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ABSTRACT In Device-Free Localization (DFL) schemes, most researches assume that the targets are
stationary with fixed gestures and motions. However, objects always change their gestures in practice,
undoubtedly influencing the localization accuracy. To solve the issue, we propose a new algorithm named
Ges-DFL under the Compressive Sensing (CS) framework, which considers the time-varying target gestures
in the DFL scheme. Firstly, leaning that the matrixes referring to different target gestures cannot be achieved,
we transfer them to a fixed sensing matrix by the transferring method. Secondly, we build the localization
scheme as an MMV recovery issue and exploit the block sparsity property of transferred location vectors
to improve the localization accuracy. Thirdly, the new algorithm Ges-DFL scheme is designed under the
framework of the variational Bayesian inference to reconstruct transferred location vectors. Simulations
show that the proposed algorithm performs well both in localization accuracy and robustness.

INDEX TERMS Multi-target localization, device free localization, compressive sensing, variational EM
algorithm, block sparsity.

I. INTRODUCTION
Wireless Sensor Networks (WSN) [1], [2] have been widely
deployed in our daily lives, significantly improving the qual-
ity of life. As one of the essential techniques in WSN, target
localization has caught a lot of interest. The device-based
localization scheme requires that the target is capable of
producing and transmitting signals, which has been the most
popular localization scheme [3]. However, targets cannot be
equipped with devices to send signals in some cases, in which
the device-based localization scheme is invalid [4]. For exam-
ple, in smart homes, we would like to detect the station of
the elderly and the kids, but the devices may affect their daily
activities and may be lost by the kids, making the localization
assignment interrupted [5]. In the defense field, the hostile
equipment and army would not send us helpful localiza-
tion information actively [6]. In the social security domain,
the intrudermakes great efforts to escape from being detected,
undoubtedly not providing the helpful localization signal [7].
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Coming to this, the Device-Free Localization (DFL) scheme,
requiring no devices to be attached to targets, is becoming
more and more popular [8].

DFL scheme is firstly proposed in work [9], where Your-
self et al. build the DFL scene. It states that once the targets
enter into the detecting area, they will predictively influence
the wireless signal, rendering a relationship between the
changed signal and the target position. Following the idea,
several couples of transceivers and receivers, constituting the
wireless links, are deployed to achieve the changed signals
caused by targets [10]. Generally, a large number of wireless
links are commanded to ensure localization accuracy. How-
ever, devices are always battery-powered.Morewireless links
will undoubtedly result in more energy costs, more extensive
networks, and broader communication bands, much limiting
the development of the DFL scheme [11].

Compressive Sensing (CS) [12] can reconstruct the sparse
signal with much fewer samplings compared with the tradi-
tional Nyquist sampling theory, introducing a novel idea for
the DFL scheme. In paper [13], Wang applied this theory
in DFL, significantly reducing the required wireless links
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as well as guaranteeing the localization performance. Then
many types of researches are involved in the CS-based DFL
scheme. Thework in paper [14] exploits the dictionary refine-
ment issue, which can well solve the multiple target localiza-
tion issue. Paper [15] proposes a dictionary building approach
that can build the dictionary in the new field using only
a few samplings, which saves much human effort involved
in building the dictionary. Paper [11] considers the energy
efficiency issue and proposes a quantized scheme in DFL,
which can guarantee the target localization only by a few
bits. Moreover, many papers exploit the target gesture identi-
fication, which highlights the influence of target gestures in
DFL. Paper [16] propose an algorithm named WiFall, which
can detect the fall of the older people in smart house. And
some papers investigate the target gestures, which requires
more accurate information when compared with the target
localization scheme [17], [18].

However, seldom of the existing researches take considera-
tions of the different target gestures and motions in DFL, and
targets are always defaulted to be at fixed station. In other
words, the dictionary is built under the fixed station of the
targets, and then the target is assumed to be with the same
gestures all the time [19]. Undoubtedly, this type of assump-
tion will be invalid in practice. As we all know, some targets,
like human beings, animals, may change their gestures all the
time even when they are at a fixed location, undoubtedly can
influence the wireless signal differently. For the other kind of
category, like cars, tables, their different directions can also
change the wireless signal accordingly. All in all, targets are
always moving and will not be on the stationary way, mak-
ing the assumption that targets are with fixed gestures less
effective. Coming to this, we find it imperative to consider
the target gestures in DFL.

