local Epool,,;. After verification, the node broadcasts
(AGREE_BLOCK , HASH (mini_blockjcg), height)s; infor-
mation to other nodes in the same LCG. When the
primary node receives sufficient AGREE_BLOCK infor-
mation, it can send (AGREE_BLOCK|cg, mini_blocki.g,
[sigi(mini_blockjc,)], height)sp to the high-level consensus
group, where block g is the block obtained by LCG after con-
sensus on the current block height, and [sig; (mini_blockjc,)]
is the collection of signatures in the LCG; these signatures
are from the AGREE_BLOCK . The transaction can continue
to be verified and pushed into the Ppool,,; after sending out
the mini-block.
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Because the LCG only needs to maintain the final con-
sistency after the large block is recorded on the blockchain.
Therefore, each verifying node in the consensus group may
have transactions in Epool or Ppool after packaging a mini-
block. If certain conditions are met (for example, the trans-
action’s set time is not exceeded), these transactions can be
confirmed preferentially in the new round of consensus.
Therefore, the unconfirmed transactions in the previous
round of consensus are handled as follows.

After receiving the large block, all nodes i verify the large
block and retrieve the transaction in the local Epool; and the
Ppool; according to the large block and remove transactions
that have been packaged into the large block. In the new round
of consensus, the node will address the existing transactions
in the local pool and send the transactions that are in the
Epool; and that satisfy the transaction waiting time require-
ment but that are not packaged into the block in this round to
the primary node in the consensus group.

C. CONSENSUS IN HCG
After receiving the mini-block sent by the LCGs, the nodes
in the high-level consensus group need to check, for the mini-
block,

1) whether the signatures in each mini-block are sufficient,
2) whether all the signatures of verifying nodes are correct,
3) whether the hashing of the previous block points to the cur-
rent large block, and 4) whether the input of all transactions
is conflicted. The conflicting transactions will be marked and
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recorded in the special conflicting transaction zone in the
large block. After the verification is successful, the mini-
blocks are arranged sequentially. After a certain time or after
receiving all the mini-blocks, a large block will be packaged
and added to the blockchain. The detailed steps for consensus
in the HCG are as follows:

Step 1. After completing the above-mentioned verification,
the nodes in the high-order consensus group return the con-
firmation message (RECEIVEgrock , HASH (mini_blocki.g),
height) ;.

Step 2. The nodes in the LCG are responsible for con-
firming that the mini-block is received by most of the nodes
(2f+1) in the high-level consensus group.

Step 3. If the primary node in the HCG collected
all the mini-blocks or more than 3/4 mini-blocks in
a max packaging time, it broadcasts the sequence
number confirmation information of the mini-blocks
(BLOCK , HASH (mini_blocki.g), height)s; and collects the
agree messages from the nodes in the high-level consensus
group, where the height is the number of current large blocks
and o; is the signature of the primary node.

Step 4. The node i in the high-level consensus group veri-
fies whether the sequence issued by the primary node is legal.
If the nodes agree with the sequence issued by the primary
node, the node returns the AGREE message. if certain mini-
blocks mini_block,., are missing locally, the node requests
the block information from the corresponding nodes and
returns (AGREE, [HASH (mini_blockicg)], height),; after the
verification is successful. If the verification ultimately fails,
it broadcasts (DISAGREE ,|[HASH (mini_blockc,)], height),.
If any node collects 2f + 1(DISAGREE) messages, it can
broadcast the [(DISAGREE)] set and enter the next block
stage.

D. SELECTION OF THE CONSENSUS NODES

With sharding technology, the number of nodes that need to
be controlled against malicious attacks is reduced. Moreover,
because the verifying node can obtain a certain credit boost,
a mechanism is needed to determine the node allocation.
Compared with the public blockchain, the consensus nodes
in the consensus of the consortium blockchain are limited
and known. In this case, the consensus nodes in consortium
blockchain can interact with each other through the known
node list, which can effectively prevent the Sybil attack.
Moreover, we can combine the threshold secret sharing algo-
rithm with random number generation directly to construct
an interactive real random number generation scheme on
the blockchain. Therefore, we design a random number gen-
eration method on the blockchain-based on the VRF and
threshold secret sharing algorithm. Then we design a con-
sensus node election algorithm based on the random number
generation method and the node’s credit score system.

