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ABSTRACT Breast cancer is one of the most common and deadliest cancers among women. Since
histopathological images contain sufficient phenotypic information, they play an indispensable role in the
diagnosis and treatment of breast cancers. To improve the accuracy and objectivity of Breast Histopatho-
logical Image Analysis (BHIA), Artificial Neural Network (ANN) approaches are widely used in the
segmentation and classification tasks of breast histopathological images. In this review, we present a
comprehensive overview of the BHIA techniques based on ANNs. First of all, we categorize the BHIA
systems into classical and deep neural networks for in-depth investigation. Then, the relevant studies based
on BHIA systems are presented. After that, we analyze the existing models to discover the most suitable
algorithms. Finally, publicly accessible datasets, along with their download links, are provided for the
convenience of future researchers.

INDEX TERMS Breast cancer, histopathology, convolutional neural networks, deep learning, image

segmentation, image classification.

I. INTRODUCTION
Breast cancer is the most commonly diagnosed and leading
cause of cancer deaths among women [1]. According to the
World Health Organization (WHO), every year 2.1 million
women have breast cancer worldwide. In 2018, an estimated
627,000 women died, representing about 15% of all cancer
deaths among women [2]. In the United States, it ranks first
in the record of the most common cancers that women are
expected to be diagnosed in 2019 at a rate of up to 30% [3].
There are four types of breast tissue i.e., normal, benign,
in-situ carcinoma, and invasive carcinoma. Benign tissue
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refers to a minor change in the structure of the breast, but
it is not classified as cancer, and in most cases, it is not
harmful to health. In-situ carcinoma remains in the mammary
duct lobule system and does not affect other organs. If it
diagnoses in time, in-situ carcinoma can be cured. How-
ever, invasive carcinoma is a malignant tumor that tends
to spread in other organs. There are many techniques for
breast cancer detection, such as X-ray mammography [4],
3-D Ultrasound (US) [5], Computed Tomography (CT),
Positron Emission Tomography (PET) [6], Magnetic Reso-
nance Imaging (MRI) [7], and breast temperature measure-
ment [8]. However, pathological diagnosis is often regarded
as a “golden standard” [9]. For better observation and analy-
sis, the removed tissues usually need to be stained, where the
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Hematoxylin and Eosin (H&E) staining approach is the most
common method. The hematoxylin dyes the nuclei a dark
purple color and the eosin dyes other structures (cytoplasm,
stroma, etc.) a pink color. Make it like FIGURE 1, showing
the different types of breast tissue images stained with H&E.

FIGURE 1. H&E stained images of different type, (a) is normal tissue,
(b) is benign abnormality, () is in-situ carcinoma, and (d) is invasive
carcinoma. These images are from the BACH dataset [10].

In histopathological research, the sections are examined
under a microscope to analyze the characteristics and prop-
erties of the tissues by a histopathologist [11]. Traditionally,
the tissue sections are observed by the naked eyes of the
histopathologist directly, and the visual information is ana-
lyzed based on the prior medical knowledge manually. How-
ever, due to the complexity and diversity of histopathological
images, this manual analysis can take much time. At the
same time, the objectivity of this manual analyzing process is
unstable, depending on the experience, workload, and mood
of the histopathologist greatly.

In recent years, Artificial Intelligence (Al) technology
develops rapidly. In particular, it makes important achieve-
ments in computer vision, image processing and analysis.
Al also shows potential advantages in histopathological
analysis. Al-assisted diagnosis can undertake tedious focus
screening work and quickly extract valuable information
related to diagnosis from massive data. Meanwhile, Al has
a strong objective analysis ability in histopathological detec-
tion and can avoid subjective differences caused by manual
analysis. To some extent, the misjudgment of pathologists can
be reduced and the working efficiency can be improved.

A. GENERAL DEVELOPMENT OF EXISTING Al ANALYSIS
HISTOPATHOLOGY

Al is an umbrella term encompassing the techniques for a
machine to mimic or go beyond human intelligence, mainly
in cognitive capabilities [12]. As shown in FIGURE 2,
the main contents of Al research include Machine Learn-
ing (ML), pattern recognition, natural language processing,
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etc. Especially, ML has a significant contribution to the devel-
opment of medicine.

ML is used in the pathological diagnosis of different can-
cer fields, e.g., cervical cancer, gastric cancer, colon cancer,
lung cancer and breast cancer. The scope of the applica-
tion focuses on the benign and malignant diagnosis, disease
grading, staining analysis, and early tumor screening. For
example, the work of [13] proposes a weakly supervised
multi-layer hidden conditional random field model to classify
the cervical histopathological images into well, moderate and
poorly differentiated stages. In the experiment, the proposed
method is tested on the six cervical IHC datasets and obtains
an overall classification accuracy of 77.32% and the highest
one of the six is 88%, showing the effectiveness and poten-
tial of the method. In the field of gastric cancer, the work
of [14] proposes a deep learning based framework, namely
GastricNet, for automatic gastric cancer identification. The
experimental results show that this deep learning framework
performs better than state-of-the-art networks like DenseNet,
ResNet, and achieves an accuracy of 100% for slice-based
classification. The colorectal cancer is a malignant tumor
that starts in the form of growth known as polyps mainly
in the inner linings of the colon or rectum part. In the
work of [15], proposing an automated supervised technique
using deep learning to keep original image size is proposed
in this paper for doing five-grade cancer classification via
31 layers Deep Convolutional Neural Network (DCNN). The
proposed model results in classification accuracy of 96.97%
for two-class grading and 93.24% for five-class cancer grad-
ing. About lung cancer pathology, Adenocarcinoma (LUAD)
and squamous cell carcinoma (LUSC) are the most prevalent
subtypes of lung cancer. The study of [16] trains a DCNN
(inception-v3) on Whole Slide Images (WSIs) obtained from
The Cancer Genome Atlas to accurately and automatically
classify them into LUAD, LUSC or normal lung tissue, with
an average Area Under the Curve (AUC) of 0.9.

It is worth noting that ANNSs, as a branch of machine
learning, play an important role in pathological diagnosis.
ANN method, including classical and deep neural networks,
is a kind of mathematical model or calculation model which
imitates the structure and function of the biological neural
network. In recent years, ANNs are widely used in Breast
Histopathological Image Analysis (BHIA) for image segmen-
tation, feature extraction, and classification. The development
trend of BHIA using ANNs is shown in FIGURE 3.

B. MOTIVATION OF OUR REVIEW PAPER

This paper focuses on the work of ANNs in the image anal-
ysis of breast histopathology. A comprehensive overview of
techniques for image analysis of breast histopathology using
classical neural networks and deep neural networks is pre-
sented. The motivation is to clarify the development history
of ANNS, understand the popular technology and trend of
ANN applications, and discover the future potential of ANNs
in the BHIA field. As far as we know, there exist some survey
papers that summarize papers related to the BHIA work

VOLUME 8, 2020



X. Zhou et al.: Comprehensive Review for Breast Histopathology Image Analysis

IEEE Access

l ! l

! ! l

Date Minin, Knowledge Processin Machine Pattern (Visual) LI:x?M:Ie
s Representation s Learning Recognition Perception Proci':s 1?1 5
Artificial Neural

Classical Neural

Network

Deep Learning

Linear Regression Decision Trees

Perceptions (CNN)

Convolutional Neural Networks

Support Vector Machine k-Nearest Nelghbor

(SVM)

Recurrent Neural Networks
(RNN)

Radial Basis Function
(RBF)

Naive Bayes Logistic Regression

Boltzmann Machine Neural Networks

(BM) (GAN)

Generative Adversarial Networks

k-Means Fuzzy c-Means

Back Propagation Neural Networks

(BP) Autoencoders

[ ) [
[ ) [
[ ] [
[ ] [

Principal Component

Random Forest Analysis (PCA)

[
[
[
[
[

— T T T J
T M ) () ()

]
]
]
)

. J .

)
)
]
)
)

J -

FIGURE 2. The structure of ANN technology in the Al knowledge system.

110

)
S

Total Number of Related Works

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
—AIl ANNs - -Classical ANNs - -Deep ANNs

FIGURE 3. The development trend of ANN methods for BHIA tasks. The
horizontal direction shows the time. The vertical direction shows the
cumulative number of related works in each year.

(e.g., the reviews in [7], [9], [12], [17]-[33]). In the following
part, we go through the survey papers that are related to the
BHIA work.

The survey of [9] reviews machine learning methods that
are usually employed in histopathological image processing,
such as segmentation, feature extraction, unsupervised learn-
ing, and supervised learning. More than 130 papers about
histopathological image analysis are summarized, but only
five are about BHIA with ANNS.

The survey of [12] publishes a research survey, focusing
on the use of Al and deep learning in the diagnosis of breast
pathology images, and other recent developments in digital
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image analysis. Among them, we are only interested to sum-
marize the development of deep learning in breast patholog-
ical diagnosis from the application direction. However, the
article does not discuss the results that have been obtained
for each research method.

The survey of [30] summarizes current deep learning tech-
niques in mammography and breast histology. In this arti-
cle we only focus on deep learning techniques on breast
histopathology images. According to different tasks, namely
nuclei analysis, tubular analysis, epithelial and stromal region
analysis, mitotic activity analysis and other tasks in the breast
digital histopathology image process, 16 papers are summa-
rized based on BHIA.

