
SPECIAL SECTION ON EDGE COMPUTING
AND NETWORKING FOR UBIQUITOUS AI

Received April 5, 2020, accepted April 21, 2020, date of publication May 11, 2020, date of current version June 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993727

Intelligent Search and Find System for
Robotic Platform Based on Smart
Edge Computing Service
AHMED BARNAWI 1, MARWAN ALHARBI 1, AND MIN CHEN 1,2, (Senior Member, IEEE)
1Faculty of Computing and Information Technology, King Abulaziz University, Jeddah 21589, Saudi Arabia
2School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Min Chen (minchen2012@hust.edu.cn)

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant RG-1-611-39.

ABSTRACT In recent years, artificial intelligence has been widely used in the field of robotics. However,
these robot-related tasks are difficult to migrate from the cloud to edge nodes due to the large computing and
storage resource requirements. In this project, we develop a platform for a heterogeneous robotic system.
The platform is built to facilitate the development of advanced robotic applications with minimal human
interactions, where search and find system traversal is the main application. To support robots performing
tasks in near field in real time, in this paper we introduce traversal and task division algorithms which are
introduced to perform a cooperative search mission by a group of robotic agents to achieve intelligent search
and find as an edge service. We evaluate the performance against the algorithm’s parameters using data
obtained in controlled field experiments. The aimwas to identify and study some key performance parameters
impacting the traversal function in the application.

INDEX TERMS Unmanned aerial vehicles, UAV controller, edge computing, embedded systems, multilay-
ered architecture.

I. INTRODUCTION
Searching process involves the routine and systematic activity
of traversal where the searching agent must visit and sense
each point in the assigned area. Thus regardless to the detec-
tion technology, this function of the system should be treated
with great care. The design of a sound traversal algorithm is a
nontrivial process as it involves various factors related to the
searched area geometry, the vehicle mechanical fault toler-
ance, the camera optical specifications and the environmental
parameters. On the other hand, if we aim to employ more
than one agent in the search mission, traversal process must
take into account the fairness to distribute the task among the
agents based on their capabilities.

The Advanced Search And find System (ASAFS) is an
application developed to improve automatic search and find
processes of objects in a vast areas that consists of multi-
ple robotic agents. This application is being deployed over
a heterogeneous state-of-the-art testbed developed by our

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaofei Wang .

research group named Multiple UAV Experimental Testbed
(MUAVET). In this application, a group of robotic agents are
assigned to take part in the search process. Those agents are
to perform coordinated search missions. The search missions
are initially planned, controlled and monitored at the base
station (BS) through developed interfaces. However, when
the robot agents perform some complex search tasks, the base
station cannot load the resources required by the intelligent
algorithm, so it will request from the cloud computing plat-
form, which will greatly affect the execution efficiency of the
search task.

Edge computing is a near-device network architecture
with real-time data processing and lower latency. Robot
groups often need to work together to perform search tasks,
which requires highly responsive network solutions. There-
fore, combining edge computing and artificial intelligence
technology, this paper introduces a traversal algorithm and
its components which constitute the main part of the Search
Planner (SP) part of the system. The algorithm is designed
at the edge of the network as an intelligent edge service to
achieve highly available search. The SP program resides in

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108821

https://orcid.org/0000-0003-0516-8331
https://orcid.org/0000-0001-6984-0540
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-7223-1030


A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

the base station (or the controlling agent),it calculates (and
recalculates) the agents path during the cooperative the multi
agents search campaign.

The main motivation of this work is to introduce a region
traversal and task partitioning algorithm that can run on
edge networks for a group of robotic agents performing a
cooperative mission to quickly and intelligently search and
find objects in a predefined area. We also analyze aspects of
the system performance based on the developed algorithms
on our testbed. In order to study the performance of the
proposed algorithm, an analysis of the trajectories data of
the flying drone is being conducted in order to quantify
actual error resulted from GPS and mechanical aspects of the
robotic agents. The aim is to identify optimization problems
in the path traversal and suggesting solutions for optimized
version of the algorithm. Finally, we conduct some real life
experimental scenarios to demonstrate system operation and
integration.

The structure of this paper is as follows; Section II
is related work. Section III highlights the characteristics
of ASAFS architecture. Section IV introduces the system
components, testbed and setup. Section V presents the
traversal algorithm and its components. Section VI presents
error estimation analysis based on field experimental data
along with discussion about performance analysis and opti-
mization aspects. The last sections are conclusions and
acknowledgments.

II. RELATED WORK
Robotics is a domain that has been contributing to science
since the seventies. It has driven the large scalemanufacturing
industries and underpinning the new generation of automa-
tion technologies [1]. This branch of technology will experi-
ence the highest growth in near future to address the design
challenges for multi agents based design methods. There are
various general purpose methodologies developed during the
last decade, for example, Prometheus, Gaia, MaSE, Inge-
nias, etc. [2]. Still, the multi-robot system adds interactions
between agent software and autonomous robots. In particu-
lar, agents should be built to represent physical robots in a
management system [3].

In spite of the availability of many design methods, cogni-
tion is still under extensive consideration. The development
of multi-robotic systems with cognitive abilities is largely
studied in the swarm robotics field. In [4], the issue is tackled
explicitly in the context of swarm robotics, advocating the
need for a ‘‘swarm engineering’’. As a consequence, vari-
ous design methodologies have been proposed, but are often
somehow limited in their scope [5]–[8] and [9].

The process of terrain coverage using a single robot is
to be performed using various traversal algorithms. In case
of multiple robots being used to cover the terrain, the given
area should be decomposed into multiple polygons. Polygon
decomposition has been shown to be NP-hard [10]. Such
polygon decomposition could be performed using triangula-
tions, convex decompositions, quadrilateralizations, etc [10].