Some issues should be noticed when solving the question.
On the one hand, target with different gestures may affect the
wireless signal uniquely, and building all types of dictionaries
to suit the target gestures may be a massive waste of human
effort. On the other hand, the target gestures can not be known
ahead of time, making it impossible to select an applicable
dictionary to avoid the dictionary mismatch. Thus we pro-
pose a novel CS-based DFL scheme named Ges-DFL. The
new algorithm do not require to build all types of dictionar-
ies under the different gestures, and only one dictionary is
enough to achieve the target position. The contribution of the
algorithm is as follows:
• We consider the influence of the target gestures and
motions in DFL scheme for the first time, which can
greatly improves the localization accuracy.

• Realizing that the dictionary according to different target
gestures and motions can not be obtained, we apply
the transferring method to guarantee the localization
performance only by one dictionary.

• We build the DFL scheme as a novel Multiple Measure-
ment Vectors (MMV) recovery issue and apply the block
sparse vector recovery concept to exploit the relationship
of the transferred location vectors.

• A new algorithm named Ges-DFL is proposed to recov-
ery the lotion vectors under the variational Bayesian
inference framework, which takes significant consider-
ation of the correlation among the location vectors.

The rest of the passage is organized as follows: Section II
introduces the related works. Section III describes the
designed block sparsity DFL scheme, and the newly Ges-
DFL recovery algorithm is shown in section IV. Then the
performance of the proposed scheme is tested in Section V
and section VI gives the conclusion of this research.

II. RELATED WORK
A. THE DFL THEORY
Several types of signals can be as the localization information
to achieve the target positions in the DFL scheme. The image
signal is the most popular signal applied in visual localization
and tracking [20], [21]. However, the massage can be dramat-
ically interrupted in the smog, dark and covered scene, as well
as raising the risk of privacy disclosure. The infrared signal
is applied under the condition that the devices can transmit
and receive the infrared signals, requiring extra devices [22].
Paper [23] exploits the Channel Station Information (CSI) in
DFL, which is more robust and can provide more localization
information to guarantee the localization accuracy. However,
this type of signal requires the wireless links to be under the
framework of Orthogonal Frequency Division Multiplexing
(OFDM), limiting the extensive application. Received Signal
Strength (RSS) signal, easily to be obtained by almost all the
devices and performs well even in the adverse scene, is the
most suitable signal in the DFL scheme.

As we know, targets inside the detecting area of wire-
less links may reflect, shelf, and absorb the wireless signal,
undoubtedly leading to the RSS changes. The wireless links
are employed to collect the information. They are made up
of pairs of transceivers and receivers, where the receivers can
measure the RSS values transmitted from transceivers. And
then, the signal changes can be calculated by comparing the
RSS values of target outside and inside the affected area of
wireless links.

The two main ways to achieve the RSS changes are the
experiment-based [24] and model-based methods, respec-
tively. The experiment-based approach builds the dictionary
by testing. All the wireless links are ordered to measure the
signal changeswhile fixing the target move through thewhole
grid points one by one, which can extremely approximate the
environment. However, the sensing dictionary is required to
be updated when coming to a new scene, abusing a large
number of human effort. Model-based methods are set to
approximate the signal changes caused by target entering
into the location area using the model, which can save the
human effort. Many existing types of researches involve in
the DFL model designing. The binary model in paper [25]
can provide rough information that weather the target is
inside the effected domain of wireless link or not. Paper [26]
approximates the affected area of a wireless link as an ellipse,
which includes the distance information between the target

88952 VOLUME 8, 2020



Y. Guo et al.: DFL Scheme With Time-Varying Gestures

FIGURE 1. The illustration of the CS-based DFL scheme.

and the wireless links. Saddle Surface model can accurately
describe the signal value caused by the target at different
lotions, which can also provide distance information between
the target and the transceivers/receivers when compared with
the ellipse model [27]. Thus, we apply the Saddle Model in
our DFL scheme to approximate the localization information.

B. THE CS-BASED DFL SCHEME
The CS-based DFL scheme demands fewer measurements to
guarantee the reconstruction efficiency when compared with
the traditional one. For that CS theory operates the discrete
data, the localization area is divided into N grids as Figure1.
K (K � N ) targets are randomly at the grid points, whose
positions can be represented as a N dimensions sparse sig-
nal. To collect RSS changes caused by targets, M (M � N )
wireless links are deployed around the location area. Then the
sensing equation could be obtained as follows:

y = Aw+ n. (1)

Location vector w: it is s a K sparse vector with N dimen-
sions. Once wi = 1, there is one target locating at the grid
point i; otherwise, there are no targets. Note that the grid
number N is always large enough, making it reasonable that
targets are assumed to be exactly at the grid points.
Sensing matrix A: it represents the signal changes caused by
the targets at different grid points, in which the element Amn
represents the signal changes of wireless linkm influenced by
target located at grid point n.
Measurement vector y: it represents the measurements of
the wireless links caused by all the target located at the
detecting area.
Measurement noise n: it is applied to approximate the noise.