The survey of [31] summarizes the deep learning appli-
cations in breast cancer image analysis in Screen-File
Mammography (SFM), Digital Mammography (DM), US,
MRI, and Digital fast tomosynthesis (DBT) imaging modes,
respectively. At the same time, six papers are found based on
the topic of our interest.

In [32], an overview of ‘“‘recent trends in computer
assisted diagnosis system for breast cancer diagnosis using
histopathological images” with 106 related works is pre-
sented. This review summarizes those works by four technical
steps, including image pre-processing, segmentation, feature
extraction and selection, as well as classification. However,
there are only 20 related works about BHIA with ANNSs in
this paper.
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The survey of [7] publishes a review about the classifi-
cation tasks of breast cancer on deep learning. The author
reviews five aspects, namely datasets used, various medical
imaging modalities exploited, image pre-processing tech-
niques, types of DNNs, and the performance metrics used
to construct and evaluate breast cancer classification models.
The paper cites 49 studies, of which 27 are about histopatho-
logical images, and the rest are about mammograms. In the
empirical evaluation, the analysis based on histopathological
images and mammograms is not distinguished, and the time
is only 2014-2018.

In our previous work [33], we propose a brief survey for
breast histopathology image analysis using classical and deep
neural networks. With more than 60 related works, referring
to classical ANNs, deep ANNs and methodology analysis.

Besides our previous brief review about BHIA with ANN
techniques, there is not a special one that focuses on the ANN
approaches in this field. Hence, in order to clarify the BHIA
work using ANN approaches in recent years, as of early 2020,
based on our previous work in [33], we summarize more
than 150 related works to prepare this comprehensive review.
We propose this paper with the following structure: In Sec. II,
the BHIA work using classical ANN methods are introduced;
in Sec. III, the state-of-the-art deep ANN methods are sum-
marized; Sec. IV, presents the method analysis; Sec. V con-
cludes this paper and discusses the future work.

Il. BHIA USING CLASSICAL ANNs

An overview of the BHIA work using classical ANN methods
is compiled in this section. Then, we analyze and summarize
the chapter.

A. RELATED WORKS

In this section, we divide related work into classification tasks
and segmentation tasks according to the motivation. Then,
we summarize the contributions, methods, and results of each

paper.

1) CLASSIFICATION TASKS

In [34], in order to evaluate two proposed texture features, a
third-party software (LNKnet package) containing a neural
network classifier is used. In the experiment, 536 samples
are used for classifier training and 526 samples are used for
testing. Finally, an accuracy of 90% is achieved.

In [35], Support Vector Machine (SVM), k-Nearest Neigh-
bor (KNN) and Probabilistic Neural Networks (PNN) classi-
fiers are combined with signal-to-noise ratio feature ranking,
sequential forward selection-based feature selection and prin-
cipal component analysis feature extraction to distinguish the
benign and malignant tumors of the breast. Finally, the best
overall accuracies for breast cancer diagnosis are achieved by
using an SVM classifier. The accuracy of 98.80% is achieved
on dataset 1 (692 specimens of fine-needle aspirates of breast
lumps), and 96.33% is achieved on dataset 2 (295 microar-
rays). Similarly, PNN achieves 97.23% and 93.39% overall
accuracy on dataset 1 and dataset 2, respectively.
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In [36], four types of H&E stained breast histopathology
images are classified, using eight features and a three-layer
forward/back ANN classifier. In the experiment, 1808 train-
ing samples, 387 validation samples, and 387 test samples are
tested, and an overall accuracy around 95% is achieved.

In [37]-[39], an automatic breast cancer classification
scheme based on histopathological images is proposed. First,
edge, texture and intensity features are extracted. Then,
based on each of the extracted features, an ANN classi-
fier is designed, respectively. Thirdly, an ensemble learning
approach, namely “random subspace ensemble”, is used
to select and aggregate these classifiers for even better
classification performance. Finally, a classification accuracy
of 95.22% is obtained on a public image dataset.

In [40], in order to classify low magnification (10x)
breast cancer histopathology images (H&E stained) into three
malignancy grades, 30 texture features are extracted first.
Then, feature selection is applied to find more effective infor-
mation from the extracted features. Thirdly, a PNN classifier
is built up based on the selected features. Lastly, 65 images
are tested in the experiment, and an overall accuracy around
87% is obtained.

In [41], morphological features are extracted to realize
the classification of cancerous and non-cancerous cells in
histopathological images, and 70 histopathological images
are randomly selected as the dataset. In the experiment, a
multi-layer perceptron, based on feed-forward artificial neu-
ral network modal, achieves 80% accuracy, 82.9% sensitivity
and 89.2% AUC, respectively.

2) SEGMENTATION TASKS

In [42], a competitive neural network is applied as a clustering
based method to segment breast cancer regions from needle
biopsy microscopic images. In this work, 21 shape, texture
and topological features are extracted. Then, the network
is used to cluster the images into different regions based
on these features. In the experiment, a dataset with over
500 images is tested, and an overall accuracy of around 98.7%
is achieved.

In [43], a supervised segmentation scheme using multi-
layer neural network and color active contour model to detect
breast cancer nuclei is proposed. In this work, 24 images are
used to test the method, and an average accuracy of 95.5% is
finally achieved. The flow chart is shown in FIGURE 4.

B. SUMMARY

According to the review above, we can see that the ANNs
used in the BHIA field around 2012 are classical neural
networks. The classical neural network has remarkable per-
formance in various fields, but it also has some limitations,
such as easier to overfit, slow training speed, and can only
set parameters according to experience. Due to the low com-
putational speed of the computer and the lack of sufficient
data to train the computer system at the time, it is impossible
to extract the effective ANN features from the raw data.
Therefore, most of the classical neural networks in the field
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TABLE 1. Histopathology and classical ANNs based breast cancer image analysis. Multi-Layer Perceptron (MLP), Probabilistic Neural Networks (PNN),
Multi-layer Neural Network (MNN), Accurcy (Acc), and Sensitivity (Sn). The second column “Detail”, shows the number of classes and segmentation

regions.
Aim Detial | Year |Reference Team Data Information ANN type Evaluation
3 |2006| [34] S. Petushi, et al. 24 slide images, Neural network Acc =90%
H&E staining
Dataset 1: 692 specimens of fine needle aspirates of
2 [2010 [35] A. Osareh, et al. breast lumps, PNN Acc =98.8%
Dataset 2: 295 microarrays
1080 images, Feed forward
4 |2011 [36] S. Singh, et al. H&E staining, back propagation Acc=95%
( 1080 for training, 387 for validation, 387 for test ) neural network
Classification 2011 [37] 361 images,
3 |2013] [38] Y. Zhang, et al. H&E staining, MLP Acc =95.22%
2013 [39] (760 x 570)
65 regions of interests
3 |2013] [40] C. Loukas, et al. H&E staining, PNN Acc=87%
(20 grade I, 20 grade II, 25 grade IIT )
70 images, Acc =80%,
2 (2017 [41] K. Anuranjeeta, et al. H&E staining, MLP Sn =82.9%,
( 35 non-cancerous and 35 cancerous ) AUC =89.2%
Nuclei|2013 [42] M. Kowal, et al. 500 cyto]og]cz?l :ﬂamples, Competitive neural network | Acc = 98.7%
H&E staining
Segmentation 24 microscopic images
Nuclei[2013|  [43] A. Mouelhi, et al. THC staining, MLP Acc=95.5%
(2048 x 1360)

Construction of the training
set in RGB and HSL spaces

Trained MNN - [re -
a Foel
) a, [zn ==
Pixel classification by =% Boundary contour detection ¢
FLD-MNN method Py Ty ¢ B9

colar active cantour models — ’ 3

L

wation results

Original breast cancer image

FIGURE 4. Flow chart of the proposed segmentation scheme for cancer
nuclei detection in [43]. The yellow contour represents the outline of the
identified positive nucleus, while the white contour represents the
outline of the identified negative nucleus. This figure corresponds to

Fig. 2 in the original paper.

of BHIA are used as classifiers. In the aspect of feature selec-
tion, most research works use texture features and morpho-
logical features for segmentation and classification. TABLE 1
summarizes the work of different teams using classical neural
networks in analyzing histopathological images of breast
cancer. Further details of the method analysis are discussed
in Sec. IV-A

Ill. BHIA USING DEEP NEURAL NETWORKS

In the analysis of breast histopathology images based on deep
neural networks, some publicly available datasets are fre-
quently applied. As shown in TABLE 2, we provide detailed
information and download links for the datasets mentioned in
our review.

A. RELATED WORKS

In this section, we group related work according to the applied
datasets. Then, we summarize the motivation, contribution,
methods, and results of each paper in chronological order.

VOLUME 8, 2020

1) “BreaKHis"” TASKS

In 2015, BreaKHis dataset was released in [51]. This dataset
is composed of 7,909 histopathological images from 82 clini-
cal breast cancer patients. All the histopathological images of
breast cancer are three channel RGB micrographs with a size
of 700x 460 pixels. Since objective lenses of different multi-
ples are used in collecting these histopathological images of
breast cancer, the entire dataset comprises four different sub-
datasets, namely 40x, 100x, 200x, and 400x. All of these
sub-datasets are grouped into benign and malignant tumors.
Based on this dataset, many related works are carried out.

