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ABSTRACT Differential power analysis attacks are the most commonly used means to break cryptographic
devices within the side-channel attack technology. Since there is a lot of noise in the energy trace of
cryptographic devices, a large number of energy traces are needed to carry out the attack, resulting in a high
computational cost. To solve this problem, this study starts with an analysis of the characteristics of power
waveform formation from the inherent properties of the complementary metal oxide semiconductor circuit.
Then, based on the Hamming distance classification method and the results of power waveform analysis,
the useful information interval in the energy trace is located, that is, the interval with a strong correlation with
the key. Thus, we achieve energy trace compression. Finally, a system on chip with a 128-bit AES algorithm
is used to conduct various attack experiments in the effective interval. The results show that the calculation
is cut off by 96%, which greatly reduces the computational cost for differential power analysis attacks.

INDEX TERMS Differential power attacks, hamming distance, effective interval, energy traces.

I. INTRODUCTION
Cryptographic devices inevitably leak some physical infor-
mation, such as power consumption, electromagnetic radia-
tion, and runtime, when performing encryption or encryption
operations. Side-channel attacks (SCAs) use the physical
information to reveal secret keys of cryptographic devices.
According to different types of physical information, themost
important SCAs are of three types: timing attacks [1], power
analysis attacks [2], and electromagnetic radiation attacks [3].
Timing attacks [1] were first proposed in the field of cryp-
tographic devices in 1996. Since then, non-intrusive SCAs
technology has set off a wave of research in the field of infor-
mation security [4]–[8]. Power analysis attacks [2] use the
energy consumption characteristics of cryptographic devices
rather than the mathematical characteristics of cryptographic
algorithms. Because of its simple operation, wide applica-
tion range, and high success rates, power analysis attacks
have become one of the most commonly used and effective
methods in SCAs. The power analysis attack has success-
fully attacked various cryptographic algorithms, for example,
AES [9], DES [10], and RSA [11]. It can also attack various
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encryption devices, such as smart cards, field programmable
logic devices (FPGA), microcontroller, and ASIC and crypto
SoC [12]–[15].

Differential power analysis (DPA) attacks use statistical
tools (also known as distinguishers) to reveal the relationship
between the key and power consumption. DPA attack results
are greatly affected by the signal-to-noise ratio [16] of the
leaked information. In order to improve the success rate
and efficiency of DPA attacks, it is particularly important to
pre-process the power traces. This has two main purposes:
one is to reduce the power consumption samples and the
other is to decrease the sample calculation. Pre-processing
techniques include digital signal processing (DSP) technol-
ogy [17], principal component analysis (PCA) [18], inter-
ception [19], and integration [20]. DSP methods mainly
include wavelet transform denoising technology [21], [22],
the Fourier transform [23], [24], low-pass filters [25], and
so on. However, DSP technology needs to know all kinds of
parameters and ensure that the signal and noise are not in the
same frequency domain, which needs high requirements of
the attacked device and attacker. Thus, it is difficult to imple-
ment the DSP technology. The literature [26]ower traces
were selected according to the principal components. Com-
pared with the common correlation power attack (CPA) [27],
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the attack efficiency was greatly improved. Clavier [28], [29]
looked for points of interest in power tracking and applied
collision-related techniques to recover the entire key.
Meanwhile, Park et al. [30] proposed subtraction algorithm
analysis on equidistant data subtraction algorithm analysis
on equidistant data (SAED), which extracted sensitive infor-
mation using the event information of the subtraction oper-
ation in a reduction algorithm; however, an attacker still
needed 256 power traces to obtain a data block. Based on
the singular value decomposition, Zhou et al. [31] selected
high-quality energy traces for DPA attacks, but did not reduce
the sample calculation. Focused on template attacks [32],
Zhang and Zhou [33] evaluated the optimal number of interest
points in the simulation scene and provided a useful empir-
ical formula; however, this was only applicable to Gaussian
template attacks. Finally, Wang et al. [34] proposed a feature
point extraction scheme based on the difference, but the
experimental results still needed to be extracted manually;
they also lacked objectivity and sufficient theoretical support.