In MBFT, each 5000-block times is called a cycle. In one
cycle, the consensus group is determined in the previous
cycle. The end of the cycle is the election period. The election
period lasts for 3x blocks, with the first x blocks being the
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commitment period, the next 100 blocks being the disclosure
period, and the last 100 blocks being an extra disclosure
period. All the nodes that want to become verifying nodes in
the next cycle need to generate a random number and calcu-
late a hash value. Then, each node sends an election transac-
tion (ELECTION, Hash(sigi(Ry)), sigi(Ri), [Epk{(Rik)oi}])oi
to the blockchain, where R; is the random number of nodes
i and Rj is the sub-random number that is generated with
a (t, n) threshold verifiable secret sharing scheme. ¢ should
be f + 1, and n should be greater than 2f + 1. In this way,
the malicious nodes cannot obtain the random number, and
the good verifying nodes can jointly disclose the random
number in the next period.

During the disclosure period, all consensus nodes need to
disclose the random number published during the commit-
ment period. In the extra disclosure period, all the verifying
nodes retrieve the transactions to identify the unpublished
random numbers in the disclosure period. If a sub-random
number is encrypted with a verifying node’s public key,
the node must publish the corresponding sub-random num-
ber after decryption during this period. Then, if more than
f + 1 good verifying nodes publish the sub-random number,
the original random number can be restored. In addition,
we introduce computational evidence to the last block of the
public period to prevent collusion between nodes in the high-
level consensus group.

All nodes can obtain the public keys and all random num-
bers of all the nodes participating in the election on the
blockchain. Then, any node can calculate the same R =
R1&Ry& - - - &R, locally, where & is a bitwise AND operator,
and R is a true random number generated by all the selected
nodes. Then, the distance D; = W;/K -abs(R— p;) between the
candidate node i and the random number R can be calculated,
where W; is the credit weight of node i, K is the highest
credit score and p; is the public key of node i. Because R; and
node public keys are recorded on the blockchain, the results
calculated by all nodes are consistent. Then, all the nodes
select the same verifying nodes with the smallest distance.
Next, in order, the verifying nodes are assigned to the high-
level consensus group and the low-level consensus group
according to the number of nodes in each consensus group
and the allocation rules. All other candidate nodes are backup
nodes. Thus, at the beginning of the new cycle, all nodes
can obtain a consistent node assignment locally by retrieving
information on the blockchain.

During the election of the verifying nodes, there may be
cases whereby some malicious nodes collude to manipu-
late the election results. For example, during the disclosure
period, the malicious nodes may calculate the current ran-
dom number seed according to the random number already
published by other nodes and then selectively publish the ran-
dom number of some malicious nodes, thereby manipulating
the ultimately generated random number and affecting the
outcome of the election. To this end, we designed an extra
disclosure period during which we disclose random numbers
that were not published by the original node during the
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disclosure period for various reasons. Therefore, the design of
the random selection algorithm needs to satisfy three require-
ments: 1) In the commitment period, a random number of one
node should be divided into multiple sub-random numbers
and saved by other nodes; however, any node using fewer
than f 4 1 sub-random numbers cannot restore the random
number in advance. 2) In the extra disclosure period, a node
can use a certain number of sub-random numbers to restore
the original random number. Thus, for the random election
of the consensus group, we chose Feldman-VSS to distribute
random numbers in the commitment period. The main steps
of Feldman-VSS are as follows:

p is a large prime number, p >> n > t, and p needs to be
larger than the maximum value of the x node’s number R,.

The node distributes its sub-secrets to other nodes:

1. Select the random number ay,...,a;—1 on GF(p) to
construct a polynomial

fx)=ay+aix+...+a_1x'!
where R, = ag = f(0)

2. Calculate A; = g%modp, i = 1,2, ..., n and broadcast
A;

3. Calculate r; = f(i)modp, i = 1,2, ..., n and send r; to
the node P;.

When the r; is received, the node P; verifies whether the
following equation holds:

r—1
g = HA;/modp
Jj=0

If the equation holds, r; is valid; otherwise, it is invalid.