Note that the measurement caused by multiple targets is
not the direct accumulation of the signal changes caused
by the single target, for that multiple targets may affect the
same wireless link. However, the affected area of the wireless
link is always limited and the target always independent
with each other, making the probability that different targets
being located at the detecting area of the same wireless link
low. Following the most popular researches [13], [14], [28],
we operate the target as independent options and assume that
they do not affect the same wireless links.

III. THE GES-DFL MODEL
In the DFL scheme, targets do not change their coordinates
suddenly, so we can collect the samplings in a short time
slots with the same target positions. However, targets are

not stationary. Kids, older adults, and pets are all possible to
appear, and they may jump, sit down, stand on, fall, and so
on, inevitably leading to different signal changes. The relating
equations with L measurements are as follows:

[
y(1), y(2), · · · , y(L)

]
=

[
A(1)w,A(2)w, · · · ,A(L)w

]
, (2)

where A(l) and y(l) are the sensing matrix and the mea-
surement vector for l-th sampling, respectively. For the l-th
sampling, the optimization is as follows:

P1 : _w = argmin
w

∣∣∣y(l) − A(l)w∣∣∣ . (3)

In practice, the target gestures are time-varying, requiring
the relating sensing matrixes A(l). 1) when K target owns L
different gestures, LK different dictionaries are required to
be built, which is a large amount of energy waste. 2) The
target gestures change unpredictably and can not be detected
before localization, making it impossible to choose the cor-
rect dictionary. 3) In most cases, we care more about the
target locations but not the gestures. And the target gestures
identification is much more difficult to be achieved. 4) The
above issue is not the traditionally Multiple Measurement
Vectors (MMV) [29] question, making it hard to find the
proper result.

The target gestures may change, but the relationship
among them always can be exploited. Following the idea in
paper [30], we transfer the sensing matrixes A(l) to a fixed
dictionary, and the optimal goal for the single sampling is as:

P2 : _w = argmin
w

∣∣∣y(l) − A (w− A−1r (l))∣∣∣ , (4)

where r (l) is a constant vector and A is the fixed sens-
ing matrix. Then the location vector can be transferred as
w(l) = w − A−1r (l). Compared with the original location
vector w that is exactly sparse, the transferred one is an
compressive one, in which only a few number of elements
are large and the others are small enough to be neglected.
Moreover, the index of the largest elements are the grid
number of the target located at.

Then we transfer the above DFL issue as follows:[
y(1), y(2), · · · , y(L)

]
= A

[
w(1),w(2), · · · ,w(L)

]
, (5)

where y(l) is the measurement vector based on the same target
locations of the l-th sampling.

For above MMV recovery issue, we have transferred the
relationship among different sensing matrixes into the cor-
relation of the transferred location vectors. To improve the
reconstruction accuracy, we exploit the block sparsity of the
location vectors. As is shown in Figure 2, L location vectors
are transferred as w̃ and then the localization equation can be
represented as:

ỹ = Ãw̃+ ñ, (6)
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FIGURE 2. The illustration of DFL scheme with block sparsity.

where ỹ, Ã, w̃ and ñ are the vectored measurement vector,
sensing matrix, Block sparsity vector and noise vector.
Block sparsity vector w̃: the vector is made up by L trans-
ferred location vectors W =

[
w(1),w(2), · · · ,w(L)

]
and:

w̃ = vec
(
W T

)
, (7)

where we can see that w̃ holds the block sparsity prop-
erty of N blocks with a length of L. As the transferred
location vectos, there is a correlation among i-th block

w̃i =
[
w(1)i ,w(2)i , · · · ,w(L)i

]T
for they represent the same

grid points. So this type of representation can well exploit
the relationship of different location vectors.
Transferred sensingmatrix Ã: thematrix can be represented
as Ã = A ⊗ IL , where ⊗ is the Kronecker product and
IL is the unite matrix with the size of L × L. Let Ã =[
Ã1, Ã2, · · · , ÃN

]
, then the n− th column is as follows:

Ãn =


A (:, n) 0 · · · 0

0 A (:, n) · · · 0
...

...
. . .

...

0 0 · · · A (:, n)


ML×L

,

n = (1, 2, · · · ,N ) (8)

where A (:, n) is the n-th column of the matrix A. The trans-
ferred sensing matrix is only composed by the fixed dictio-
nary, which is a replacement for the matrixes referring to
different gestures.
transferred measurement vector ỹ: contains all the mea-
surement vectors received in L intervals and:

ỹ = vec
([
y(1), y(2), · · · y(L)

])
. (9)

noise vector ñ: is utilized to approximate the noise and the
most widely utilized one is the Gaussian white noise.