Our contributions in this study are as follows. In order
to reduce the amount of sample calculation and manual
intervention, this paper studies the energy trace data pre-
processing scheme for SoC. Based on the current character-
istics of complementary metal oxide semiconductor (CMOS)
circuits, the position and range of the power consumption
difference interval are analysed, which provides a theoretical
basis for extracting the effective interval. This study then
proposes a method for locating marker points based on the
Hamming distance, which accurately locates the position
of power consumption data in the energy trace that has the
strongest correlation with the key. Through a large number
of experiments, it is confirmed that only a small number of
data near the markers are needed to form an effective interval,
and the attack effect is the best when 10 sampling points are
intercepted to form an effective interval near the marker.

The rest of the study is organized as follows. In Section 2,
we will briefly introduce the relevant research background.
The power consumption difference interval will be analysed
in Section 3. In Section 4 follows explanations of the use
of the Hamming distance classification to locate markers.
The experimental verification of the effective interval will be
discussed in Section 5. Finally, Section 6 will conclude the
whole study.

II. RELATED BACKGROUND
A. ENERGY MODEL
DPA attacks use an energy model as a criterion for distin-
guishing between right and wrong keys. The commonly used
energy models are the Hamming distance (HD) model [35]
and the Hamming weight (HW) model [36], both of which
represent the correlation between input data (i.e., plaintext
and key) and power consumption. The HD model is sim-
ple in principle, convenient to implement, and more widely
used. The HD represents the number of distinct bits between
v0 and v1, and is equal to the HW of v0⊕v1. The HW is equal

to the number of bits with a logical value of ‘‘1’’ in a binary
string. The HD model assumes that all components have the
same influence on power consumption, that is, the 0 → 1
conversion and the 1 → 0 conversion have the same power
consumption. Then, the total number of conversions is used
to characterize the power consumption of the circuit during
this period. Therefore, the energy model based on the HD is
expressed as follows:

E = aHW (v0 ⊕ v1)+ b. (1)

where E is the energy consumed by the circuit during the
register switching from v0 state to v1 state, a is the energy
consumption ratio coefficient, and b is the power consump-
tion and noise that are not related to the processed data.

B. STEPS OF DPA ATTACK BASED ON THE MEAN
DIFFERENCE
The general method of the DPA attack requires computing the
correlation between twomatrices. The correlation calculation
process is cumbersome when the matrix is large. In order to
simplify the calculation steps, the mean difference is used
instead of the correlation coefficient calculation. The steps of
the DPA attack based on the mean difference are as follows:

• Step 1: Choosing an Intermediate Result of the Algo-
rithm Executed in the Device. This intermediate value is
a function f (dm, kn), where dm is the mth plaintext and
kn is the nth value of a small part of the key.

• Step 2: Measuring the Power Consumption. For each
plaintext dm(m = 1, . . . ,M ), an encryption operation is
performed to generate an energy trace of length L. Then,
the traces can be written as matrix T of sizeM × L.

• Step 3: Calculating the Hypothetical Intermediate
Value. For each dm and kn(n = 1, . . . ,N ,N is the
number of all possible kn values), calculate the corre-
sponding hypothetical intermediate value, and obtain a
hypothetical intermediate value matrix V of sizeM×N ,
where vm,n = f (dm, kn).

• Step 4: Mapping Hypothetical Intermediate Values to
Hypothetical Power Consumption Values. Map each
hypothetical intermediate value vm,n to a bivariate hypo-
thetical power consumption value hm,n to obtain a bivari-
ate hypothetical power consumption value matrix H .

• Step 5: Calculating the Mean Difference of the Energy
Traces. According to each column vector in matrix H ,
T is divided into two subsets. The first subset contains
the rows inT whose index value is equal to the index of 0
in the column vector, and the second subset contains all
the remaining rows in T . Then, calculate the averages
of the two subsets separately to get two rows. Finally,
find the difference between the two mean values to get
1 row. A total of N rows are obtained for all of the N
column vectors of H .

• Step 6: Comparing All Mean Differences. Compare the
N average difference rows obtained in step 5. The key
corresponding to the rowwith the largest value is the key
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obtained by the attack, and the time corresponding to the
column is the maximum information leakage moment.

C. ENERGY TRACE COMPRESSION
Not all data in the energy trace are related to the hypothe-
sized power consumption, that is, there is redundancy in the
energy trace. Energy trace compression is designed to try to
remove redundant data. In fact, on the premise of retaining
information, reducing the amount of data in the energy trace
as much as possible can greatly improve the time efficiency
of the attack.

