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ABSTRACT Recent research has shown that smartphones/smartwatches have a high potential to help
physicians to identify and differentiate between different movement disorders. This work aims to develop
Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease
and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the angular
velocity signals of two different arm positions during the patient’s follow-up, more precisely, in rest and pos-
ture positions. To develop and to find the best classification models, diverse factors were considered, such as
the frequency range, the training and testing divisions, the kinematic features, and the classification method.
We performed a two-stage kinematic analysis, first to differentiate between healthy and trembling subjects
and then between patients with Parkinson’s Disease and Essential Tremor. The models developed reached
an average accuracy of 97.2± 3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between Healthy
and Trembling subjects and an average accuracy of 77.8 ± 9.9% (75.7% Sensitivity, 80.0% Specificity) to
discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude, that the
angular velocity signal can be used to develop Machine Learning models for the differential diagnosis of
Parkinson’s disease and Essential Tremor.

INDEX TERMS Differential diagnosis, Parkinson’s disease, essential tremor, gyroscope, kinematic analysis,
machine learning.

I. INTRODUCTION
Tremor is a compulsory and oscillatory movement of a part
of the body [1]. Its effects are primarily visible in the limbs,
head, and voice [2]. Physiological tremor is usually of low
amplitude and interferes only with finemotor control. In most
cases, it is not visible or symptomatic, except when increased
by fatigue or anxiety [1], [3]. On the contrary, pathologi-
cal tremor is usually visible and constant [1]. Parkinson’s
disease (PD) and Essential Tremor (ET) are the most com-
mon tremor syndromes worldwide [4], [5]. Distinguishing
between PD and ET can be difficult in the early stages of
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the diseases or for patients without a family history of PD.
The risk of incorrect diagnosis is high; even specialists in
movement disorders may have a rate of up to 25% false pos-
itives or negatives [4], [6]–[8]. Typically, resting tremors are
associated with PD, whereas postural or kinetic tremors asso-
ciate with ET [5]. However, some PD patients may develop
postural tremor [5], and some ET patients may develop rest-
ing tremors during the progression of the disease [9], [10].
Early diagnosis is fundamental to ensure adequate treatment
of the patient and to prevent harmful side-effects [4], [5], [9].
Nowadays, dopamine transporter (DAT) imaging using Sin-
gle Photon Emission Computed Tomography (SPECT) with
appropriate tracers (123I-FP-CIT) is the most reliable tech-
nique for diagnosing PD [4], [5], [11]. However, the test

88866 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2413-6140
https://orcid.org/0000-0001-8085-6869
https://orcid.org/0000-0001-8911-0115


J. D. Loaiza Duque et al.: Angular Velocity Analysis Boosted by ML for Helping in the Differential Diagnosis of PD and ET

is costly and therefore limited to economically developed
countries. Additionally, it is an invasive test with a radioactive
fluid that requires patient compatibility, which may limit its
applicability.

Therefore, it is a current topic of research to develop
fast and non-invasive techniques for the early and reliable
diagnosis of PD. Unlike the kinematic position informa-
tion captured with optical movement detection systems [12],
the accelerometry analysis is currently a hot topic in the
biomechanical field. It records the motion information of
physical activity based on wearable devices [13]. In this
sense, extensive research on the use of wearable devices in
the field of movement disorders is underway, with numer-
ous papers published on these topics. Uchida et al. [10]
employed a triaxial accelerometer to measure the severity
and frequency of hand tremors in patients with ET and PD
under conditions of rest, posture, writing, and walking. They
observed that resting tremor is attenuated during walking in
patients with ET and increased in patients with PD. Recently,
Bernhard et al. [14] studied the gait and balance deficit by
using wearables fixed at the lower back and the ankle. They
denoted that wearable gadgets could assess the progression of
movement disorders and the response to the treatment of the
disease.Wile et al. [15] classified patients with PD and ET via
calculation and analysis of the Mean Harmonic Power using
a smartwatch accelerometer. They noted that, compared to
an analog accelerometer, a smartwatch device could provide
accurate and relevant information for the differential diagno-
sis between PD and ET subjects. Locatelli and [5] recorded
hand tremors during resting, postural, and kinematic tasks
using a wearable sensor to differentiate PD and ET patients.
They observed that, in the frequency domain, the execution of
resting tasks showed a predominance of PD over ET tremors.
In contrast, the data provided by postural and kinetic tasks
stand out in ET subjects.