Related Works of BreaKHis in 2016:

In [52], the classification of breast cancer histopathological
images by a Convolutional Neural Network (CNN) inde-
pendent of magnification is proposed. This paper uses two
different architectures: Single-task CNN is used to predict
malignancy, while multi-task CNN is used to predict both
malignancy and image magnification levels simultaneously.
FIGURE 5 is the overall process of this work. Finally,
the average recognition rate of the single-task CNN model
in the benign/malignant classification task is 83.25%. The
average recognition rate of the multi-task CNN model in
the benign/malignant classification task is 82.13% and the
average recognition rate in the magnification estimation task
is 80.10%.

Related Works of BreaKHis in 2017:

In [53]-[55], based on LeNet and AlexNet, deep ANN
methods are used to classify breast histopathology images in
the BreaKHis dataset. In the experiment, the dataset is divided
into training (70%) and testing (30%) sets, and an overall
accuracy around 85% is obtained.

In [56], a transfer learning work is carried out, where an
image is first represented by Fisher Vector (FV) encoding of
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TABLE 2. Popular publicly a

ilable breast histopathology image dataset. The fourth column “Detail”, shows the number of classes.

Datasets Year [Staining | Detail Magnification Dataset size Website
ICPR 2012 2012| H&E \ 40x 50 images corresponding to 50 high-power fields in 5 different biopsy slides| Closed
277,524 patches are from 162 IDC breast cancer histopathological slides
IDC 2014| H&E | \ 40x [44]
(198,738 IDC negative, 78,786 IDC positive)
BreaKHis 2015| H&E 4 140X, 100x, 200x,400x 7,909 histopathology images [45]
Bioimaging 2015 breast 249 images for training, 20 image for testing
2015| H&E 4 200 x [46]
histology classification challenge and an extended testset of 16 images
TUPAC 2016 2016| H&E \ 40x 500 for training and 321 for testing breast cancer histopathology WSIs [47]
Camelyon 2016 2016| H&E 2 40x,10x,1x 400 WSIs of lymph node [48]
Camelyon 2017 2017| H&E \ 40 x 200 WSIs of lymph node [49]
Part A: 400 microscopy images
BACH 2018 H&E 4 A [50]
Part B: 30 whole-slide images
S T ) In [61], a DCNN based whole-slide histopathology clas-
g images
p= e ) @k sifier is presented. First, the posterior estimate of each view
at a specific magnification is obtained from CNN at a spe-
cific magnification. Then the posterior estimate across ran-
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FIGURE 5. Schematic presentation for classifying breast histology images
in [52]. This figure corresponds to Fig. 3 in the original paper.

local features extracted using the CNN model pre-trained on
ImageNet. Then, a new adaptation layer is designed to fine-
tune the whole deep learning structure. Finally, an accuracy
around 87% is achieved on 30% testing images. Similarly,
in [57], another transfer learning strategy is applied to the
same task, and achieves an overall accuracy around 90%.

In [58], a deep learning structure with a single convolu-
tional layer is proposed for classification task, which obtains
an accuracy of 77.5%. In contrast, in [59], a deep learning
model with multi-layer CNNs is built up, and obtains an
accuracy up to 90%. Furthermore, in [60], a CNN model,
namely the “Class Structure-based Deep CNN”’ (CSDCNN),
is proposed to represent the spatial information within a
deep CNN.

90936

dom multi-views at multi-magnification is voting filtered
to provide a slide level diagnosis. Finally, the experiment
uses a patient-level 5-folded cross-validation and achieves an
average accuracy of 94.67%, sensitivity of 96%, specificity
of 92% and F-score of 96.24%.

In [62], a new method for breast cancer histopathological
image classification based on DCNNs is proposed, called
the BICNN model, for two-class classification problems on
pathological images. The BICNN has more depth, more width
and more complex architecture, which has little parameters
and reliable performance. In the experiment, the average
recognition rate for patient level is achieved as 97%.

Related Works of BreaKHis in 2018:

In [63], different ResNet structures are tested and com-
pared for this task. The ResNet-V1-152 model obtains
the best performance with an overall accuracy of 99.6%
after 3000 epochs. Similarly, in [64], the effectiveness of
three well recognized pre-trained transfer learning models
(VGG-16, VGG-19, and ResNet-50 networks) are compared
in this task. In the experiment, the VGG-16 with a logistic
regression classifier obtains the best performance of 92.6%
accuracy. Furthermore, in [65], Inception-V 1, Inception-V2,
and ResNet-V1-50 based transfer learning methods are
compared, and ResNet-V1-50 obtains the highest accuracy
of 95%.

In [66], two restricted Boltzmann machine and back prop-
agation based DCNN models are proposed. Using these two
models, the best average accuracy of 87.75% is obtained.
Furthermore, in [67], based on CNN and Recurrent Neu-
ral Network (RNN) algorithms, a combined deep learning
structure is introduced. In this work, unsupervised learning
algorithms are first used to segment different tissues into
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X. Zhou et al.: Comprehensive Review for Breast Histopathology Image Analysis

IEEE Access

different regions. Then, based on the segmentation result,
the proposed deep learning approach is applied to the final
classification task. Lastly, an accuracy of 91% is achieved.
In addition, in the work of [68], five DCNN models are built
up, considering handcraft features and deep learning features
jointly. In the experiment, the second model obtains the best
performance of 92.19% accuracy.

In [69], a classification approach via deep active learn-
ing and confidence boosting is introduced, and achieves an
overall accuracy of around 90%. Similarly, in [70], an imple-
mented in-house CNN model is proposed, which combines
the advantages of both machine learning features and classi-
cal color features.

In [71], a DenseNet based CNN model is proposed for
classification, including four dense blocks and three transi-
tion layers. In the experiment, a 95.4% accuracy is achieved.
Similarly, in [72], a ResNet based 152 layer deep learn-
ing model is built and achieves a correct classification rate
of 98.77%.

In [73], CNNs are directly compared to classification based
on hand-crafted features in binary classification (benign
and malignant) and multi-class classification (benign and
malignant sub-classes ) of breast cancer histological images.
The results show that CNNs outperformed the hand-crafted
feature based classifier, where the accuracy reach between
96.15% to 98.33% for the binary classification and 83.31%
to 88.23% for the multi-class classification.

In [74], a multiple instance learning framework for CNN
is proposed. A new pooling layer is proposed that would help
to gather most of the informative features from the patches
that make up the whole slide, without inter-patch overlap or
global slide coverage. In the experiment, at 40x, 100x, 200 x
and 400x magnifications, the accuracy is 89.52%, 89.06%,
88.84% and 87.67%, respectively.

In [75], a new model for automatic classification of breast
cancer tissue in histological images by DCNN is proposed,
which does not consider the magnification factor of the
image. The experimental results on BreaKHis achieved an
average accuracy of 85.3%.

In [76], three dimensionality reduction strategies, includ-
ing PCA, Gaussian Random Projection (GRP) and Cor-
relation based Feature Selection (CBFS), are applied to
CNN-based features to classify histological images of
breast cancer. In the experiment, the BreaKHis dataset,
Epistroma dataset, and the Multi-class Kather’s dataset are
tested. Finally, BreaKHis dataset at 40x, 100x, 200x and
400x magnifications, the accuracy is 87.0%, 85.2%, 85.0%
and 81.3%, respectively. On the Epistroma dataset, the accu-
racy is 94.7%. On Multi-class Kather’s dataset, the accuracy
of 84.0% is obtained.

Related Works of BreaKHis in 2019:

In [77], a novel framework based on the hybrid attention
mechanism is proposed to classify breast cancer histopathol-
ogy images. This framework could automatically find useful
regions from raw images, and thus does not have to resize
the raw images for the network to prevent information loss.
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At four different magnifications, the average accuracy is
about 96% while only 15% of raw pixels are used.

In [78], a transfer learning and supervised classifier based
prediction model for breast cancer is proposed. As can be
seen from FIGURE 6, four pre-trained ConvNets are used for
transfer learning to extract image features, and then PCA is
applied to the feature vectors to reduce feature dimension.
Finally, SVM, KNN, and Logistic regression are respectively
used to classify images. In the experiment, the best results are
obtained on 40 x . The ResNet-50 with SVM classifier has the
maximum accuracy of 96.24% and the best recall value of
100%. On the other hand, with Inception ResNet-V2, SVM
gives the highest precision of 96.55%.

ConvNets|

as Feature Dimension
feature :> o :> reduction by

extractor PCA

SVM

2 ResNet50
100x 2% 400x
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Inception 0 K-NN
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FIGURE 6. Overall structure of the proposed model in [78]. This figure
corresponds to Fig. 4.6 in the original paper.

In [79], Inception-V3 and Inception-ResNet-V2 are trained
using transfer learning techniques for binary and multi-class
classification of breast cancer histopathological images. The
results show that the Inception-ResNet-V2 network achieves
the best results at 40x magnification: In the binary classifi-
cation task, the image level accuracy is 97.90%, and in the
multi-classification task, the image level accuracy is 92.07%.