R, recovery:

Suppose that a group of nodes Py, ..., Pr(k > t) coop-
erates to recover the Ry, that is, r, ..., r; are known. The
nodes first check whether the r; submitted by other nodes are
valid and exclude the invalid shares. When there are at least
t valid shares, they use the Lagrange interpolation formula to
calculate f (x),

t t .
X —1
i=1 j=1j#i

thereby recovering the secret s as

t t .
Re=f©@=>r [] i%jmodp

=1 j=lj#i

E. NODE CHANGE

In PBFT, considering the consistency of the recorded infor-
mation of each node, a three-phase consensus is adopted. In
MBFT, we redesigned the global view change because of
the characteristics of blockchain. When packaging the mini-
block, each verifying node needs to link the latest large block
as the previous block. Only when the link is correct can the
mini-block be packaged into the large block. This solves the
problem of transaction consistency. In the consensus group
of MBFT, when the primary node cannot respond or have
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package error, it will cause the “primary node change” . If the
node change is triggered in the consensus group, each node
can become the primary node in turn according to the order
of the distance between the node and the random number.
When the new node becomes the primary node, it sends the
latest large block that it plans to link to. After 2/3 nodes’
consent information is collected, the primary node broadcasts
the collected confirmation information, and the consensus
group begins to work. The following are the conditions that
cause primary node change in the consensus group.

1. When A, consecutive mini-blocks submitted by an LCG
are not packaged into the large blocks, the LCG will change
the primary node and record this primary node as ‘“‘derelic-
tion”. If A, * n consecutive large blocks cannot contain the
mini-block from an LCG, the LCG will be removed in this
cycle, where 7 is the number of nodes in LCG.

2. If the HCG fails to package large blocks within the
specified time A,, the HCG will change the primary node and
record the “‘dereliction” nodes in the new large block. If the
large blocks cannot be packaged in A, *m time, the next LCG
will become HCG, where m is the number of nodes in HCG.

3. When there is a transaction in the mini-block that does
not belong to the consensus group, the nodes in this consensus
group signed for this transaction will be recorded as “‘dere-
liction”, and this LCG will change the primary node.

4. If in an LCG more than x transactions signed by more
than 2/3 nodes have been collected by a node, but the primary
node still submits empty mini-blocks to the HCG. This LCG
will change the primary node.

5. If in the HCG more than x mini-blocks signed by more
than 2/3 nodes have been collected by a node, but the primary
node still submits the empty large blocks, the HCG will
change the primary node.

6. If A, consecutive large blocks cannot contain more than
1/2 mini-blocks, the HCG will change the primary node. If
A, * m consecutive large blocks cannot contain more than
1/2 mini-blocks the next LCG will become HCG, where m is
the number of nodes in HCG.

To speed up the recovery of the system, if a node finds that
the HCG is incorrect in A, * m x k blocks or A; % m * k time,
it can initiate a cycle change proposal in its consensus group,
where k is a variable related to the number of consensus
groups. If more than 2/3 of the nodes in this group agree,
the group initiates a re-election proposal message and sends
it to all the verifying nodes. If any verifying node receives
the re-election proposal message and confirms that the large
block is incorrect, it must reply with an agree message. When
the group has collected more than 2/3 of the agree messages
from all the verifying nodes, it can replace the previous HCG
and generate new large blocks for re-election. The blockchain
enters the election cycle. The new HCG is responsible for the
block of this election period.

F. INCENTIVE MECHANISM
We have added a credit sub-mechanism to the consensus algo-
rithm to score the verifying nodes based on the contribution to
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FIGURE 2. Score Curves of Different Coefficients.

the blockchain network. If the consensus group is not able to
verify the transaction and package the community according
to the system rules, the corresponding credit will be deducted.
The credit score is based on real-time data in the blockchain,
and the credit of the node can be dynamically evaluated in
real-time by each node according to pre-established rules.
The formula of credit evaluation is as follows:
Kwope'! r®(t.—200—b%)

K+ Wo(erlrg(tc—ZOO—bf) -1

K is the maximum value of the function, wy is the starting
value when a node joins the system, r; is the growth coeffi-
cient, r is the penalty coefficient, ¢ is the number of ““dere-
lictions” of the node ( for example, a node in HCG signed
a double-spending transaction), f. is the number of cycles
that the node participates in as a verifying node, and b is the
regression coefficient. All variables can be obtained on the
blockchain, so each node can use the same data to calculate
the consistent credit score of all nodes. The coefficient can be
set when the blockchain system is initialized as required.