Some researchers have used Machine Learning (ML)
to differentiate between the two tremor conditions.
Woods et al. [3] developed an offline application that uses
a mobile phone accelerometer to perform the diagnosis and
classification of PD and ET patients. Surangsrirat et al. [9]
classified PD and ET patients based on temporal angular
velocity fluctuations, recorded with a 6-DOF inertial mea-
surement unit. Kramer et al. [16] combined Electromyogra-
phy (EMG), and Accelerometry (ACC) signals to distinguish
between different types of tremor throughWavelet Coherence
Analysis (WCA). They stated that WCA is superior to a
standard coherence analysis and could be a useful additional
tool for discriminating between tremor types when the result
obtained with other methods is inconclusive. Nanda et al. [7]
used the Wavelet transform to extract EMG and ACC signal
features. These features, combined with an Artificial Neu-
ral Network, were used to perform a quantitative classifi-
cation of ET and PD. Finally, Raza et al. [17] compared
the diagnosis obtained by using wearable devices with the
early diagnosis made by a specialist. They also used ML
methods to perform the differential classification between PD

and other movement disorders. Besides, in previous works,
we proposed different methods for the differential diagnosis
of the two diseases using the mobile phone’s built-in triaxial
accelerometer [4], [18], [19]. The developed methods allow
to characterize and recognize the discriminative features of
hand tremor in PD and ET patients and to use ML algorithms
to improve the differentiation between them.

This work aims to use the same methodology to evaluate
the angular velocity data, recorded with the mobile phone’s
built-in gyroscope, and to build ML models to differentiate
healthy subjects (HS) and tremor patients (TP) and, subse-
quently, within the subjects identified as TP to discriminate
PD patients from ET patients. These models are performed
based on two different frequency ranges and three group
divisions. We expect this method to be an additional tool
to help the physician in case of uncertainty and undecided
diagnosis of the diseases.

II. MATERIALS AND METHODS
Fig. 1 illustrates the different steps that compose the method-
ology developed in this work: Signal recording with a mobile
phone, data analysis, and model training and testing. The
demographic characteristics of the subjects, the method of
recording, and the preprocessing of the dataset are described
in Barrantes et al. [4]. The whole process was carried out
in Matlab v. R2019b (MathWorks Inc., USA) on a computer
with an Intel i5-9600K processor at 3.70GHz, 16GB of RAM
and an NVIDIA GeForce GTX 1650 graphics card with 4 GB
of V-RAM.

A. PATIENTS AND DATASET DESCRIPTION
The dataset used in this study includes recordings of 19 PD
patients, 20 ET patients, and 12 HS from the Movement
Disorders Unit of the Hospital Clinic of Barcelona between
October 2015 and December 2016 [4]. All the patients had
visual evidence of hand tremors and were diagnosed with
strong indications of PD or ET. Patients had scores of 1 or
2 on the Fahn-Tolosa-Marín scale for ET and the Unified
Parkinson’s Disease Rating Scale (UPDRS) for PD patients.
A SPECT test confirmed all the patients with PD.

The angular velocity signals were collected with the
built-in triaxial gyroscope of an iPhone 5S using SensorLog
application [20]. The smartphone was placed on the dorsum
of the most affected hand in TP or the dominant hand in
HS while sitting in an armrest chair. Tremor signals were
recorded with a frequency of 100 Hz and an average duration
of 35.66 ± 4.08 s, 35.42 ± 3.42 s, and 33.30 ± 3.27 s for
HS, ET, and PD subjects, respectively. As shown in Fig. 1,
two-arm positions were studied: 1) Rest (Position A), the sub-
ject rests his forearm on the upper part of the armrest, and
2) Posture (Position B), the subject keeps both upper limbs
fully extended.