In [80], a breast cancer histopathology image classifi-
cation network (BHCNet) is designed. BHCNet includes
one plain convolutional layer, three SE-ResNet [81] blocks,
and one fully connected layer. Each SE-ResNet block is
stacked by N small SE-ResNet modules, which is denoted
as BHCNet-N. In the results, the BHCNet-3 achieves the
accuracy between 98.87% and 99.34% for the binary clas-
sification and the BHCNet-6 achieves the accuracy between
90.66% and 93.81% for the multi-class classification.

In [82], deep learning, transfer learning and Generative
Antagonistic Network (GAN) are combined to improve the
accuracy of breast cancer classification on a limited training
dataset. First, the fine-tuned VGG-16 and VGG-19 are used
to extract features and sent to CNN for classification. In addi-
tion, StyleGAN [83] and Pix2Pix [84], two GAN models, are
applied to generate 4,800 and 2,912 fake images, respectively.
In the experiment, the proposed method is evaluated on the
BreaKHis dataset and two generated datasets from BreaKHis
by GAN. The experiments show that GAN images created
much noise and affected classification accuracy. Finally, the
best result is obtained in BreaKHis dataset. The accuracy
is 98.1% in the binary classification.
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In [85], a method of classifying breast cancer histopatho-
logic images based on double transfer learning is proposed.
This method can be divided into two steps. In the first step,
as shown in FIGURE 7, in order to improve the quality of
the dataset before training the classifier using the BreaKHis
dataset, an SVM is trained to classify relevant and irrelevant
images in histopathological images, and then it is used as
a filter to eliminate irrelevant images from the BreaKHis
dataset. In the second step, as shown in FIGURE 8, another
SVM is trained to classify benign and malignant. Both steps
use transfer learning (Inception-v3 CNN pre-trained with
ImageNet dataset). The best classification accuracy can be
obtained by Inception-v3 + filter (Inception-v3 is used to
extract features, and filtering refers to the removal of irrel-
evant images) method at 100x and 200x magnifications
of 91% and 89%, respectively.

e Pre-vained
O InceptionV3

Training !

oosw
: Filter :

ImageNet InceptionV3

Irrelevant

Irrelevant

Pre-trained Relevant

InceptionV3

FIGURE 7. The idea of building the filter in [85]. PFTAS - Parameter Free
Threshold Adjacency Statistics (hand-crafted features), CRC - colorectal
cancer dataset, TR - training set, VL - validation set. This figure
corresponds to Fig. 1 in the original paper.

Patching Feature SVM
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FIGURE 8. An overview of building the classifier in [85]: Patching, feature
extraction (PFTAS or Inception-v3 + PCA), filtering by SVM, patient-wise
splitting of relevant patches into training (TR) and test (TS) using the
pre-defined folds, patch classification and aggregation using majority
vote or sum rule. This figure corresponds to Fig. 5 in the original paper.
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Related Works of BreaKHis in 2020:

In [86], a novel feature extraction method is proposed for
the classification of breast histopathological images. First, the
images are divided into small pieces that are not overlapped.
Then, pre-trained CNNs (10 models in total) are used for
feature extraction. Finally, an SVM is applied as a classifier.
In the experiment, the best patient-level accuracy is obtained
by the AlexNet-SVM model. At40x, 100x, 200x and 400 x
magnifications, the accuracy is 89.46%, 92.61%, 93.92%,
and 89.78%, respectively.

In [87], a ResHist model is designed, which is a residual
learning-based 152-layered CNN to classify the histopatho-
logical images of breast cancer. In the experiment, histopatho-
logical images are first augmented and the ResHist model is
trained end-to-end on the augmented dataset in a supervised
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learning manner. Finally, images are classified into benign
and malignant categories by using the trained ResHist model.
The result shows that the ResHist model achieves a best
accuracy of 92.52% and a Fl-score of 93.45%. In addi-
tion, in order to study the discrimination ability of deep
features of ResHist model, the extracted feature vectors are
fed into KNN, random forest [88], quadratic discriminant
analysis, and SVM classifiers. Among them, when the deep
features are fed back to the SVM classifier, the best accuracy
of 92.46% is achieved.

2) “CAMELYON" TASKS

“Camelyon Grand Challenge” is a task to evaluate compu-
tational systems for the automated detection of metastatic
breast cancer in WSIs of sentinel lymph node biopsies.

Related Works of Camelyon 2016:

In [89], a DCNN is built for this task, and achieves an AUC
of 97%. In [90], a GoogLeNet based deep learning method is
introduced, where 270 images are used for training, and 130
are used for testing. Lastly, an AUC of 92.5% is obtained.
With the same experimental setting, in [91], a recurrent visual
attention model is proposed, which includes three primary
components composed of dense or convolutional layers to
describe the information flow between components within
one time-step. Finally, a 96% AUC is achieved.

In [92], a fast and dense screening framework (ScanNet)
for detecting metastatic breast cancer from WSIs is proposed.
ScanNet is implemented based on the VGG-16 network by
changing the last three fully connected layers to fully con-
volutional layers. In the result, Free Response Operating
Characteristic (FROC) of 0.8533 and AUC of 98.75% are
obtained.

In [93], Multiple Magnification Feature Embedding
(MMEFE) is introduced, which is an approach using transfer
learning to detect breast cancer from digital pathology images
without network training. The main idea of the MMFE
method is to simulate the daily diagnosis process of a medical
doctor. First, a low-resolution image is observed to identify
suspicious areas. Then, it is switched to a high-resolution
image for further confirmation. Experiments show that this
approach can greatly improve the training and prediction
speed of the model without reducing the performance of the
model.

In [94], a summary of the Camelyon 2016 shows that:
25 of 32 submitted algorithms are deep learning based
methods, and 19 top-performing algorithms are all DCNN
approaches.

Related Works of Camelyon 2017:

In the Camelyon 2017 [95], in order to detect four types of
breast cancer from the WSIs, a deep learning architecture is
proposed with limited computational resources. In this work,
two CNNss are applied in a cascade, followed by local maxima
extraction and SVM classification of local maxima regions.
In the experiment, 300 images are used for training, 200 are
used for validation, 500 are for test, and an accuracy of 92%
is finally achieved.
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3) “BACH"” TASKS

The Grand Challenge on BreAst Cancer Histology
images (BACH) is co-organized with the 15th Interna-
tional Conference on Image Analysis and Recognition
(ICIAR 2018) [10]. There are two goals in this challenge.
Part A of the challenge consists of automatically classifying
H&E stained breast histology microscopy images in four
classes: Normal, benign, in-situ carcinoma and invasive car-
cinoma. The data in part A is composed of 400 H&E stained
breast histology images. All images are of equal dimensions
(2048 x 1536 pixels). Part B consists of performing pixel-
wise labeling of WSIs in the same four classes as Part A. The
data in part B is composed of 20 WSIs of very large size. Each
WSI can have multiple normal, benign, in-situ carcinoma and
invasive carcinoma regions.

In order to classify four types of breast cancer histopathol-
ogy images, an Inception-V3 based deep learning model is
introduced in [96]. In the experiment, 300 images are used
for training, and 100 are used for testing. Finally, an average
accuracy of 85% is achieved.

A two-stage CNN model is also proposed in [97], where
the first stage is for pixel-level classification, and the second
stage is for image-level classification. In the experiment, an
overall accuracy around 94% is obtained. Similarly, in [98],
a two-stage classification approach is proposed. In the first
stage, an AlexNet based feature extraction is applied. In the
second stage, three different classifiers are used. In the exper-
iment, an SVM classifier achieves the best result (99.84%
accuracy). Similarly, in [99], the AlexNet is also applied as a
basic model to build a hierarchical classification model, and
an accuracy of 95% is obtained.

In [100], a transfer learning-based approach for the clas-
sification of breast cancer histology images is presented.
Inception-V3 and ResNet-50 CNNs, both pre-trained on
the ImageNet database, are used. In the experiment, the
Inception-V3 network achieves an average test accuracy
of 97.08% for four classes, marginally outperforming the
ResNet-50 network, which achieves an average accuracy
of 96.66%.

In [101], an Inception ResNet-V2 is proposed to classify
histological images of breast cancer through transfer learning,
fine-tuning, and data augmentation. Out of 100 images in
each class, 70, 20, and 10 images are randomly selected for
training, testing, and validation. The final results show that
the accuracy of the test set is 90% and the loss is 0.59,
while the accuracy of the validation set is 93% and the loss
is 0.23.

In [102], a deep learning approach for analyzing breast his-
tology images at both micro-level (patch-based image clas-
sification) and macro-level (WSI segmentation) is proposed.
The approach contains two networks, as shown in FIGURE 9,
which share the architecture and weights, especially the
encoder in the network, to improve the utility of the trained
network and available dataset. In the result, for patch clas-
sification, 71% and 65% accuracy are obtained on the train-
ing and test datasets, respectively. In terms of segmentation,
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FIGURE 9. Overall structure of the proposed model in [102].

A classification network consists of an encoder and two processing
layers. A segmentation network contains an encoder and decoder. This
figure corresponds to Fig. 1 in the original paper.

an overall score of 0.7343 and 0.4945 are obtained on the
training and test data sets, respectively.