This credit evaluation formula is based on a sigmoid func-
tion. Fig. 2 shows the function curve of credit score when
selecting different coefficients. When nodes participate in
the blockchain, they all go through a period in which the
credit score increases slowly. Then, with the increase in the
number of verifications, the final credit value of the node will
increase and tend to be constant. The change of the node
credit score is in a certain range, which can prevent the
occurrence of a “‘supernode”. Due to the introduction of the
penalty mechanism, when the node produces ‘“dereliction”,
the current credit score will be greatly reduced, and then its
credit score growth rate will be slower. The penalty effect will
be accumulated exponentially, which can quickly eliminate
malicious nodes and increase their cost. Fig. 3 shows the
credit score assuming that the node obtains a “‘dereliction”
at its cycles of 200 and 400.

In later research, we will try to add the credit score of
clients according to the application scenarios. For example,
if the low-level consensus group or the node detects a double-
spending attack initiated by the client, the node in the consen-
sus group can obtain a credit bonus. The client would reduce
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the credit score. If the client credit score is too low, its asset
will be frozen, and the transaction will be prohibited.

IV. ANALYSIS OF THE MBFT

A. SCALABILITY

Our designed blockchain uses a two-layer structure and
sharding technology. The sharding technology changes the
way in which all nodes jointly verify a transaction in a
traditional consensus algorithm. In our blockchain, only a
subset of the nodes is needed to verify each transaction. Then,
the transaction is packaged into a mini-block and verified by
the HCG. A node does not need to verify all the transactions
as in traditional consensus algorithms. Suppose there are k
LCGs, the communication complexity of all the LCGs is
O(n/k). The number of nodes in HCG is much smaller than
that of LCGs. When the number of nodes is large enough,
the communication complexity of HCG can be regarded as
constant. Thus, the communication complexity of MBFT is
O(n/k) 4+ O(k). As the number of nodes in the consensus
group increases, the TPS will grow linearly, and the commu-
nication traffic will only grow linearly as well.

B. SAFETY AND LIVENESS

1) DOUBLE SPENDING AND CHAIN FORK

A ““double spending” problem may be encountered in trans-
actions between mini-blocks. For example, a malicious client
may generate two transactions that have the same input
address. Both transactions will be packaged into different
mini-blocks. However, in MBFT, if this occurs in two mini-
blocks, the node will put the two conflicting transactions into
the conflict pool at the same time and form a conflict pair.
Finally, when the large block is generated, the conflict pool is
added to the large block. The two transactions are invalidated,
and the amount of the conflicting address is awarded to the
verifying nodes. The initiator of double-spending attack will
not obtain any benefits.

The proportion of malicious nodes is less than 1/3 of all
nodes, and the consensus of 2/3 nodes in an LCG is needed
for mini-block packaging. Therefore, malicious nodes can
control no more than 1/2 of LCGs. Each large block needs
to contain more than 3/4 of the mini-blocks, so there will not
be two large blocks with the same height.
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TABLE 1. Comparison of consensus algorithms.

PoW PoS DPoS Elastico OmniLedger  Monoxide  Kafka PBFT MBFT

Scalability Strong  Strong Weak Strong Strong Strong Strong Weak Strong

Energy saving No Partial Partial Partial Partial No Yes Yes Yes

Block fork Yes Yes No No No Yes No No No

Byzantine fault 550, 500, 50% 33% 33% 50% No 33% 33%

tolerance

Scalability n o no no Weak Weak Strong Weak no Strong

Fragmentation

Node Public  Public Public Public Public Public Permissioned ~ Permissioned  Permissioned

management

Transaction . . . . .

verifying delay High High High High Low High Low Low Low

TPS 10 10? 10%-103 102-103 103- 10* 10?-10° 103- 10* 10?-10° 103- 10*
2) ATTACK IN THE LOW-LEVEL CONSENSUS GROUP AT auerylatency —e - confirmation laency

4500 45

When the proportion of malicious nodes is less than 1/3 in " e,
a single consensus group, the generation of correct blocks e e e e e s
is not affected by this consensus group. In contrast, if the oo s
proportion of malicious nodes in a single consensus group " 250 2
exceeds 1/3 but is less than 2/3, due to the algorithm’s fault & )
tolerance mechanism, the consensus group will not package a 150 s

qualified mini-block and it will be removed in this cycle after
a period of time.