B. DATA ANALYSIS
One of the clinical signs and symptoms of PD is tremor at
rest with moderate amplitudes and low frequencies from 4 to
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FIGURE 1. Schematic of the methodology for the differential diagnosis of PD and ET patients.

6 Hz [9], [21]. In contrast, ET is characterized by postural or
kinetic tremors with mean frequency values between of 5 to
8 Hz [15], [22]. Furthermore, physiological tremor is in the
frequency band of 8 to 12 Hz [23]. Based on this, the dataset
is preprocessed as follows in order to extract the kinematic
features: artifacts generated by starting and ending the signal
recording were eliminated by cutting approximately 2 sec-
onds on both sides of the signals. Two 10th order Butterworth
filters with cut-off frequencies of 3 to 10 Hz [11] and 1 to
16 Hz [24], where PD and ET are found, were implemented
separately in order to identify an optimal frequency range for
feature extraction. Additionally, these filters allow reducing
the sensor offsets and drifts due to various physical phenom-
ena such as motion artifacts [17], [25]. Figure 2 shows the
time-domain signal of PD, ET, and HS subjects in posture
position before and after signal processing.

Since the analysis was performed in the frequency domain,
Power Spectral Density (PSD) was calculated. For each of
the three spatial directions, a Welch’s periodogram averaging
segments of the signal recording of 3s with a 50% overlap
of Hanning’s window was applied. The PSD average of the
angular velocity components was calculated and normalized.
The resulting averagewas used to calculate kinematic indexes
that allow the identification and classification of subjects with
pathological tremor and differentiate them between PD and
ET. The kinematic features are briefly explained below:

• Median Power Frequency (MPF): Frequency at which
the PSD is halved.

• Power Bandwidth (PB): Frequency band, centered
around the MPF, which contains 90% of the total power.

• Peak Power Frequency (PPF): Frequency at which the
maximum power is located.

• Harmonic Index (HI):Quotient between the area under
the PSD curve and a rectangle bounded on the sides by
the frequency band of interest (fl - fh) and the Peak Power
(PP).

HI =

∫ fh
fth
PSD(f ) · df

PP · (fh − fl)
(1)

• Relative Power Contribution to the first harmonic
(RPC): Quotient between the PSD of harmonics found
between a frequency division threshold (fth) and fh and

FIGURE 2. Time-domain signal of PD, ET and HS subjects in posture
position before and after signal processing.

the PSD between fl and fh.

RPC =

∫ fh
fth
PSD(f ) · df∫ fh

fl
PSD(f ) · df

(2)

• Relative Energy (RE): Quotient between the normal-
ized PSD of resting (PSDA) and posture (PSDB) in the
frequency range of fl to fh.

RE =

∫ fh
fl
PSDA · df∫ fh

fl
PSDB · df

(3)
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• Harmonic Index Ratio (HIR): Quotient between the
harmonic indexes of resting and posture position.

HIR =
HIA
HIB

(4)

• Sum of Maximum Power (SMP): Sum of the power
value at the PP of resting and posture position.

SMP = PPA + PPB (5)

After extracting the feature matrix of the subjects, they
were labeled as follows:

1) Case 1: TP vs. HS
• TP (Tremor patients) - Positive Class.
• HS (Healthy subjects) - Negative Class.

2) Case 2: PD vs. ET
• PD (Parkinson’s Disease) - Positive Class.
• ET (Essential Tremor) - Negative Class.

Since thirteen features have been extracted per subject,
we used feature selection algorithms [26] to reduce the
dimensionality of the resulting matrix and to select a subset
of a maximum of five features to create the classification
models. This allows to reduce the training time of the mod-
els and to focus on the features that provide the highest
differentiation between both Cases’ classes. We used the
Chi-square test and the Unbiased Tree method to estimate,
separately, the importance of each feature [27], [28]. For
each test, the five features with the highest importance values
were identified. The features that matched in both tests were
chosen for further analysis. This process was carried out in
two frequency ranges: 1-16 Hz and 3-10 Hz.