In [103], approaches for the classification of microscopic
images as well as the segmentation of WSIs are presented.
In both parts of the challenge, data preparation, scale selec-
tion, and augmentation are firstly carried out. In part B of
the challenge, additional data are added. Finally, network
training is conducted. The densenet-161 architecture with
pre-training on ImageNet is selected and repeatedly trained
in the expansion training set. The results show that a 96.24%
accuracy is achieved.

In [104], a method for classification of breast cancer
histopathology images based on deep learning is proposed.
The effects of various preprocessing methods are compared,
and the classification results of CNN and CNN with SVM
are also compared. Finally, an accuracy of 83% is obtained in
part A task.

In [105], a context-aware network for automated classi-
fication of breast cancer histopathological images is pro-
posed. The method mainly includes two steps: First, the
activation feature of a trained ResNet is used to classify the
non-overlapping patches. Then, an SVM classifier is trained
to classify the patches of overlapping blocks. Finally, the
majority-voting method is used for image-wise classification.
As aresult, an average accuracy of 83% is obtained.

In [106], six different feature extractors are compared:
Hand-crafted features, ResNet-18, ResNeXt, NASNet-A,
ResNet-152 and VGG-16. The result shows that the pre-
trained deep learning network on ImageNet has better perfor-
mance than the popular hand-crafted features used for breast
cancer histology images. Finally, the integration method
based on random forest dissimilarity is used to combine hand-
crafted features with five deep learning feature groups, and an
average accuracy of 87.1% is obtained.

In [107], a deep learning framework for multi-class
breast cancer image classification is presented. The frame-
work of the approach is illustrated in FIGURE 10. First,
Inception-V3 is used for patch-wise classification. Then, the
patch-wise predictions are passed through an ensemble fusion
framework involving majority voting, a Gradient Boost-
ing Machine (GBM), and logistic regression to obtain the
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FIGURE 10. An overview of the proposed framework in [107]. This figure
corresponds to Fig. 2 in the original paper.

image-wise prediction. Finally, an average accuracy of 87.5%
is obtained.

In [108], a new hybrid convolutional and recurrent deep
neural network for breast cancer histopathological image
classification is proposed. First, a fine-tuned Inception-V3 is
used for feature extraction for each image patch. Then, the
feature vectors are input into a 4-layer Bidirectional Long
Short-Term Memory network (BLSTM) [109] for feature
fusion. Finally, a complete image-wise classification is car-
ried out. In the experiment, an average accuracy of 91.3%
is obtained in image-wise. Notably, a new dataset containing
3,771 histopathological images of breast cancer is published
in this paper. It covers as many different subclasses span-
ning different age groups as possible. The dataset is publicly
available at [110].

In [111], a patch-based classifier (PBC) using CNN for
automatic classification of histopathological breast images is
proposed. The proposed classification system works in two
different modes: One patch in one decision (OPOD) and all
patches in one decision (APOD). The flowchart of OPOD
technology for patch classification is shown in FIGURE 11.

Patch Extraction and Class Label

Augmentation

Inputimages

. Training

"
Patch Based

Classifier (PBC)

% d [

Test Image (d) Patch wise classification
(e) extracted and \ (g)

augmented "

One Patch in One Decision (OPOD)

FIGURE 11. Overall structure of OPOD technology in [111]. It is worth
noting that (g) Patch label prediction by the trained patch based classifier
(PBC) where k € {0, 1, 2, 3}. This figure corresponds to Fig. 7 in the
original paper.
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OPOD is mainly responsible for predicting the class labels
of each patch extracted from the pre-processed histopatho-
logical images. As shown in FIGURE 12, APOD technology
classifies images by majority voting for each patch predicted
by OPOD technology. In the test set, APOD technology
achieves accuracy of 90% in 4-class classification and 92.5%
in 2-class classification.

Label O
Label 2

Majority
Voting

Label 3

Image wise classification
(b)
All Patches in One Decision (APOD)

FIGURE 12. Overall structure of the APOD technology in [111]. (a) Patch
labels of an image predicted by OPOD technique. (b) Image label
prediction based on patch label majority voting by proposed APOD
technique. This figure corresponds to Fig. 8 in the original paper.

In [112], a method for the diagnosis of breast cancer
histopathology images based on transfer learning and
global pooling is proposed. Five DCNN architectures
are used as feature extractors, namely Inception-V3,
InceptionResNet-V2, Xception, VGG-16, and VGG-19.
The experimental results show that the network structure
based on the pre-trained Xception model is better than all
other DCNN structures in average classification accuracy,
reaching 92.50%.

In [113], a DCNN model with Haar wavelet decomposed
images is introduced to classify breast histopathological
images. Haar wavelet transform is used to decompose the
input high-resolution histopathological image to a small
size. In this way, the convolution time of deep CNNs and
computational resources can be greatly reduced without
any performance downgrade. Meanwhile, this downsampling
process also eliminates the need to extract small patches,
which helps to improve the accuracy. In the experiment,
BACH datasets and BreaKHis datasets are tested. Finally,
98.2% and 96.85% accuracies are obtained on the BACH
datasets for both 4-class and 2-class and BreaKHis datasets
for multi-class, respectively.

4) "“ICPR 2012" TASKS
In the 2012 International Conference on Pattern Recognition
(ICPR), a “mitotic figure recognition contest” is released.
The dataset is made up of 50 High Power Fields (HPF)
coming from 5 different slides scanned by three different
types of equipment at 40x magnification. An HPF has a
size of 512um x 512um. These 50 HPFs contain a total of
326 mitotic cells on images of both scanners and 322 mitotic
cells on the multispectral microscope [114].

In [115], [116], manually designed color, texture, and
shape features are jointly used with the machine learning

VOLUME 8, 2020



X. Zhou et al.: Comprehensive Review for Breast Histopathology Image Analysis

IEEE Access

features extracted by a multi-layer CNN. Finally, this method
obtains an Fl-scores up to 65.9% on color scanners and
58.9% on multi-spectral scanners. Similarly, in the work
of [117], handcrafted features and DCNN features are used
in an ensemble learning process together, and an F1-score of
73.5% is obtained.

In [118], in order to detect the mitosis in a breast histology
image, a deep max-pooling CNN is built up, which is trained
to classify each pixel in the image into a labeled region. In the
experiment, 26 images are used for training, 9 for validation,
and 15 for test. Finally, an Fl-score of 78.2% is achieved.
Furthermore, a similar method is used in the work of [119],
and an F1-score of 61.1% is obtained.

In [120], a novel deep cascade convolutional neural net-
work (CasCNN) is designed to detect mitosis. CasCNN con-
sists of two parts. First, using full CNN, a rough retrieval
model is proposed to identify and locate mitotic candidates
while maintaining high sensitivity. Then, a fine recognition
model based on cross-domain knowledge transfer is proposed
to further single out mitoses from the rough model. In the
experiment, both the ICPR12 dataset and ICPR14 dataset are
used. On the ICPR12 dataset, the precision of 80.4%, recall
of 72.2% and F1-score of 78.8% are obtained. On the ICPR 14
dataset, the precision of 46%, recall of 50.7% and F1-score
of 48.2% are obtained.

In [114], a summary of the ICPR 2012 contest shows that
17 teams submit their results and the IDSIA team gets the
best performance. In the work of the IDSIA team, a CNN
is trained through ground truth mitosis provided in training
dataset, and then the CNN is used to calculate a map of
mitosis probabilities on the whole image. Finally, achieving
a recall of 70%, the accuracy of 89%, and the F-measure
of 78%.

5) “TCUG16" TASKS

The Tumor Proliferation Assessment Challenge 2016
(TUPAC16) is the first challenge to predict tumor prolif-
eration scores from WSIs. This challenge is organized in
the context of the MICCAI 2016 conference in Athens,
Greece. The goal of the challenge is to assess algorithms
that predict the tumor proliferation scores from the WSIs.
There are two tasks in this challenge. Task 1 is to predict the
proliferation score based on mitosis counting. Task 2 is about
the prediction of proliferation score based on molecular data.
The participants can submit their results for either or both of
the tasks.

In[121], atransfer learning system based DCNN algorithm
is suggested for the segmentation and detection of mitoses
in breast cancer histopathological images. This system uses
two CNNs. A pre-trained CNN is used for segmentation, and
Hybrid-CNN is employed for mitotic classification. Finally,
in the task of mitosis detection, an F-measure of 71.3% with
76% area under the precision-recall curve is achieved.

In [122], a novel technique for the detection of mitosis by
virtue of semantic segmentation is presented, called SegMi-
tos. At the same time, a novel concentric label and concentric
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loss are proposed, which can train a dense prediction model
with weak annotation. The idea of the experiment is as fol-
lows. First, the preparation of data and to produce concen-
tric labels. Then to train the SegMitos model. Finally, the
trained model is deployed to the testing images of the mitosis
dataset. As a result, four datasets (ie: 2012 ICPR MITO-
SIS dataset, MITOS-ATYPIA-14 dataset, AMIDA13 dataset,
and TUPACI16 dataset) are utilized to validate the proposed
method. Finally, on the TUPAC16 dataset, an F-score of
66.9% is obtained.

In [123], a summary of the TCUG16 shows that: 12 teams
submit results for the first task, and 6 teams submit results
for the second task. With the exception of one team, all
teams use DCNNSs as part of the processing pipeline. For the
first task, the best performing method achieves a quadratic-
weighted Cohen’s kappa score of k = 0.567, 95% CI [0.464,
0.671] between the predicted scores and the ground truth.
For the second task, the predictions of the top method have
a Spearman’s correlation coefficient of r = 0.617, 95% CI
[0.581, 0.651] with the ground truth.