A previous analysis [37] has shown that the peaks appear-
ing in the energy traces are the most relevant points for energy
analysis attacks. Based on this conclusion, two commonly
used energy trace compression techniques have been pro-
posed: one is maximum value extraction and the other is
integration. The former only keeps the maximum value of the
energy trace in each clock cycle, and the latter integrates the
energy traces near the peaks into a value, such as summing
or square summing. However, it is still impossible to know
which segment of the energy trace has a strong correlation
with the hypothesized power consumption value.

D. ATTACK SUCCESS RATE AND RELIABILITY
The attack success rate was first proposed by
Standaert et al. [38]. Since then, the success rate has been
widely used to evaluate the probability of key recovery in
DPA attacks. The success rate is defined as the probability
that the keys of the attacked device is successfully recovered
under a certain number of power traces. Generally, it is
not necessary to recover all the key bits to prove that the
encryption device has failed. If 8-bit sub-keys are proven to
have serious sensitive information leakage, the device may
fail [37]. Therefore, the partial success rate (PSR) is also often
used. The PSR in this paper also refers to the success rate.

In addition, in order to evaluate the reliability of the result
key, this paper uses Euclidean distance fluctuation Devia,
which is defined as follows:

Devia = 1−
E − submin
E − min

. (2)

where min, submin, and E represent the minimum value,
the next smallest value, and the average value of the
Euclidean distance of all keys, respectively. The greater the
difference between E-min and E-submin, the closer Devia
is to 1, the more prominent the uniqueness of the minimum
value, and the higher the reliability of the successful attack.

III. POWER CONSUMPTION DIFFERENCE INTERVAL AND
INTERMEDIATE VALUE SELECTION
Digital circuits are made up of logic components, including
combinational components and sequential components. The
output of a combinational component is used as the input
of another. Such a circuit is called a multi-stage combi-
national circuit. When an input of a combinational circuit
changes, the output does not necessarily change with it.

This phenomenon is more serious in multi-level circuits, that
is, in a multi-level circuit, the output does not easily change
with a change in input. The input signal is considered blocked
at this moment.

Assume that the probability of each input value being
0 or 1 is 0.5; then, the probability of the input signal of a
two-input AND gate, NAND gate, OR gate, and NOR gate
being blocked is 5/8, that is to say, the probability of the
output of these logic gates changing due to input changes
is 3/8. Therefore, for a multi-stage circuit composed of such
logic gates, the input signal can usually only pass a few gates
to the output. For example, the probability that the output
signal of the register reaches the output terminal after passing
through a six-stage combinational circuit is approximately
(3/8)6 ≈ 0.003, which is almost zero. Therefore, passing
through six stage gates after the register output signal enters
the combinational circuit, the signal tends to be stable and the
dynamic energy consumption almost disappears.

When a signal passes through a logic component, or even a
wire, there is a delay. In a clock cycle, due to the phenomenon
that the signal is blocked, the maintenance time of the power
consumption waveform of the circuit generally does not
exceed 6t (here it is assumed that t is the average transmission
delay time of each logic gate, and the transmission delay
of the wire is not considered), and the amplitude of the
waveform gradually decays with time. Therefore, the closer
the power waveform is to the starting point, the more the
circuit activity can be reflected.

The energy consumption of a cryptographic device
depends on the intermediate value processed during the algo-
rithm execution process. Choosing an appropriate interme-
diate value for the attacker can increase the success rate.
The first encryption process of the 128-bit AES algorithm is
shown in Fig.1. The plaintext and the key are exclusive-ORed
before the data register, and the combinational circuit starts
the first round of encryption operation. Each round consists
of four round transformations, which are called AddRound-
key, SubByte, ShiftRows, and MixColumns (the 10th round
does not perform AddRoundkey). According to the above
discussion, the power consumption data with the strongest
correlation with the key should be concentrated near the
register, that is, the place marked ‘‘Position A’’ in the figure,

FIGURE 1. Structure of the first-round transformations of AES.
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which is why people often choose the output of Sbox as the
intermediate value.