When the proportion of malicious nodes in an LCG
exceeds 2/3, the malicious nodes in this LCG can package
an incorrect mini-block. In this scenario, if the HCG can
still produce the correct large block, the incorrect mini-block
can be identified and not be included in large blocks and
this LCG will be removed in this cycle after a period of
time. Transactions will be reallocated to the remaining LCGs.
If more than 1/2 of the LCGs are unable to package the legal
mini-blocks, they will be re-elected after a period of time

3) ATTACK IN HIGH-LEVEL CONSENSUS GROUP

If the percentage of malicious nodes in the HCG exceeds 1/3,
the large block will be absent or incorrect. In the worst-case
scenario, the percentage of malicious nodes in most LCGs
also exceeds 1/3. However, according to drawer principle,
atleast one loyal consensus group exists. As described before,
this loyal group can replace the previous HCG or, initialize a
correct large block and collect more than 2/3 of the verifying
nodes’ votes to begin a new election period.

In summary, the use of a 2-layer structure and sharding
technology greatly improves both the scalability and the TPS.
Moreover, by designing the cycle change to switch from the
sharding state to the global state, the fault tolerance of the
blockchain is still 1/3.

C. PERFORMANCE

We evaluated the MBFT’s performance on 60 servers. Each
server was equipped with an E5-2620 2.1 GHz CPU and
16 GB of RAM. The block packaging time is 3 s, and the
size of the mini-block is 1 M. Each LCG and HCG contains
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FIGURE 4. TPS and Latency of MBFT.

4 nodes. There are 5 clients and 1 HCG. We varied the
number of LCGs from two to ten, performed five experiments
for each combination, and recorded the average throughput.
Fig. 4 shows the TPS test results, querying latency and con-
firmation latency. The query latency is the time required for
a client to obtain a transaction from the blockchain. The
confirmation latency is the time between the client sending
a transaction and the time of a transaction being recorded on
the blockchain.

From the experimental results, MBFT has good scalability.
The TPS increases proportionally as the number of LCGs
increases. In addition, the confirmation latency does not
increase significantly when the number of LCGs increases.
The TPS of MBFT with 10 LCGs is about 4000. This perfor-
mance level is sufficient to satisfy the requirements of actual
production environments.

D. COMPARISONS

We list the nine consensus algorithms in Table 1. PoW,
PoS and DPoS are usually used in public blockchains. They
have good Byzantine fault tolerance but low TPS. They
also require substantial computing resources, and they guar-
antee the security of the blockchain system through com-
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puting power. Hence, they are not suitable for consortium
blockchain.

The Byzantine Fault Tolerance (PBFT) algorithm was the
first consensus algorithm used in consortium blockchains.
MBEFT originates from PBFT, but they differ in many ways.
The consensus nodes in PBFT are all of the same levels. Thus,
every node needs to communicate with all the other nodes
to verify each transaction. Consequently, when the number
of nodes increases, the number of communications grows
exponentially, making its scalability poor. The Hyperledger
fabric 1.0+ uses Kafka to reach a consensus. However, Kafka
can only address crash faults; it cannot withstand Byzantine
faults.

Elastico [10] is the first blockchain that applied sharding
technology. In Elastico some verifying nodes are selected
through a PoW algorithm. Then these verifying nodes are
assigned to different committees. The committees execute
PBFT algorithm and generate transaction packages. After
more than two-thirds of the nodes sign the transaction pack-
age, the transaction package is submitted to the consensus
committee. The consensus committee verifies the signatures
and packs all the transactions into blocks that are recorded on
the blockchain. Elastico verifies the availability of sharding
technology on the blockchain. On a certain scale, the shard-
ing technology can expand the throughput almost linearly.
However, Elastico uses PoW to select the consensus nodes,
which consumes extensive time and makes the transaction
delay very high. Moreover, the PBFT algorithm used in
each committee has a high communication complexity. When
the number of consensus nodes in each committee is large,
the delay is also high.