C. MODEL TRAINING AND TESTING
The classification models designed differ in four aspects:

1) The frequency range of analysis. As mentioned in
the previous subsection, the kinematic features were
extracted in two different frequency ranges (1-16 Hz
and 3-10 Hz) to identify which range is optimal for
differentiating between physiological and pathologi-
cal tremors and, subsequently, between pathological
tremors.

2) The proportion of training and testing data. For
each of the cases presented, the dataset was randomly
divided into three different proportions (30/70, 50/50,
and 70/30), ensuring that both positive and negative
classes were distributed at the same ratio in each train-
ing and testing set. Table 1 details, for both cases in all
proportions, the class ratios obtained in the training and
testing sets.
The reason why we decided to use three different divi-
sions and not one, as commonly implemented in ML,
was to evaluate the influence of the data distribution to
obtain high-performance models.

3) The kinematic features used. Using the features
extracted and selected during the data analysis,
we identified all the possible combinations of features

TABLE 1. Training and testing set class ratios.

that can be generated, from a single feature to the
whole of them. Since we set 5 as the maximum number
of features, for some cases, up to 31 combinations
of features were obtained. These feature combinations
allowed us to evaluate the discriminatory ability the
features can reach individually or in combination using
the classification methods that implement them.

4) The classification method used to train the model.
The classification methods used for training the
models were developed based on the Matlab Classifi-
cation Learner app. This app offers a variety of super-
vised ML methods to classify data, including decision
trees, discriminant analysis, Support Vector Machines,
Logistic Regression, Nearest Neighbors, Naive Bayes,
and ensemble classification. There are several default
configurations of hyperparameters of these methods in
the app, offering a total of 25 different configurations
for the training of classification models. We integrated
all configurations into a script and applied them to the
dataset.

Given the number of combinations of features that were
possible to obtain and the diverse configurations of the clas-
sification methods, we obtained 775 different classification
models for some cases. After setting the training sets, the test-
ing sets were used to calculate Accuracy, Sensitivity and
Specificity. We defined Sensitivity as the capacity of a classi-
fication model to identify positive cases, that is, to identify
TP in Case 1 or PD subjects in Case 2. On the contrary,
Specificity is defined as the ability of the classification model
to identify negative cases, being HS in Case 1 or ET subjects
in Case 2. All training and testing processes were randomly
iterated 100 times for the same combinations of features and
classification methods in each of the three training/testing
divisions. Consequently, a different level of performance was
obtained in each iteration for each model. After all iterations,
the average values of Accuracy, Sensitivity, and Specificity
obtained for each classification model were calculated. The
three best classification models for Cases 1 and 2 were
identified based on the output classification metrics. Fig. 3
summarizes the whole process that was implemented for the
development and selection of the classification models.

III. RESULTS
We divide the results of this work into two subsections. In the
first part, we evaluate the model’s capacity to differentiate TP
from HS. In the second part, we analyze the model’s ability
to differentiate patients with PD and ET.
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FIGURE 3. Process diagram for the development and selection of classification models.

TABLE 2. Evaluation and selection of kinematic features for the
differentiation of tremor and healthy subjects.

A. DIFFERENTIATION OF TREMOR PATIENTS AND
HEALTHY SUBJECTS
Table 2 shows the results of the evaluation and selection of
features for distinguishing between TP and HS. In the 3 to
10 Hz frequency analysis, the five features with the highest
values were identical in both tests. These features were: SMP,
RPCB, HIB, HIA, and PBB. In the 1-16Hz frequency analysis,
four of the five features identified by both tests coincided:
SMP, RPCB, HIB, and PBB.
The upper and left side of Figure 4 shows the best models

for the differentiation of TP and HS in the frequency range
of 3-10 Hz, sorted by the three training/testing divisions. For
each division, the top 3 models were identified and listed
based on their average metrics. The SMP feature is present
in all nine models, while PBB, HIB, and RPCB are present
in two of them. The best performing classification model
shows an average accuracy of 94.3± 5.6% (95.9% sensitivity,