Above all, we research the different target motions and
gestures in DFL, which can greatly approximate the real-
world scene. Considering that the sensing matrixes for dif-
ferent gestures cannot be obtained, we apply the transferring
method to builds the model only based on a fixed sensing
matrix. And the issue is transferred as a block sparse vector

recovery problem in order to exploit the correlation of the
transferred location vectors.

IV. THE DETAILS OF THE GES-DFL
RECOVERY ALGORITHM
In this section, we analyze the block sparsity and propose
the novel Ges-DFL recovery algorithm to obtain the location
vector.

A. THE FRAMEWORK OF VARIATIONAL EM ALGORITHM
The proposed Ges-DFL recovery algorithm is based on the
variational Expect-Mean (EM) algorithm [31]. To better
understand the framework of the variational EM algorithm,
we firstly introduce the most popular Max-Likelihood (ML)
estimation:

θ̃ = argmax
θ̃

(p (z; θ)) , (10)

where z and θ are the observed variable and deterministic
parameter, respectively, whose probabilistic relationship is
described as p (x; θ). And for p (x; θ) here, θ is defined as
random variable but not parameter. It is difficult or even
impossible to compute p (x; θ) in practical scenes, thus the
hidden variables x is introduced. Then, the log-likelihood
function could be as:

ln p (z; θ) =
∫
q (x) ln p (z; θ) dx = F (q, θ)+ KL (q ‖p )

(11)

in which:

F (q, θ) =
∫
q (x) ln

(
p (z, x; θ)
q (x)

)
dx, (12)

and

KL (q ‖p ) = −
∫
q (x) ln

(
p (x| z; θ)
q (x)

)
dx, (13)

where q (x) can be any probability density function. For
KL (q ‖p ), it is defined as the Kullback-Leibler divergence
for p (x| y; θ) and q (x). Finding that KL (q ‖p ) ≥ 0, we can
obtain the following inequation:

ln p (z; θ) ≥ F (q, θ) , (14)

which indicates that F (q, θ) is the lower bound of ln p (z; θ)
in case that KL (q ‖p ) = 0.

The EM algorithm can be obtained by the iteration of
maximizing the lower bound F (q, θ) and the log-likelihood
function:

E − step : Evaluate p
(
x| z; θold

)
M − step : Find θnew = argmax

θ
Q
(
θ, θold

)
, (15)

where θold and θnew are the current and the estimated param-
eters, respectively. And the lower bound Q

(
θ, θold

)
can be

obtained by substituting q (x) = p
(
x| z; θold

)
to Equation 13:

Q
(
θ, θold

)
=

∫
p
(
x| z; θold

)
ln p (z, x; θ)dx

= 〈ln p (y, x; θ)〉p( x|z;θold), (16)
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FIGURE 3. Graphical model of the Ges-DFL under variable Bayesian
framework.

in which 〈ln p (z, x; θ)〉p( x|z;θold) presents the expecta-
tion of ln p (y, x; θ) regarding to p

(
x| y; θold

)
. However,

p
(
x| z; θold

)
is too intractable to obtain in many interesting

problems, which can be bypassed by providing an approxi-
mation for q (x):

q (x) =
∏
i

qi (xi) =
∏
i

qi, (17)

where x is partitioned as different partitions xi. Then the
optimal posterior distribution in E-step can be calculated as:

ln qj = 〈ln p (z, x; θ)〉i 6=j. (18)

In summary, the posterior distribution and hidden vari-
ables could be updated iteratively through the E-step and the
M-step. Based on the above EM framework, wewill introduce
our proposed Ges-DFL recovery algorithm in the following
section.

B. THE GES-DFL RECOVERY ALGORITHM
To well analyse the Ges-DFL model, we illustrate variables
of the DFL model in Figure 3. The transferred location vec-
tors are all converted from the original location vector w,
which composes of block sparse vectors w̃. Thus in order
to exploit the block sparse of w̃, a two-layer hierarchical
prior distribution is firstly imposed on w, which allows more
flexibility when exploiting the characteristics compared with
the stationary Gaussian distribution:

p (w|α) =
N∏
i=1

N
(
wi| 0, α

−1
i

)
=

1

(2π)N/2|B|−1/2
exp

(
−
1
2
wTBw

)
, (19)

where αi is the inverse variance of wi and B =

diag
(
α−11 , α−12 , · · · , α−1N

)
is the relating covariance matrix.

And for α = [α1, α2 · · · , αN ], a Gamma prior distribution is
imposed on it as follows:

p (α; a, b) =
N∏
i=1

Gamma (αi| a, b)

=

N∏
i=1

1∫
∞

0 ua−1e−udu
baαia−1e−bαi , (20)

in which a and b are the parameters set to constrain α,
respectively.