On the basis of Elastico, Omniledger uses a bias-
resistant public-randomness protocol instead of PoW to select
the consensus nodes and then uses RandHound protocol
to classify these consensus nodes into different segments
[14].To solve the atomic transactions across different seg-
ments, OmniLedger introduces the Atomix protocol. How-
ever, PBFT is still used as the consensus algorithm in each
segment and cross sharding transactions are considered. The
communication complexity is high.

Wang et. al proposed Monoxide in 2019 [30]. Monoxide
introduces sharding technology into the PoW blockchain sys-
tem and improves the TPS of PoW. In addition, the Chu ko-nu
mining algorithm is used by Monoxide to solve the problem
of hashing power dispersion caused by sharding, so that each
miner can mine in different segments at the same time.

Compared with these algorithms, MBFT uses a two-layer
design and sharding technology, which substantially reduces
the communication between nodes. Thus, it achieves faster
consensus and better scalability. MBFT designs a random
node selection algorithm based on VRF and Feldman VSS
to select the consensus nodes. In the normal operation of
the system, the election phase overlaps with the phase of the
normal packaging block without additional time. At the same
time, combined with the characteristics of controllable veri-
fying nodes in consortium blockchain, the global re-election
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mechanism and credit evaluation mechanism are designed.
By optimizing the global node switching mechanism, two-
phase Byzantine fault tolerance (BFT) consensus is used in
fragmentation. It reduces the complexity, ensures the low
delay and high TPS of the transaction, and also guarantees
the scalability of the system in each sharding.

During the normal operation of the system, the election
phase overlaps with the block packaging phase without addi-
tional time. In addition, MBFT combines the characteristics
of node controllability in consortium blockchain, designs a
global re-election mechanism and a credit evaluation mech-
anism, and uses two-phase BFT consensus in each segment.
This reduces the communication complexity and ensures low
latency and high TPS. At the same time, it also guarantees the
scalability in each segment.

V. CONCLUSIONS

We process a two-layer consensus algorithm in this paper:
MBFT. The MBFT algorithm combines layering technology
and sharding technology. Layering can be used to separate
the functions of nodes. By assigning the entire verification
function and demodulation process to different nodes, layer-
ing can effectively reduce the load of individual nodes and
improve consensus efficiency. Sharding can allocate transac-
tions to different node groups. When the number of trans-
actions increases significantly, the system can dynamically
increase the number of nodes and shards, thereby improving
the processing power and decreasing delay. Moreover, all
nodes in the traditional blockchain must verify all trans-
actions. In contrast, the verifying nodes in the MBFT are
only responsible for a certain number of transactions. The
throughput of the blockchain is positively correlated with the
number of nodes, and the blockchain has strong scalability.

To ensure the fault tolerance of the system, we design a
random election algorithm based on the VRF and threshold
secret sharing algorithm. The blockchain system can ensure
that each cycle’s verifying nodes are randomly selected,
which can prevent malicious nodes from colluding under a
monopolistic behavior, thus ensuring the blockchain system’s
fault tolerance. Finally, to address the characteristics of a
consortium blockchain that may not have mining incentives,
we designed a credit score system. The credit score is not
the digital currency and is closely related to the priority of
the election and the release transaction. By verifying and
supervising the behavior of the transaction, the node can
obtain a credit score reward and will be punished when there
is a behavior that harms the blockchain security. Through
this mechanism, both the desire for the node’s long-term
participation and the cost of a malicious node attacking the
system can be increased.

In the future, we plan to add zero-knowledge proof and
secure multi-party computing solutions to increase the pri-
vacy protection of decentralized transactions. We also plan
to expand MBFT into a framework of consensus algorithms,
enabling users to customize the consensus algorithms used in
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the consensus group while ensuring the fault tolerance of the
entire blockchain system.
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