89.5% specificity), and an average computational cost of
6.7 ± 0.7 ms. This model was achieved in a 70/30 division,
using the SMP feature and the Linear SVMmethod. Although
there are a variety of classification methods among the nine
listed, in both the 30/70 and 50/50 divisions, the best model
implemented the Logistic Regression method and the SMP
feature. On the right side, the figure visualizes the best models
obtained in the frequency analysis from 1 to 16 Hz in all
training/testing divisions. Again, the three best models were
selected based on their average performances. All models in
this frequency range use SMP as a discriminatory feature,
while the PBB feature is applied in eight of them. The best
model shows an average accuracy of 97.2 ± 3.7% (98.5%
sensitivity, 93.3% specificity), and an average computational
cost of 105.8 ± 1.9 ms. There is only one model that imple-
ments a single feature, SMP, using a 70/30 division and the
Medium Tree method. The rest of the models implement
Ensemble Subspace KNN method and combine various fea-
tures. Note that the average computational cost of the models
that use the Medium Tree method with a single feature is
considerably smaller than those obtained with the models
that use the Ensemble Subspace KNN method and multiple
features.

B. DIFFERENTIATION OF PARKINSON’S DISEASE
PATIENTS VS. ESSENTIAL TREMOR PATIENTS
Table 3 shows the evaluation and selection of features for
the differentiation of PD and ET patients. In the 3-10 Hz
frequency analysis, the five features identified in each test,
separately, were the same: SMP, HIR, RE, RPCA, andMPFA.
In the frequency range of 1-16 Hz, only three of the five
features coincided: HIR, RE, and RPCA.

The bottom left side of Figure 4 depicts the best models
for the differentiation of PD and ET in the frequency range
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FIGURE 4. Output results of the machine-learning algorithm based on study case, range of frequency,
kinematic features, and classification methods.

of 3-10 Hz. The top 3 models in each training/testing division
are listed, sorted by their average performance values. The
HIR feature seems to provide significant information for the
differentiation of tremor patients, since it is present in all the
models depicted. The best overall performance was achieved
in the 70/30 division, combining the HIR and MPFA features
and using the Linear SVM method. This model showed an
average accuracy of 77.8 ± 9.9% (75.7% sensitivity, 80.0%
specificity), and an average computational cost of 5.4 ±
0.3 ms. The right side of the figure visualizes the models with
the best performances for the differentiation of PD and ET in

the frequency range from 1 to 16 Hz. Again, the best model
can be found in the 70/30 division, with an average accuracy
of 76.1 ± 11.8% (72.5% sensitivity, 79.7% specificity) and
an average computational cost of 26.5 ± 1.7 ms. The feature
that is present in most of the models is RE, being used in eight
of the nine models shown. In the 30/70 and 50/50 divisions,
the two best classification models use the Gaussian Naive
Bayes method. In contrast, in the 70/30 division, the two
best performances were obtained with two different config-
urations of the KNN method, obtaining the same average
accuracy.
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TABLE 3. Evaluation and selection of kinematic features for the
differentiation of tremor subjects: PD vs. ET.