6) “BIOIMAGING 2015 BREAST HISTOLOGY
CLASSIFICATION CHALLENGE" TASKS

In 2015, the Bioimaging 2015 Breast Histology Classifica-
tion Challenge dataset was released in [124]. This dataset is
composed of high-resolution (2048 x 1536 pixels) and H&E
stained breast cancer histology images. All the images are
digitized with the same acquisition conditions, with the mag-
nification of 200 x and pixel size of 0.42um x 0.42pum. There
are four different types of histological images of breast cancer
in the dataset, namely normal tissue, benign lesion, in-sifu
carcinoma and invasive carcinoma. A total of 285 images
are included in the dataset. Of these, 249 images are used
for the training set and 36 images are used for the test set.
The pictures in the test set are divided into two groups,
namely the initial group (20 images with less classification
difficulty) and the extended group (16 images with more
difficult classification).

In [124], a DCNN model is introduced to classify four
breast cancer histopathology types in the whole slide image.
In the experiment, 249 images are used for training, 20 images
are used for testing, and accuracy of 77.8% is obtained.

In [125], in order to classify different breast cancer types
in H&E stained histopathology images, pre-trained ResNet-
50 and ResNet-101 networks are applied with a fine-tuned
process and a fusion strategy. In the experiment, the bioimag-
ing 2015 breast histology classification challenge datasets
and BACH datasets are tested. Finally, 97.22% and 88.5%
accuracies are obtained on the Bioimaging 2015 Breast His-
tology Classification Challenge dataset and BACH dataset,
respectively.

In [126], an extended version of the Bioimaging 2015
Breast Histology Classification Challenge dataset is used.
This dataset is the same as the original data set in terms of
image type, acquisition conditions, and size. The total number
of images in this dataset is 400. The pre-trained ResNet-50,

90941



IEEE Access

X. Zhou et al.: Comprehensive Review for Breast Histopathology Image Analysis

Inception-V3, and VGG-16 networks are fused into a deep
learning structure and achieve a mean accuracy of 87.2%.

In [127], an approach based on deep learning for multi-
classification of breast histological images is proposed. The
framework of the approach is illustrated in FIGURE 13.
Firstly, two patches of different sizes are extracted from the
histological images of breast cancer by sliding window mech-
anism, including cell-level and tissue-level features. In order
to solve the problem of insufficient diagnostic information
or label information error in some sampling patches, a batch
screening method based on CNN and k-means is proposed to
select more discriminant patches. Then, ResNet-50 is used as
the feature extractor to extract features from the patch and
P-norm pooling is used to obtain the final image features.
Finally, an SVM is used for the final image classification. The
result shows that a 95% accuracy is achieved on the initial
test set.
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FIGURE 13. A schematic illustration of the proposed framework in [127].
This figure corresponds to Fig. 3 in the original paper.

In [128], a method for breast cancer classification with the
Inception Recurrent Residual Convolutional Neural Network
(IRRCNN) model is proposed. The IRRCNN approach is
applied for breast cancer classification on two publicly avail-
able datasets including the Bioimaging 2015 Breast Histol-
ogy Classification Challenge dataset and BreaKHis. On the
Bioimaging 2015 Breast Histology Classification Challenge
dataset, test accuracy of 99.05% and 98.59% is obtained
for the binary and multi-class classifications, respectively.
On the BreaKHis dataset, the accuracy of 97.95 + 1.07%
(image-level) and 97.65 + 1.20% (patient-level) is obtained
for the binary classification, respectively. In addition, the
accuracy of 97.57 £ 0.89% (image-level) and 96.84 +1.13%
(patient-level) is obtained for the multi-class classification,
respectively.

In [129], transfer learning based on AlexNet, GoogleNet,
and ResNet is used to classify the histopathological images
of breast cancer. The result shows that ResNet has the highest
accuracy, achieving 83.60% and 85.0% accuracy at the patch
level and image level, respectively.
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7) “IDC" TASKS

Invasive Ductal Carcinoma (IDC) dataset is a publicly avail-
able dataset that was first introduced by Cruz-Roa et al. [130].
The dataset contains digital breast cancer histopathological
slides from 162 women with IDC. All slides are digitized
via a whole-slide scanner at 40x magnification. The dataset
contains 277,524 patches of size 50 x 50 pixels (198,738 IDC
negative and 78,786 IDC positive).

In [130], a deep learning approach for automatic detection
and visual analysis of IDC tissue regions in WSIs of breast
cancer is presented. The framework of the approach is illus-
trated in FIGURE 14. First, grid-sampling image patches of
all the regions containing tissue in WSI. Then, CNN is trained
from the sampled patch to predict the probability of patch
belonging to IDC. Finally, a probability map is built on the
WSI, highlighting patches that have IDC with a probability
greater than 0.29. In the experiment, 162 original slices are
divided into 3 different subsets: 84 of them are used for
training, 29 are used as the validation set and 49 are used
for testing. As a result, an F-measure of 71.80% and an
accuracy of 84.23% are obtained for automatic detection of
IDC regions in WSL
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FIGURE 14. Overall framework for automated detection of IDC in WSI
using CNN in [130]. This figure corresponds to Fig. 1 in the original paper.

In[131], anew CNN-based model for identifying IDC cells
in histopathological slides is proposed. This model, which
is derived from the Inception architecture, proposes a multi-
level batch normalization module between each convolution
step. In the experiment, 94,543 patches are used for training,
31,514 for validation, and 151,465 for testing. Finally, a bal-
anced accuracy of 89% and an F1-score of 90% are obtained.

8) OTHER TASKS

a: CLASSIFICATION

In [132], a Principal Component Analysis Network (PCANet)
is introduced to classify Ductal Carcinoma In-Situ (DCIS)
and Usual Ductal Hyperplasia (UDH) images. In this work,
a dataset with 20 DCIS and 31 UDH images are tested,
where 10,000 patches are randomly sampled from the training
set to learn the models. Finally, an accuracy around 79% is
achieved.

In [133], aclassification method based on CNN is proposed
for the WSIs of breast tissue. In this work, two CNNs are
trained. CNN-I is used to classify the WSl into the epithelium,
stroma, and fat. CNN-II operates on the stromal regions
output by classification of CNN-I, and then classifies the stro-
mal regions as normal stroma or cancer-associated stroma.
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The dataset contains 646 sections of breast tissue stained
with H&E. In the experiment, 270 images are considered for
training, 80 copies are for validation, and 296 are for test-
ing. Finally, an area under Receiver-Operating Characteristic
(ROC) of 0.921 is obtained.

In [134], to distinguish four breast cancer types in
histopathological images, a deep learning method is intro-
duced with hierarchical loss and global pooling. In this work,
VGG-16 and VGG-19 networks are applied as the basic deep
learning structures, and a dataset with 400 images are tested.
In the experiment, 280 images are used for training, 60 images
are for validation and 60 are for testing. Finally, an average
accuracy of around 92% is obtained.

In [135], a work is carried out to classify five diagnostic
breast cancer styles in the whole histopathological image.
First, a saliency detector performs multi-scale localization of
diagnostically relevant regions of interest in the images. Then,
a CNN classifies image patches as five types of carcinoma.
Lastly, the saliency and classification maps are fused for
final categorization. In the experiment, 240 images are used
to examine the effectiveness of the proposed method, and
a55% accuracy is finally achieved. The highlight of this work
is that 45 pathologists take part in the final evaluation of
the test images, and an average accuracy of around 65% is
obtained. Hence, the performance of the proposed method
is comparable to the performance of the pathologists that
practice breast pathology in their daily routines.

In [136], an image analysis method is developed that uses
deep learning to classify tumor grade, ER status, PAMS50
intrinsic subtype, histological subtype, and recurrence risk
score (ROR-PT). In the experiment, 571 examples of breast
tumors are used for training and 288 are for testing. Finally,
it can be distinguished from low-intermediate and high tumor
grades (82% accuracy), ER status (84% accuracy), Base-
like and non-base-like (77% accuracy), Ductal vs. lobules
(94% accuracy), and high vs. low-medium ROR-PT score
(75% accuracy).

In [137], pre-trained CNN architectures (GooglLeNet,
VGGNet, and ResNet) are used to extract features from
images, and these features are fed to a fully connected layer.
The average pool classification is used to classify malignant
cells and benign cells. Two breast microscopic image datasets
are used: The first is a standard benchmark dataset [51] and
the other is developed locally at LRH hospital in Peshawar,
Pakistan. In the experiment, 6000 images are considered to
train the architecture and 2000 images are used for test-
ing. Finally, an average classification accuracy of 97.53% is
achieved.

In [138], Human epidermal growth factor receptor
2 (HER2) Scoring Contest is introduced. HER2 is an impor-
tant prognostic factor for breast cancer, so the task of auto-
matic HER2 scoring has great clinical significance. The paper
shows that a total of 18 submissions from 14 teams are
received for evaluation. Among the comprehensive results of
all submitted automated methods, 8 of the top 10 teams used
CNN-based learning methods. It can be seen that CNN-based
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learning methods play an important role in HER2 automatic
scoring tasks.

b: SEGMENTATION

In [139], a CNN based model with three hidden layers is built
to segment the breast cancer cell nucleus in histopathological
images. In this work, 58 H&E stained images are tested, and
overall accuracy of around 95% is achieved on both RGB and
Lab color spaces.