As the i-th block of w̃, all elements within w̃i are transferred
from wi and share the similar localization information. Thus
to exploit the relationship among them, Ri is introduced:

p (w̃i;αi,Ri)=N
(
w̃i| 0, αi−1Ri

)
=

1

(2π)L/2
∣∣αi−1Ri∣∣1/2 exp

(
−
1
2
w̃Ti αiRi

−1w̃i

)
,

(21)

where Ri is set as a positive definite matrix to capture the
correlation structure of w̃i, which exploit the relationship
among the i-th element of the different transferred vectors.
Then, the posterior distribution for the block sparse vector w̃
can be calculated as:

p
(
w̃; {αi,Ri}N1

)
= N

(
w̃| 0, 6̃

)
, (22)

with 6̃ as its covariance matrix:

6̃ =


α1
−1R1 0 · · · 0
0 α2

−1R2 · · · 0
...

...
. . .

...

0 0 · · · αN
−1RN

 . (23)

For the noise vector ñ, the posterior distribution is particu-
larly imposed as follows:

p ( ñ|β) = N ( ñ| 0, βI ), (24)

in which β is the variance and I is the unite matrix with size
LM × LM , respectively. In order to better approximate the
varying environment, the parameter β in the noise model is
assumed to be the Gamma distribution with the parameters c
and d :

p (β; c, d) = Gamma (β| c, d)

=
1∫

∞

0 uc−1e−udu
bcαic−1e−dβ ., (25)

Then we can obtain the following likelihood function
regarding to the transferred sensing equation:

p ( ỹ| w̃, β) =
(
2πβ−1

)−ML/2
exp

(
−
β

2

∥∥∥ỹ− Ãw̃∥∥∥2
2

)
(26)

Under the Bayesian framework, the distribution of
p ( w̃, α, β| ỹ) should be calculated:

p ( w̃, α, β| ỹ) =
p ( ỹ| w̃, β) p

(
w̃; {αi,Bi}Ni=1

)
p (α) p (β)

p (ỹ)
(27)

in which the probability distribution in the numerator can be
calculated according to the Ges-DFL model. And for p (ỹ) in
the numerator, it is as:

p (ỹ)=
∫
p ( ỹ| w̃, β) p

(
w̃; {αi,Ri}Ni=1

)
p (α) p (β) dw̃dαdβ,

(28)
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which could not be analytically calculated, thus variational
inference is required. According to above analyse, the block
sparse vector w̃ and the noise vector ñ, including the depend-
ing parameters shown in Figure3, are all obviously indepen-
dent. Then Equation(27) can be calculated as:

p ( w̃, α, β| ỹ; a, b, c, d) ≈ q (w̃, α, β) = q (w̃) q (α) q (β) .

(29)

Considering that the block sparse vector w̃ is deter-
mined not only by α but also the correlation matrix
Ri (i = 1, 2, · · · ,N ), two steps are required to compute the
posterior: the designing of the relation matrix {Ri}Ni=1 and the
updating of the variables w̃, α and β.
Updating of w̃

ln q (w̃)

= 〈ln p (w̃, α, β)〉q(α)q(β) + C

=

〈
ln p ( ỹ| w̃, β) p

(
w̃i; {αi,Ri}N1

)〉
q(α)q(β)

+ C

=

〈
−
β

2

(
ỹ− Ãw̃

)T (
ỹ− Ãw̃

)
−

1
2
w̃T6−1w̃

〉
q(α)q(β)

+ C

= −
〈β〉

2

(
w̃T ÃT Ãw̃− 2w̃T ÃT ỹ

)
−

1
2
w̃T

〈
6−1

〉
w̃+ C

= −
1
2
w̃T

(
〈β〉 ÃT Ã+6−1

)
w̃+ 〈β〉 w̃T ÃT ỹ+ C, (30)

where we can see that the block sparse vector holds the
Gaussian posterior distribution:

q (w̃) = N ( w̃|µ,6) , (31)

with

µ = 〈β〉6w̃T ÃT (32)

6 =
(
〈β〉 ÃT Ã+ 6̃−1

)−1
. (33)

in which the inverse operation in Equation(33) is always
complicated. To reduce the high calculate complexity, we cal-
culate the covariance matrix 6 as follows:

6 = 6̃−1 − 6̃−1ÃTE−1Ã6̃−1, (34)

with

E = 〈β〉−1I + Ã6̃−1ÃT . (35)

in which 6̃ is a block diagonal matrix, whose inverse matrix
is easy to calculate. In addition, E owns lower dimensions of
LM×LM when compared with 〈β〉 ÃT Ã+6−1 of LN×LN ,
thus the operation in Equation(34) can reduce the compute
complexity form O