IV. DISCUSSION
The results obtained in this work show that the character-
ization and differentiation between tremor in PD and ET
are possible with a mobile phone’s built-in gyroscope. The
accuracy of the tremor differentiation using this sensor is
comparable to the performance obtained using a mobile
phone’s built-in accelerometer [4], [19]. Although there is a
clear difference between the number of TP (39 in total) and
HS (12 in total), the accuracy of the models differentiating
the two conditions is high. This is due to the differences in
the frequency components of the tremors that characterize
both classes. By analyzing the entire data in the frequency
domain, wewere able to highlight these differences. Since the
PSD in HS can be up to 1000 times lower than in trembling
subjects, we obtained higher accuracy values than in [17],
(82.43%), even though their dataset was considerably larger
than ours. Other studies [27], [29] reported accuracy values
of 82% to 100%; however, their groups of trembling subjects
only included PD patients. In [8], [30], wearable sensors
(accelerometers and gyroscopes) were used to extract fea-
tures that allowed the implementation of ML algorithms for
the differentiation between PD and ET, reaching accuracies
of 96% to 100%. In [8], the analysis was performed in the time
domain and kinetic tremors instead of tremors in posture were
analyzed. The study performed in [30] uses accelerometry
data, registers each patient for a recording time of five min-
utes, and uses a newly introduced posture as well as statistical
analysis of the data’s frequency components to differentiate
the subjects. Compared to those studies, our classification
models were developed to be used during clinical follow-up,
where simple postures and short recording times are required.
The accuracy values reaches in our study are lower than those
in [8], [30], for two reasons. Firstly, they both registered
more subjects which improves the predictive ability of the
models. Secondly, the accuracy values we represent in this
study are average values of 100 random iterations in three
training/testing divisions. In single iterations, the classifi-
cation models developed for PD/ET differentiation reached

similar values. Moreover, since the aim of this work was to
evaluate whether the angular velocity signal could help to
differentiate tremor subjects usingML, we considered the use
of the default configurations of theMLmethods to be enough.
In future works, we intend to analyze in detail how to adjust
the hyperparameters of the implemented models to optimize
their discriminative capacity.

The frequency ranges used to develop the models gener-
ated significant differences regarding their performance. For
the differentiation of TP and HS, the average accuracy values
obtained in the frequency analysis from 1 to 16 Hz are higher
than those obtained in the analysis from 3 to 10 Hz. These
differences could exist because the frequency range from 3 to
10 Hz includes only a part of the area in which physiological
tremors occur (8 to 12 Hz) [23], whereas the analysis of 1 to
16 Hz includes its full range. Nevertheless, the models gener-
ated in the 1 to 16 Hz range require complicated methods and
more kinematic features. For the differentiation of PD and ET
patients, the models analyzed in the 3-10 Hz frequency range
show better performance compared to those in the 1-16 Hz
frequency range. These performance differences could be
directly related to the dominant frequencies of the two tremor
types. As mentioned in the Data Analysis subsection, both
PD and ET tremors are located in a frequency range between
4 and 8 Hz [9], [15], [21], [22]. Thus, the extraction of
kinematic features within a frequency range of 3 to 10 Hz
eliminates unwanted effects that are introduced by frequen-
cies outside the area of interest.

It is noticeable that the variability in the performance of the
PD/ET models listed is relatively high (5.2% to 11.8%). This
variability is influenced by the presence of atypical patient
data in each iteration since, as mentioned previously, there
are PD patients who experience postural tremors [5] and ET
patients who show tremors at rest during disease progres-
sion [9], [10]. Other variability factors are the training/testing
divisions, as the data distribution influences the performance
of the classification models. As expected, the classification
models show better performances the higher the percentage
of data in the training set. Analyzing Figure 4, the models
for differentiating TP and HS exhibit a difference of 3.1%
when comparing 30/70 and 70/30 divisions combined with
identical features (SMP, RPCB, and PBB) and the same clas-
sification method (Ensemble Subspace KNN). The models
for differentiating PD and ET show a difference of 4.0%
when comparing 30/70 and 70/30 divisions combined with
the same features (HIR) and classification method (Logistic
regression).