Different input data leads to different energy consump-
tion, that is, a different plaintext or key produces different
power consumption waveforms. This phenomenon is called
the correlation between energy traces and input data. In DPA
attacks, the absolute value of energy traces is meaningless.
What is important is only the difference between the power
consumption caused by different inputs. The so-called power
consumption difference interval refers to the part of an energy
trace that is different from others due to different input data.
According to the above analysis, the length of this part usually
does not exceed 6t. If the length is too large, then more noise
will be introduced, which not only increases the amount of
sample calculation, but also causes the attack to fail. If it is
too small, then it may directly cause the attack to fail because
it does not cover the effective information leakage interval.
Therefore, the number of sampling points Ndiff should be
appropriate and adequate and can be calculated using (3),
where fsample is the frequency for the sampling energy trace:

Ndiff ≈ 6t × fsample. (3)

IV. ENERGY TRACE MARKER LOCATION
From the above discussion, it is known that the selected
intermediate value should correspond to a vicinity of a certain
peak in the energy trace; this peak is called an energy trace
marker point. However, generally, it is not known where the
peak is because there are many peaks in the energy trace.
The following approach is taken to obtain the location of the
marker.

1) ForM groups of random plaintexts d1, d2 . . . dm . . . dM ,
collect M energy traces, and each energy trace has L
points. The mth energy trace is represented by a row
vector tm = (tm,1, tm,2, . . . , tm,L), and the original
matrix T of the energy trace is expressed as in (4)):

T =


t1, 1 t1, 2
t2, 1 t2,2

· · ·
t1,L
t2,L

...
. . .

...

tM , 1 tM , 2 · · · tM , L

 . (4)

2) Select the correct key hypothesis kcorrect, and use the
intermediate value function f(dm, kn) to calculate theM
set of hypothetical intermediate values (here, the output
value of the first round of encryption Sbox operation is
selected as the intermediate value, which is the value of
Position A in Fig.1) to obtain an hypothetical interme-
diate value column vector V :

V =


v1
v2
...

vM

 . (5)

3) Using the HD energy model, map the vector V to the
hypothetical energy consumption column vector H ,

where each component of H is the HD value of an
8-bit sub-key. Then, M HD values in this vector are
divided into 3 categories: (1) HD values of 0, 1, and 2;
(2) HDvalues of 6, 7, and 8; and (3) all other HDvalues.
Finally, the rows in T are also divided into 3 categories.
The first category T1contains the rows in Twhose index
values are equal to the HD index values of the first
category. The second category T2 contains the rows in
T whose index values are equal to the HD index values
of category 2, and the last category contains the rest.
Since the energy traces in the third category have little
effect on the positioning of the markers, they will not
be processed:

T1 = {HD (tm) = (0, 1, 2)} .

T2 = {HD (tm) = (6, 7, 8)} .

T3 = {HD (tm) = (3, 4, 5)} . (6)

4) Average category T1 and category T2 separately to
obtain two energy trace classification center traces
CMk under the correct key, where k = 1, 2:

CMk =

∑
tm∈Tk tm
|Tk |

.
∑
k∈1,2

|Tk | = M − |T3| . (7)

5) Select the wrong key hypothesis kwrong, and repeat
steps 2, 3, and 4 to get two classification centre traces
WMk under the wrong key. SubtractWMk fromCMk
to get two differential centre traces 1DMk

1DMk = CMk −WMk . (8)

The position where twoCMk curves show the largest peak
at the same time is the position where the energy trace has the
strongest correlation with the intermediate value, which is the
so-called marker point. After obtaining the marker, a small
number of sampling points near the marker are taken to
constitute an effective attack interval. Fig.2 shows an example
in which there are two energy centre trace difference curves in
the left subgraph. It is clear that there are many peaks on both
curves near the 6000th point. By amplifying the waveform
near this point, we get the right subgraph in which two curves

FIGURE 2. Two difference palpitations and partial enlargement.
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have the largest peak value at the 6110th point. Therefore,
point 6110 is the marker we found.

V. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
The experimental object is an SoC chip with a crypto-
graphic coprocessor. The coprocessor is implemented with
SMIC130 nm process. The total area of the SoC is 124 mm2,
and the total power is 6.25 mW. The coprocessor runs a
128-bit AES algorithm, with an area of 0.06 mm2, an average
gate delay of 0.25 ns, and a power consumption of only
0.04 mW, which accounts for a very small percentage of the
total power consumption. Because the coprocessor and the
CPU are packaged together and cannot be isolated, various
noise interferences from the same PCB are relatively large.
These factors greatly increase the difficulty of the attack.