(
L3M3

)
in to O

(
L3M3

)
Updating of α

ln q (α) = 〈ln p (w̃, α, β)〉q(α)q(w̃) + C

=

〈
ln p

(
w̃; {αi,Ri}N1

)
p (α)

〉
q(w̃)
+ C

=

〈
−

1
2 ln

∣∣∣6̃∣∣∣− 1
2 w̃

T 6̃−1w̃

+ (a− 1)
∑
i
ln ai − b

∑
i
ai

〉
q(w̃)

+ C

=
L
2

∑
i

ln ai −
1
2

∑
i

ai
(
tr
(
6i + µiµ

T
i

))
+ (a− 1)

∑
i

ln ai − b
∑
i

ai + C

=

(
a+

L
2
− 1

)∑
i

ln ai

−

∑
i

(
b+

1
2
tr
(
6i + µiµ

T
i

))
ai + C, (36)

which obviously shows that the posterior distribution of the
variable α is as:

p
(
α; ã, b̃

)
=

N∏
i=1

Gamma
(
αi| ã, b̃

)
, (37)

with

ã = a+
L
2
. (38)

b̃m = b+
1
2
tr
(
Ri−1

(
6i + µiµ

T
i

))
. (39)

in which tr (·) represents the trace of the matrix. µi ∈ RL×1

and 6i ∈ RL×L are means and covariance of the i-th block of
w̃i ∈ RL×1, respectively.
Updating of β

ln q (β) = 〈ln p (w̃, α, β)〉q(α)q(w̃) + C

= 〈ln p ( ỹ| w̃, β) p (β)〉q(α)q(w̃) + C

=
ML
2

lnβ −
〈
β

2

(
ỹ− Ãw̃

)T (
ỹ− Ãw̃

)〉
+ (c− 1) lnβ − dβ + C

=

(
c+

ML
2
− 1

)
lnβ

−

 d + 1
2

(∥∥∥ỹ− Ãµ∥∥∥2
2

)
+tr

(
Ã6ÃT

)
β + C

=
(
ĉ− 1

)
lnβ − d̂β + C, (40)

where the posterior distribution of β follows Gamma distri-
bution with the parameters:

ĉ = c+
ML
2
. (41)

d̂ = d +
1
2

(∥∥∥ỹ− Ãµ∥∥∥2
2

)
+ tr

(
Ã6ÃT

)
. (42)

Updating of Ri
As stated above, Ri is the correlation matrix of the i-th

block of w̃, represented as w̃i. The above variables are based
on an accurate estimation of Ri. Under the EM framework,
Ri is set as a variable to be estimated in M-step. According
to Equation 23, N matrixes {Ri}Ni=1 are required to describe
the different correlations for N blocks, whose number is
not as much as the measurements and may causing overfit-
ting issues. Coming to this, the same correlation matrix R
are assumed to all the blocks. Moreover, the target always
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changes unpredictably in practice, making it unreasonable
to restrain the correlation matrix R before. Thus no prior
structure is imposed on the correlation matrix R to better
approximate the real-world scene.

According to the definition of function Q (·) in
Equation 16, R is updated as follows:

R̃ = argmax
R

Q
(
R,Rold

)
= argmax

R
〈ln p (ỹ, w̃, α, β;R)〉q(α)q(w̃)q(β)

= argmax
R
〈ln p ( w̃|α;R)〉q(α), (43)

where Rold and R̃ are the current and the estimated correlation
matrix for R, respectively. q (w̃), q (α) and q (β) are the
posterior distributions with respect to the current correlation
matrix R. According to Equation 21, we can obtain that
p ( w̃|α;R) = N

(
0,B−1 ⊗ R

)
. Thus, the above optimal issue

can be represented as:

R̃ = argmin
R

{
N ln |R| +

〈
w̃T

(
B−1 ⊗ R

)
w̃
〉
q(α)

}
= argmin

R

{
N ln |R| + tr

[(
B−1 ⊗ R

)
6̃ + µ̃µ̃T

]}
. (44)

To find the minimal result of the above optimal issue, set

f (R) = N ln |R| + tr
[(
B−1 ⊗ R

)
6̃ + µ̃µ̃T

]
, (45)

where f (R) is the function of R with the other variables
settled. Then its gradient is computed as:

∂f (R)
∂R

= NR−1 −
N∑
i=1

αiR−1
(
6̃i + µ̃iµ̃

T
i

)
R−1. (46)

According to the property of gradient, we set the ∂f (R)
∂R = 0,

then the optimal result of f (R) can be updated as:

R =
1
N

N∑
i=1

αi

(
6̃i + µ̃iµ̃

T
i

)
, (47)

where R is the optimal result to approximate the relationship
among all the transferred location vectors.