In [140], a fast scanning deep convolutional neural net-
work (fCNN) is proposed for pixel-wise region segmentation.
In the work, 92 images are used, which are selected from
20 patients in The Cancer Genome Atlas (TCGA) breast can-
cer dataset. 75 images are used for training and 17 images are
used for testing. In the experiment, it takes only 2.3 seconds
to segment an image with size 1000 x 1000 pixels. Also, a
mean precision of 91%, a mean recall of 89%, and a mean
F1-score of 85% are achieved.

n [141], a DCNN based feature learning is presented
to automatically segment or classify epithelial and stromal
regions in histopathological images. In this work, colorec-
tal cancer dataset and breast cancer dataset are used sepa-
rately. The breast cancer dataset consists of 157 H&E stained
images. The data is acquired from two independent cohorts:
Netherlands Cancer Institute (NKI: 106) and Vancouver Gen-
eral Hospital (VGH: 51). In the experiment, a superpixel-
based scheme is used to over-segment the image into atomic
regions. Then, the atomic regions are adjusted to square
images of fixed size, and then they are fed back to the DCNN
for feature learning. Finally, F-score of 85.21%, 89.10% and
accuracy of 84.34%, 88.34% are obtained on NKI and VGH,
respectively.

In [142], an automatic nuclei segmentation technique using
DCNN is introduced. FIGURE 15 depicts a flowchart for the
proposed framework. In the training stage, a DCNN model is
trained and a kernel shape library based on a selection-based
dictionary learning algorithm is obtained. In the test stage,
the CNN model is applied to the images to generate probabil-
ity maps, and then iterative region merging is performed to
initialize the shape of each kernel. Then, the proposed kernel

Training Stage
> Selection-based
Convolutional Neural Sl mEry Ll

!p"!!. ] i
& => Network Learning l
d 3

Deep CNN Shape Dictionary

T e

; szzzzzzzzIz zzzzzzzzzszzzzzzozozzozzzoffsszzzzzIooIc
New Image [
. 2 Shape
ﬂ Initialization

Training Shapes

Testing Stage

Shape Final
Inference Segmentatlon
." 2 %,
Shape 4

Deformation

FIGURE 15. The architecture of segmentation framework in [142]. This
figure corresponds to Fig. 2 in the original paper.
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segmentation algorithm uses the local repulsive deformation
model for shape deformation, and uses the shape priors of the
sparse shape model for shape inference. Finally, an accuracy
of 92% is achieved on the breast cancer dataset.

In [143], an automated nuclei segmentation method is pro-
posed. FIGURE 16 is the overall process of nuclei segmenta-
tion. This process can be divided into three main stages. First,
the Sparse Reconstruction (SR) method is used to roughly
remove the background and highlight the nuclei of the patho-
logical image. Then the gradient descent technique is used
to train the DCN cascade of the multi-layer convolutional
network in order to effectively segment the nucleus from
the background. At this stage, the patch and its correspond-
ing label are randomly extracted from pathological images
and input into the training network. Finally, morphological
operation and prior knowledge are introduced to improve
segmentation performance and reduce errors. In this work, the
pixel segmentation accuracy of 92.45% and the F1-measure
of 83.93% are obtained.
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FIGURE 16. An overview of the method proposed in [143]. This figure
corresponds to Fig. 1 in the original paper.

In [144], a method of nuclear segmentation in histopatho-
logical images based on deep learning and mathematical
morphology is proposed. In addition, an image dataset con-
taining 33 images with 2754 annotated cells is provided. This
dataset can be obtained at [145]. In this work, a set of manual
annotation images is trained on a deep neural network and
the posterior probability map is processed to achieve joint
segmentation of the nuclei. Finally, the accuracy of 95.4%,
recall of 77.3%, precision of 86.4% and F1-score of 80.5%
are achieved.

In [146], an advanced supervised full CNN method for
nuclear separation in histopathological images is proposed.
First, a histopathological image is normalized to the same
color space. Then a complete image is split into overlap-
ping small blocks. The proposed nuclear boundary model
is used to detect the nucleus and boundary on each plaque,
and all the predictions are seamlessly recombined. Finally,
fast and parameterless post-processing is applied to generate
the kernel segmentation results. In the experiment, multiple
organ H&E stained image dataset (MOD) [147], breast cancer
histopathology image dataset (BCD) and breast cancer image
dataset (BNS) [144] are used. Finally, an image with a size of
1000 x 1000 pixels can be segmented in less than 5 seconds.
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In [148], an automatic end-to-end framework using deep
neural networks for tissue-level segmentation is proposed.
In this work, a new dataset of WSIs with different subtypes
of breast cancer, consisting of 11 WSIs fully annotated,
is tested. Finally, the results of U-Net, SegNet, FCN, and
DeepLab are evaluated by using pixel-by-pixel indexes, with
the Dice Coefficient (DC) values of 0.86, 0.87, 0.86, and 0.86,
respectively.

In [149], an automatic WSIs segmentation method based
on DCNN is proposed. The method is effective regardless
of the texture features in malignant tumors. In addition, the
framework is available online and can be used as a computer
assisted diagnosis tool by pathologists. In this work, training
and testing is performed using 12 breast cancer WSIs stained
with H&E. Finally, the estimated segmentation accuracy
5 95.62%.

c: DETECTION

In [150], a deep learning strategy named ‘‘Stacked Sparse
Auto-Encoder” (SSAE) is presented to detect the nuclei
on high-resolution breast cancer images. In the experiment,
SSAE is combined with a softmax classifier (SMC) for nuclei
detection. Through the sliding window scheme, randomly
selected image patches from histopathological images are fed
to the trained SSAE & SMC model to detect the presence
of nuclei. If a nucleus is found, a green dot is placed in
the center of the corresponding image patch. The qualitative
detection results of SSAE & SMC for a WSI are shown
in FIGURE 17. As a result, an F-measure of 84.49% and a
precision of 88.84% are obtained.

@) ()

FIGURE 17. An example of nuclei detection results in [150]. (a) is a
whole-slide breast histopathological image, (b) is the nuclei detection
results. The green, yellow, and red dots represent the true positive (TP),
false positive (FP), and false negative (FN) with respective to groundtruth,
respectively. This figure corresponds to Fig. 5 in the original paper.

In [151], a DCNN model is proposed to detect breast
cancer metastasis in sentinel lymph nodes. In the experiment,
100 examples are used for training, 50 for validation, and 75
for testing. Finally, a sensitivity of 99.9% is achieved.

In [152], a novel accurate and high-throughput method
(HASHI) for automatic invasive breast cancer detection in
WSIs is presented. The test is conducted in three different
data queues involving 500 cases. Finally, the comparison
results of intensive sampling (6 million samples in 24 hours)
and less samples (2000 samples in 1 minute) are obtained, an
average DC reaches 76% on the independent test dataset.
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In [153], handcrafted features are combined with high-
level features based on deep learning, which are directly fed
back to the first fully connected layer for mitotic detection.
In this work, three datasets are used, including the MITOS-
ATYPIA-14 dataset, ICPR-2012 dataset, and AMIDA-13
dataset. Finally, a precision of 92%, a recall of 88% and an
F-score of 90% are obtained.

In [154], a DCNN architecture is introduced to detect
mitosis from histopathological images of breast cancer cells.
The data set of MITOS atypia is tested. The result shows that
the deeper CNN layer has better the performance of breast
cancer image detection. In the 17 layer CNN architecture,
84.49% accuracy, 80.55% TPR, 11.66% FNR and 15.50%
loss are achieved on average.

In [155], CNN based deep transfer learning is proposed
to achieve automatic mitosis detection in breast histopathol-
ogy images. A pre-trained VGGNet is transformed by cou-
pling random forest classifier with the initial fully connected
layers to extract discriminant features from nuclei patches
and to precisely prognosticate the class label of cell nuclei.
Finally, average F-score of 88.6% and 89.66% are obtained
on MITOS-ATYPIA-14 dataset and RCC dataset (a clinical
dataset from Regional Cancer Centre, Thiruvananthapuram,
India), respectively.

B. SUMMARY

From the survey above, we can find that deep ANN has been
increasingly used in the field of BHIA since 2012. Among
them, the method based on CNN is dominant. The main
reasons for this development trend are as follows: (a) The
emergence of high-performance GPU computing makes it
possible to train networks with more layers. (b) More and
more institutions have released datasets of breast histopatho-
logical images, to a certain extent alleviating the lack of
labeled public datasets. The large increase in training data
reduces the risk of over-fitting. (c) Compared with tradi-
tional image classification methods, deep learning can auto-
matically learn features from data, avoiding the complexity
and limitations of artificial design and feature extraction in
traditional algorithms. (d) CNN has been widely applied
in natural language processing, object recognition, image
classification, and recognition, laying a foundation for the
application of CNN to histopathological images of breast
cancer. The work of different teams in the analysis of breast
histopathological images using deep neural networks is sum-
marized in TABLE 3. Further details of the method analysis
are discussed in Sec. IV-B and Sec. I'V-C.