In order to reduce interference, a custom acquisition card is
used in the experiment. The specific parameters of the envi-
ronment are shown in Table.1. During the execution of the
algorithm, the acquisition card collects the energy consumed
by the SoC by measuring the voltage on a 0.1� sampling
resistor connected in series to the power ground wire. Fig.3
shows the experimental platform. The acquisition work is
controlled by the PowerAnalysis software.

FIGURE 3. Energy acquisition platform.

B. EXPERIMENTAL METHODS AND STEPS
The sampling frequency of the acquisition card is fixed at
5 Gsps, and the working frequency of the cryptographic
device is 20 MHz. Two hundred and fifty points are sampled
per clock cycle, and each point is quantized to 10 bits. A com-
plete original energy trace has 15,000 sampling points in total.
According to (3), Ndiff is about 8. The average difference
DPA method is used for the attack, and the attack results are
evaluated using Devia and PSR. The experimental steps are
as follows:

TABLE 1. Experimental environment.

• Step 1: Measuring Energy Traces. First, 256 different
keys are moved sequentially from memory to registers
and 2000 energy traces are collected for each of these
keys. Thus, a total of 512,000 energy traces are obtained.

• Step 2: Obtaining Marker Points. For 10 randomly
selected correct keys 18, 148, 197, 228, 58, 59, 96, 98,
188, and 232, 2550 marker points of 10 groups of energy
traces are obtained by the method described in Section 4,
respectively.

• Step 3: Count the frequency of 2550 marker points, and
select one marker point through attack for subsequent
experiments.

• Step 4: Attacking and Selecting the Best Attack Interval.
Intercept 2, 5, 10, 20, 50, 100, 200, and 400 sample
points around the selected marker point as the attack
interval to attack all 256 keys. By comparing the attack
effects at different attack intervals, the best attack inter-
val can be obtained.

• Step 5: Attacking Again After Reducing the Sampling
Frequency. Reduce the sampling frequency to 2.5 Gsps,
1.25 Gsps, and 0.625 Gsps by equal interval sampling,
and attack the 10 selected keys in the best attack interval
obtained in step 4.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) MARKER POINTS
For each of the 10 randomly selected correct keys, we record
the marker points obtained under the 255 wrong keys in
sequence, count all 2550marker points, and get the frequency
histogram as shown in Fig.4. It can be seen that the markers
have a high repeatability at the positions of 5610 and 6110,
and the sum of the number of occurrences of the two points
accounts for 83% of the total number. Therefore, it can be
considered that the strongest points of information leakage
are mainly concentrated at these two locations. Either one
of them can be selected as a marker. In order to confirm the
attack effect of the two markers, points 5610 and 6110 are
selected as the marker points. The attacks are performed on
the 10 keys, and the number of successful attacks is shown
in Table.2.

It can be seen from Table.2 that when intercepting 10 and
200 sampling points near themarker points 5610 and 6110 for
attack, the number of successful attacks at marker point
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TABLE 2. Results of attacks at different markers.

5610 is less than that at marker point 6110. At the same time,
Fig.4 shows that the most frequent occurrence of the marker
6110 is 1180, accounting for 46% of the total. Therefore,
due to the space limitation, only the experimental results with
point 6110 as the marker are given below.

FIGURE 4. Mark statistics for different keys.

FIGURE 5. Devia value at different sampling rates.

2) THE ATTACK INTERVAL
In this study, 2, 5, 10, 20, 50, 100, 200, and 400 sampling
points are intercepted around marker 6110 at eight differ-
ent effective attack intervals, and the attack results for all

256 keys in each interval are shown in Fig.6, Fig.7, and
Table.3.

TABLE 3. Partial success rate and Devia value under different effective
intervals.

Fig.6 shows the attack on key 58. The horizontal axis of
the figure represents the keys and the vertical axis is the
Euclidean distance. The sub-map in the figure corresponds to
8 different attack intervals from top to bottom and from left
to right. The first seven sub-graphs show that the attack result
key is 58 and the attack is successful. The last sub-map shows
that the attack result key is 181, and attack fails. Among the
first 7 correct results, the third Devia value is the largest,
reaching 0.71. This result shows that for key 58, the optimal
attack interval is [6105: 6114]. Therefore, the optimal number
of points in the valid interval is 10, including the marker point
itself.