In summary, Ges-DFL scheme is built as a block com-
pressive sensing recovery issue in the previous section and
then solved under the variational EM framework. In the
E-step, the variables including w̃, α and β are all imposed
the flexible posterior distributions with respect to R, and then
their determining parameters are estimated by variational
Bayesian inference. In the M-step, the correlation matrix R
based on the other variables is learned by its gradient. Thus,
by operating the two steps iteratively, w̃will be achieved. The
estimated location vector can be estimated as:

wi =
1
L

L∑
l=1

w̃li, (48)

where w̃li is the l-th element in the i− th block sparse of w̃.
Now, we summarize the Ges-DFL algorithm in details as

algorithm 1.

Algorithm 1 The Algorithm of Ges-DFL

Require: ỹ, Ã, τmax, δ.
Ensure:

Initialize the parameters a = b = c = d = 10−6.
2: Initialize the correlation matrix R = IL .

Initialize α(0), w̃(0) and β(0) according to (20), (21) and
(25).

4: Set the iteration number τ = 1.
while τ < τmax and 1r > δ do

6: Update posterior distribution of α(τ ) using (37)-(39).
Update posterior distribution of β(τ ) using (40)-(42).

8: Update posterior distribution of w̃(τ ) using (31)-(35).
Update correlation matrix R using (47).

10: Compute the reduction using 1τ =∥∥α(τ ) − α(τ−1)∥∥2/∥∥α(τ )∥∥2;
τ = τ + 1.

12: end while
Estimate the current distribution mean µ and w̃.

14: Output the the estimation of the location vector using 48).

An uninformative distribution is assumed on the variables
in order to achieve better results, thus the parameters are set
as a = b = c = d = 10−6 as is shown in the algorithm. 1τ
is the reduction of the current and the estimated α utilized
to balance the convergence. The iteration will be terminated
when the maximum iteration number τmax is reached or
the reduction threshold δ is reached. The correlation matrix
R describes the relationship of different gestures, which is
impossible for us to determine. Thus to initialize, R = IL
is settled in the first iteration.

V. SIMULATIONS
We investigate the DFL issue for multiple targets with differ-
ent gestures in this paper and propose a new algorithm based
on variational Bayesian inference called Ges-DFL. To testify
the localization performance, we formulate the following
simulations.

A. THE SIMULATION PERFORMANCE
We perform the simulation in the detecting area with the
length of 20m × 20m, which is divided into N = 100 grids
and M = 20 wireless links are applied to measure the RSS
changes. In addition, the Gaussian white noise is added to
approximate the noise, represented as Signal-to-Noise Ratio
(SNR). According to the transferring method, the location
vector in the l-th time interval is approximated as follows to
represent the influence of the location vectors [29]:

w(l) = w(0) − A−1r (l), (49)

where w(0) and w(l) are the real location vector and the trans-
ferred location vector of l-th time interval, respectively. Thus
the RSS changes caused by different targets can be modeled
as y(l) = Aw(l)+n(l). The changing parameters r (l) is utilized
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FIGURE 4. The transferred location vectors under different changing
parameter. (a) µr = 0,σr = 0.1; (b)µr = 0,σr = 0.5; (c) µr = 0,σr = 2;
(d) µr = 1,σr = 2.

to induce the changes caused by different target gestures,
on which a Gaussian noise is imposed r (l) = N

(
r (l)
∣∣µr , σr).

To measure the algorithm performance, the average local-
ization error AvgE is introduced:

AvgE =
S∑
i=1

K∑
k=1

1
K · S

√(
x ik − x̂

i
k

)2
+
(
yik − ŷ

i
k

)2
, (50)

where
(
x ik , y

i
k

)
and

(
x̂ ik , ŷ

i
k

)
are the real target location and the

estimated target location for the k-th target in i-th simulation,
respectively. K and S are the target numer and the simulation
number.

Also, the state-of-art recovery algorithm is applied to
compare with the Ges-DFL algorithm, including Tempo-
rally Sparse Bayesian Learning (TSBL) [32], Multiple-Focal
Underdetermined System Solver (M-FOCUSS) [33], Multi-
ple Greedy Marching Pursuit (MGMP) [34], Simultaneous
Orthogonal Marching Pursuit SOMP [35] and Variational
Bayesian Expect-Mean (VBEM) [31].

B. THE ANALYSING OF GES-DFL RECOVERY ALGORITHM
Firstly, we analyse the changing parameters applied to
approximate the different target gestures. Figure4 illustrates
the transferred location vectors under different changing
parameters. All the transferred location vectors are compres-
sive but not precisely sparse, and they vary with the values
of µr and σr . The different values are applied to approximate
the different gestures of the target. The larger the values are,
the less sparse of the transferred location vectors.