IV. METHODOLOGY ANALYSIS

An overview of the deeper analysis of classical ANNs and
deep ANNS is compiled in this section. Meanwhile, the out-
standing methods in different tasks are analyzed.

A. ANALYSIS OF CLASSICAL ANN METHODS
According to the survey on classical ANNs, the Multi-Layer
Perceptron (MLP) and Probabilistic Neural Network (PNN)
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are used more frequently in the analysis of breast histopatho-
logical images, as shown in FIGURE 18. Since the datasets
employed in each work are different, the evaluation of each
method cannot be evaluated longitudinally. Therefore, it is
analyzed from the perspective of the neural network itself.
MLP is known as a feed-forward neural network, which
can solve the problem of linear inseparability and can be
trained to accurately generalize when presented with new,
unseen data [156]. However, the connection mode between its
hidden layers is “fully connected”, which causes too many
training parameters. Therefore, It makes it difficult to have
too many layers to solve more complex problems. At the same
time, the learning speed of MLP is slow and it is easy to
fall into local extremes. The papers involved in this article
are [37], [38], [39], [41]. PNN is also a kind of feed-forward
neural network. Compared with the MLP, the training speed
of the PNN is faster and the PNN is usually more accurate
than the MLP. The disadvantage is that it is slower than the
MLP in classifying new cases and requires additional storage
space to store the model. The papers involved in this article
are [35], [40].

-
I ANN type : Popular method The way of Practical task
! \ application
l
]
1 [
! Classical : ML
] ] =) I AS.?_ mm) | Classification
| ANNs ! classifier
! | PNN
1
1
! 1

_________

FIGURE 18. The popular methods in classical ANN for BHIA tasks.

B. ANALYSIS OF DEEP ANN METHODS

In deep ANNS, transfer learning strategies are applied more
frequently in the classification of breast histopathological
images in recent four years. The papers involved in this
article are [56], [57], [64], [65], [78], [82], [85], [86], [100],
[106], [108], [112], [121], [125], [126], [129], [137], [155].
Transfer learning is a method used to transfer knowledge
acquired from one task to resolve another [157]. As shown
in in FIGURE 19, there are two main approaches for apply-
ing transfer learning: (1) Fine-tuning the parameters in
the pre-training network according to the required tasks

The way of Practical task
application
: ANN type : Popular method Fine-tuning )
1 [ the mm)  Segmentation
I arameters
Deep ) Transfer p

' learning \

1

1

1

1

- As feature

- Classification
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FIGURE 19. The popular methods in deep ANN for BHIA tasks.
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Detection (D). The third column “Detail”, shows the number of classes, where “mul” stands for multi-class.
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Segmentation (S), Detection (D). The third column “Detail”, shows the number of classes, where “mul” stands for multi-class.
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TABLE 3c. (Continued.) Summary of reviewed works of deep neural network methods for BHIA tasks. Sensitivity (Sn), Specificity (Sp), Area Under the

Curve (AUC), Precision (P), Recall (R), Accurcy (Acc), Average Accurcy (A-Acc), Dice Coefficient (DC), Average Dice Coefficient (A-DC), Classification (C),

Segmentation (S), Detection (D). The third column “Detail”, shows the number of classes, where “mul” stands for multi-class.
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TABLE 3d. (Continued.) Summary of reviewed works of deep neural network methods for BHIA tasks. Sensitivity (Sn), Specificity (Sp), Area Under the
Curve (AUC), Precision (P), Recall (R), Accurcy (Acc), Average Accurcy (A-Acc), Dice Coefficient (DC), Average Dice Coefficient (A-DC), Classification (C),

Segmentation (S), Detection (D). The third column “Detail”, shows the number of classes, where “mul” stands for multi-class.
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(e.g. [57], [65], [100], [121], [125], [129]). (2) Using a
pre-trained network as a feature extractor, and then using
these features to train a new classifier (e.g. [56], [64], [78],
[82], [85], [86], [106], [108], [112], [126], [137], [155]).
In the transfer learning, the VGG16 [158], VGG19, and
ResNet50 [159] are very popular pre-trained CNN models
due to their more in-depth architectures [64]. The main rea-
sons are as follows: First, due to the inherent complexity
and diversity of breast tissue pathological images, it is not
easy to label the images, and the cost of labeling data by
medical experts is very expensive. Therefore, there are few
publicly available large-scale labeled image datasets. How-
ever, transfer learning can overcome the problem of small
datasets effectively [160]. Secondly, in the classification task
of breast histopathology images, most of the pre-trained mod-
els are from the ImageNet Large Scale Visual Recognition
Challenge [161]. They achieve stable performance on spe-
cific tasks and can be safely used for transfer learning in
breast cancer classification tasks. Finally, the transfer learn-
ing process are helpful to improve accuracy or reduce training
time [162], which is an important reason for its popularity.

C. ANALYSIS OF THE OUTSTANDING METHODS

IN EACH REVIEWED TASK

In different review tasks, there are some excellent methods
proposed. For example, in the BreakHis dataset task, the
best results are obtained in [80], where a small SE-ResNet
model based on the combination of residual module and
Squeeze-and-Excitation block is designed, which can effec-
tively reduce model training parameters. Furthermore, a new
learning rate scheduler named Gaussian error scheduler is
proposed, which can get excellent performance without com-
plicatedly fine-tuning the learning rate. In the Camelyon 2016
dataset task, the best results are obtained in [92]. In order to
detect metastatic breast cancer from WSIs, a fast and dense
scanning framework is proposed, referred to as ScanNet.
ScanNet is implemented based on the VGG-16 network by
changing the last three fully connected layers to fully con-
volutional layers. In the end, faster performance on tumor
localization tasks is achieved and even surpasses human
performance on WSI classification tasks. In the ICPR 2012
dataset task, the best results are obtained in [120], where a
novel deep cascaded convolutional neural network (CasCNN)
is designed to detect mitosis. The advantage of the CasCNN is
that it can significantly reduce the detection time and achieve
satisfactory accuracy. In the Bioimaging 2015 Breast His-
tology Classification Challenge dataset task, the best results
are obtained in [128], where a method for breast cancer
classification with the Inception Recurrent Residual Con-
volutional Neural Network (IRRCNN) model is proposed.
The IRRCNN [163], [164] is one of the improved hybrid
DCNN architectures based on inception [165], residual net-
works [159], and the RCNN architectures [166]. Compared
with them, the main advantage of this model is that better
recognition performance can be achieved using the same
number or fewer network parameters.
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D. THE POTENTIAL OF THE METHODS MENTIONED

IN THIS REVIEW IN OTHER FIELDS

In addition, this review discussed the deep ANNs method
not only can be applied in the field of breast histopatho-
logical image analysis, but also in the field of other closed
microscopic image analysis, such as: Cervical histopatholog-
ical analysis [167], [168], [169], cervical cytopathological
analysis [170], [171], [172], stem cell analysis [173], [174],
microbiological image analysis [175], [176], [177], sperm
quality analysis [178], [179], [178], web-based platform
for computer assisted diagnosis [180], [181], and rock
microstructural analysis [182], [183]. No matter from the
aspects of image pre-processing, feature extraction and selec-
tion, segmentation, and classification, or from the aspects of
deep ANN model design and proposed framework idea, the
methods of deep ANN summarized in this review can bring a
new perspective to the research in other fields.

V. CONCLUSION AND FUTURE WORK

In this review, the methods of breast cancer histopathological
image analysis based on the artificial neural network are
comprehensively summarized, which are grouped into the
classical artificial neural network and deep neural network
methods. In addition, when summarizing the deep neural
network method, the related work is grouped according to
the applied datasets. In each dataset, the related works are
arranged in ascending chronological order. From classical
review works in Sec. IT and subsequent analysis in Sec. II-A, it
is found that the ANNs used in the BHIA field around 2012
are classical neural networks. In the analysis of histopatho-
logical images of breast cancer, MLP and PNN are the most
applied classical ANNs. However, they are only used as
classifiers. In feature extraction, most of the research is used
for texture features and morphological features. Among deep
learning based methods whose related works and correspond-
ing analysis are discussed in Sec. III-A and Sec. III-B, deep
learning technology, especially deep convolutional neural
networks, has made excellent achievements in the classifi-
cation and segmentation of breast histopathological images,
which will help patients with early detection, diagnosis, and
treatment of breast cancer. According to the survey, transfer
learning methods based on CNN are the most frequently
used. But from the review works in Sec. IV-C, improved and
novel network frameworks tend to perform better in different
datasets.

In the future, there is still room for improvement. First,
researchers can combine the characteristics of pathological
images to develop a new network model to analyze the
histopathological images of breast cancer. Secondly, there is
still a lack of large-scale, comprehensive, and fully-labeled
WSI datasets. Therefore, the establishment of large public
datasets is of great value for future research. Thirdly, the
classification system of breast cancer is complex, and there
are many subtypes under each lesion type. Studying pat-
terns correlated to molecular subtype, treatment response,
and prognosis to refine the diagnosis in precision medicine
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remains a significant challenge [12]. Finally, GANs are cur-
rently used to generate datasets. However, the advantages of
microscopic image analysis have not been explored, which
will be a research direction with great potential and value in
the future.
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