The horizontal axis of Fig.7 represents different intervals,
and the vertical axis denotes Devia values. The maximum,
minimum, and median values of Devia are given for each
interval. It can be seen that 10 intercepting points around
marker 6110 as the effective attack interval has the best
effect because the maximum, minimum, and median values
of the corresponding Devia values are the largest among the
8 intervals. From this, three conclusions can be drawn. First,
the circuit does leak a lot of secret information at 6110.
Second, the effective interval should not be too small or too
large. If it is too small, the selected range may not cover the
information leakage range of the energy trace; if it is too large,
it will introduce too much noise. Third, the size of the best
effective interval is basically consistent with the result that
Ndiff is about 8 (as calculated according to (3)).

Table.3 shows the PSR and the median corresponding
Devia values, which represent the attack success rate for each
interval. When the number of points is 5, 10, and 20 in the
interval, the attack with each sub-key is successful. As the
number of points gradually increases, the PSR decreases and
the attack success rate goes down. When there are more than
400 points, no attack is successful. If there are only two
points, the attack success rate is only 95%. At the same time,
when the number of points in the interval is 10, the median
Devia value, 0.702, is the largest. Therefore, from the PSR
and Devia values, it is best to intercept 10 points around
marker 6110 as the effective attack interval.

Both Fig.7 and Table.3 show that the best attack effect can
be achieved by selecting 10 points near 6110 as the effective
attack interval. Therefore, the number of data used for attack-
ing from each energy trace is reduced from 250 points in one
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FIGURE 6. Attack results of different effective interval when the key is 58.

FIGURE 7. Devia statistics under different keys and different effective intervals.

cycle to 10 points, a reduction of 96%, thus improving the
time efficiency of DPA attack.

3) SAMPLING FREQUENCY
In this experiment, a custom-made acquisition card is used,
and the sampling frequency is fixed at 5 Gsps. Can the sam-
pling rate be reduced? To answer this, the sampling frequency
is decreased to 2.5 Gsps, 1.25 Gsps, and 0.625 Gsps by
equal interval sampling. Within the best effective attack inter-
val determined in step 4 of the experiment, the 10 selected
keys are attacked again. The experimental results are shown
in Fig.8.

The horizontal axis of Fig.8 represents different sampling
rates, and the vertical axis represents Devia values. The fig-
ure shows that when the sampling rate gradually reduces from
5 Gsps to 0.625 Gsps, all attacks are successful and the Devia
value changes little. For example, for key 18, the maximum
value of Devia is about 0.70 and the minimum 0.67 (the dif-
ference is 0.03, that is, only about 5%). It should be noted that
when the sampling rate is reduced to 0.625 Gsps, the attack

FIGURE 8. Devia value at different sampling rates.

range only contains one point, that is, the marker point itself
(6110). This proves again that the circuit does leak a lot of
secret information at the sampling point 6110.
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4) COMPARISON WITH OTHER METHODS
When comparing the results of DPA attacks, the type, energy
model, target device, and implementation mode of DPA
attacks should be considered. To make a fair comparison,We
choose paper [39] as the comparison object, because it has the
same cryptographic algorithm and energy trace compression
purpose as this article. We include as much information as
possible in Table.4.

TABLE 4. Comparison of information of different methods.

Kim and Ko [39] proposed a new selection method to
improve power analysis attacks using principal component
analysis and utilized the SASEBO-GII platform in exper-
iments, which includes a main FPGA and control FPGA.
The encryption component in the main FPGA (Xilinx
Virtex-5 LX30) is completely separated from the control
FPGA, minimizing the transmitted noise from the same PCB.
Compared with the FGPA, the energy traces measured from
the SoC are more complex and more difficult to attack. For
one energy trace, the final sampling points used by [39] were
500, while 10 points near the marker are used in this paper,
which greatly reduces the calculation cost.

VI. CONCLUSIONS
Based on the current consumption characteristics of CMOS
circuits, this study discusses the location and range of the
critical data needed for DPA attacks. Based on the Ham-
ming distance classification method, the power consumption
data with the strongest correlation with the key are found,
which solves the difficulty of manually locating the power
consumption difference interval when analysing the power
consumption trajectory. Under the premise of ensuring the
success rate, the energy trace compression method in this
paper reduces the sample calculation and attack cost. Since
the location of the marker method must know the correct key
in advance, themethod, in this article, is suitable for designers
of cryptographic devices or people who actually own the
same device as the target device. In future research, we intend
to apply these methods to other cryptographic algorithms and
different practical scenarios to expand their universality.
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