Secondly, the recovered location vectors are analysed.
The target may be with different gestures, leading to the
transferred location vector w(l) not exactly sparse under the
fixed sensing matrix. And among different sampling inter-
vals, the transferred vector is different. However, as stated
above, different transferred vectors represent the same target
location, where the most significant elements of the location
vectors represents the same location. In Figure 5, we can
see that the proposed algorithm can recover the location
vector even when the transferred location vectors are not

FIGURE 5. The illustration of the recovered location vectors and the real
target location. (a) The L transferred location vectors; (b) The average of L
transferred location vectors;.

FIGURE 6. The localization error via different iteration numbers.

exactly sparse. In Figure 5(a), it is obvious that the recov-
ered block sparse vectors under the same sensing matrix
is not similar to the original vector. However, as is shown
in Figure 5(b), the recovered location vector, which is the
average of all the estimated L transferred location vectors,
can represent the target location well.

Thirdly, we test the localization performance via different
iteration numbers of the Ges-DFL. The samplings with L = 5
time intervals for K = 3 targets and N = 100 grids are
collected to localize. Also, the changing parameters are set
as r = N ( r| 0, 0.5) and the Signal to Noise Ratio (SNR)
is 30dB. As is shown in Figure 6, with the increasing of
the iteration number, the localization error reduces quickly.
Moreover, the AvgE value becomes convergence when the
iteration number reaches to 180. Thus the maximum itera-
tion number is settled as 200 to both ensure the localization
accuracy and the effectiveness.

C. THE PERFORMANCE VIA OTHER ALGORITHMS
Firstly, we test the localization performance via different
time intervals. More samplings can provide more localization
information, surely guaranteeing a more accurate localization
result. As is shown in Figure 7, with the increasing of the
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FIGURE 7. The localization performance via different time intervals.

FIGURE 8. The localization performance via different target number.
(a) µr = 0, σr = 0.1; (b) µr = 0, σr = 0.5.

samplings number L, the localization error decreased for all
the algorithms.And the proposed Ges-DFL localization can
achieve the lowest localization error when compared with
others. Although more samplings will promise more accurate
localization, it can also influence the synchronization. Thus
we choose L = 3 in the following simulations.

Then the algorithm performance is tested through different
target number. As we can see from Figure 8, the localization
accuracy becomes lower with the increasing of the target
number for all the algorithms. The target number indicates the
sparse property of the location vector. Larger the target num-
ber is, lower sparsity of the location vector owns, undoubt-
edly influencing the recovery accuracy. In Figure 8(a), the
Ges-DFL owns the lowest localization error among all the
algorithms.And the localization error is higher for the pro-
posed Ges-DFL compared with MGMP in Figure 8(b) when
k = 1, because the transferred location vectors are too
compressive. And when the target number reaches to 2,
the proposed Ges-DFL performs better than other algorithms.

Finally, we test the algorithm via different noise with the
SNR varies from 5dB to 65dB. When k = 3, the localiza-
tion error of different algorithms via the SNR is shown in
Figure 9(a). The localization error decreased for all the algo-
rithms with the increasing of the SNR. We notice that when
SNR = 5dB, the AvgE for the MGMP is lower than the Ges-
DFL, which can not prove that the MGMP performs out the
Ges-DFL. In fact, when SNR = 5dB, the localization error is
too large to serve a reliable result for all the algorithms.When
the SNR is increasing, for the proposed algorithm Ges-DFL,

FIGURE 9. The localization performance via different target number.
(a)M = 20,K = 3, σr = 0.5; (b) M = 20,K = 3, σr = 0.8;
(c) M = 26,K = 4, σr = 0.5; (d) M = 26,K = 4, σr = 0.8.

it performs the best. The same conclusion can be abtained
from Figure 9 (b), (c) and (d).

VI. CONCLUSION
We propose a new localization algorithm Ges-DFL in this
paper, which considers the different target gestures in DFL
scheme. Firstly, recognizing that dictionaries referring to dif-
ferent target gestures can not be obtained, we transfer the
relationship of dictionaries to the correlation of the location
vectors, where only a fixed dictionary is needed. Secondly,
the location vectors are transferred under the same sensing
matrix, and the DFL scheme is built as an MMV recovery
issue. Thirdly, we exploit the block sparsity of the transferred
location vectors and propose a new algorithm named Ges-
DFL using the variational Bayesian inference. Finally, sim-
ulations show the accuracy and robustness of the Ges-DFL
algorithm.
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