Based on the presumption that the frequency components
of the pathological tremor are higher in either of the two
positions studied, SMP and HIR were introduced to improve
the differentiation between the tremor types. RE and RPC
features were proposed in [4] to improve the differentiation
between PD and ET patients, as their tremor frequency com-
ponents are different under resting or postural conditions.
Theoretically, PD patients should have higher amplitudes of
tremor at rest (position A) than postural tremor (position B),

88872 VOLUME 8, 2020



J. D. Loaiza Duque et al.: Angular Velocity Analysis Boosted by ML for Helping in the Differential Diagnosis of PD and ET

and vice versa for patients with ET. The results obtained in
this work supported the above, the most significant feature
for the differentiation of patients with PD and ET seems to
be the novel HIR feature, as it was implemented in 12 of
the 18 best models depicted in Figure 4. Also, as already
observed in previous works [4], [19], RE and RPC features
provide essential information. The RPC feature also contains
relevant information for the differentiation of TP and HS in
both analyzed frequency ranges. However, the SMP feature
introduced in this study was most discriminative in several
of the best models; high accuracy values were reached by
only using this relative feature. Analyzing the implemented
features, it is noticeable that some of them provide more
accurate information for the differentiation of the subject
according to the Case. The features extracted in the posture
position were predominant in the models that differentiate
between subjects in Case 1. In Case 2, there is a higher
presence of features extracted in the resting position, which
is consistent with the works of [5], [8].

As it was the intention to develop high-performance clas-
sifiers and avoid classification errors, only patients with
a confirmed diagnosis of PD or ET were used to imple-
ment the ML models. However, this also means that the
patients were already on treatment when they were registered,
so their tremors intensity was remarkably low. For this reason,
we consider that additional records should be performed on
early-stage tremor patients to prevent the effects of medica-
tion [31] or surgical suppression [32], as these are possible
causes of misclassification of patients. Another important
topic regarding the development of high-performance models
is the dataset size. Since the dataset for training and testing of
the models was small, the ML models implemented in this
study are limited in their performance. The dataset needs to
be increased to develop highly accurate models. Therefore,
in the second phase of the project, we aim to introduce a
mobile application linked to a web server that allows adding
new patient records to the already registered data. This phase
will be realized through the collaboration of an international
network of physicians and biomedical engineers using the
application. By enlarging the dataset, we expect to improve
the accuracy of the developed models or to create new mod-
els with even higher performance and lower computational
cost.

V. CONCLUSION
The angular velocity signal recorded by the gyroscope and
boosted using ML algorithms has proven to be an effective
method to differentiate between healthy subjects and tremor
patients as well as between Parkinson’s disease patients and
Essential Tremor patients. This differentiation is substan-
tially dependent on the correct selection and evaluation of
classification methods and kinematic features, as well as on
the processing and the size of the training data. The best
model to differentiate HS and TP has an average accuracy
of 97.2 ± 3.7% (98.5% Sensitivity, 93.3% Specificity). The
average accuracy of the best model to differentiate tremor

patients with PD and ETwas 77.8± 9.9% (75.7% Sensitivity,
80.0% Specificity).

During the training of the models, we were able to identify
outstanding performance for some combinations of kinematic
features, such as SMP, PBB, and RPCB, for TP and HS
differentiation, as well as HIR and MPFA for PD and ET
differentiation. Regarding the classification methods, for the
differentiation of TP and HS (Case 1), the best performances
were reached with the Linear Support Vector Machine and
Ensemble Subspace KNN methods. For the differentiation
of PD and ET (Case 2), in the frequency analysis from 3 to
10Hz, the best performancewas also obtainedwith the Linear
Support Vector Machine method. In contrast, in the 1-16 Hz
range, the best performance was obtained with Medium
K-nearest Neighbor method. In both cases, the Linear Sup-
port Vector Machine models present a lower computational
cost compared to the KNN methods.

In future works, we want to combine the recordings of
accelerometer and gyroscope sensor to obtain higher clas-
sification performances and reduce the training times. The
optimized MLmodels developed in this research will be used
to design a low-cost and non-invasive tool (mobile app) to
support physicians in the differential diagnosis of the two
diseases, particularly in developing countries where sophisti-
cated diagnostic techniques such as 123I-FP-CIT SPECT are
not available. Additionally, we expect that the use of this tool
will help in patients with undecided diagnosis and, conse-
quently, in choosing appropriate and opportune therapeutic
actions.
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