Studies have also discussed covering nonconvex and non-
simply connected polygons. This coverage will have higher
processing complexity. Hert and Lumelsk [10] studied the
process of terrain covering with multiple robots. The given
polygon is considered to be convex and has no holes to
partition into n polygonal pieces, where n represents the
number of robots available. Polynomial-time polygon parti-
tion is performed using sweep lines and divide-and-conquer
techniques.

Maza and Ollero [11] divided the given area into differ-
ent parts based on the capabilities (speed of flight, altitude,
sensitivity to wind conditions, etc) of the UAVs and their
initial locations. Then the UAVs cover their designated areas
in zigzag pattern considering how to minimize the number of
turns. Real time operation is considered when designing the
complexity of the proposed algorithms.

Traversing a region requires some preparations such as
detecting polygon shape, converting and rotating in order to
get less turns. Reference [12] starts with solving non-convex
polygon by converting it into a convex shape. The second
step is rotating the whole region in order to find maximum
height between two points. The region gets divided using area
distribution of each UAV according to its capabilities. If we
have two UAVs with variant capabilities, the one with higher
capabilities will be assigned to the larger area while the other
will be assigned to remaining smaller area.

Duckham et al. in [13] provides algorithm to characterize
a shape of a set of input points in a plane. For a given
shape, it takes outer points, then generates sub-triangles and
vectors in order to identify the shape. This characterization is
a useful measure we utilized in our strategy for performance
evaluation.

Themain novelty of this project lies in the cooperative inte-
gration of possibly a large number of entities in tight cooper-
ation in one single networked system with options to feature
a distributed control. The work in this project is divided into
stages, at this stage, the focus is on system development based
on a default scenario and core system functionalities where
fundamental system features are materialized.

In recent literature, the work on UAV platform in a project
Dronemap [14] was centered around developing a modular
cloud proxy that acts as a moderator between drones and
users. The communication between drones, users and the
Dronemap Planner achieved through the ROS and MAVLink
protocol [15]. The idea is to offload computations to cloud,
and extending ROS for cloud usage as a mean to that end.
The Robot Operating System (ROS) is robotics middleware
that includes collection of software frameworks for robot
software development [16]. In [17] and [18], ROS limitations
are listed, the authors identified few points that limited the
scalability of the multiple robotic systemmainly due to band-
width and synchronization consideration with respect to the
ROS design.

The work by Dronemap group addresses shortcoming
in ROS by offloading the processes to the cloud rather
than depending on onboard processing thus enhancing

108822 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

computational process and connectivity between users and
robotic agent. It is worth mentioning that a recent work by
Lee et al. [19] describes also an ROS based platform for multi
UAVControl testbed developed to demonstrate task handover
from weary to capable agents.

With ease of configurability and customization in mind,
our the in-house developed MAUVET platform, on the
other hand, is concerned with autonomous robotic interaction
and coordination to perform specific coordinated missions.
It assumes that onboard computation empowered by NUC
facility as sufficient enough to enable real time services and
overcome any need for offline computation. This platform
assumes full control on the robotic agents by the applica-
tion with great flexibility, system scalability and flexibly in
reachability via remote controlling over the Internet. This full
control will pay off greatly in the process of development of
mobile robotic applications required to examining different
scenarios and methods.

From another perspective, we have paid a lot of attention
to the GUI design and implemented our system GUI inter-
face [20], [21] to ensure flexibility and customization in the
system. The GUI overcome shortcomings in similar work
that we have considered [22]–[24]. We tried to enforce full
control by studying the use case and putting down a modular
design of the system to enhance potential system features and
scalability.

III. A FRAMEWORK FOR SEARCH AND FIND SYSTEM
In this paper we present algorithms for task division and path
traversal for multi robotic mobile agents. The novelty of this
work can be precieved as follows:

1) The path traversal algorithm developed, incorporates
the camera’s pacifications in order to ensure that pro-
cess of target detection and to control the overlapping
of camera’s view thus all points in the searched area
are covered evenly in an efficient manner unlike many
similar applications where trajectory overlapping is
somewhat tolerated in favor of decentralized control of
the system which is not the case in our system since we
assume centralized control.

2) We introduce two task division algorithms (region and
path division), in either algorithm we incorporate the
home location coordinate to be accounted for within
the offered drone capabilities. Moreover, though the
region division algorithm is straight forward, the path
division algorithm introduced improves the coverage of
scanned area, in particular in the adjacent sub areas’
boarders. Our analysis also has shown that the path
division strategy is more energy efficient in terms of
processing power.

3) We also provide a thorough study of the drone behav-
ior while executing the trajectory using the developed
algorithms onboard of drone in real time experiments.
We have established the relationships between the
localization errors and drone speed in order to lie the

ground for further optimization in path planning for the
system.

Considering the inefficient responsiveness under the cloud
architecture, we design a lightweight traversal algorithm from
the perspective of computing and storage resources, so that
the algorithm can be deployed in edge devices. When the
UAV performs the traversal task, it sends data directly to
the edge nodes. This algorithm is used in combination with
lightweight deep learning to achieve efficient search and
traversal.

From a design point of view, the developed framework
could be characterized based on similar formworks that are
found in the literature from the following perspective aspects
explained in the following subsections. We then end this
section by presenting some comparison between our frame-
work and some frameworks of similar applications.

A. COOPERATION (AUTONOMOUS VERSUS
NON-AUTONOMOUS SYSTEMS)
A strategic decision concerning the suggested framework was
to tackle the search and find application based on multiple
agents cooperating among themselves where the task of each
of them is determined prior to the mission start. This strategy
is quite different from the strategy where the task is executed
by multiple autonomous agents where each of them performs
the mission independently with minimum interaction or coor-
dination (no task division).

B. INTEGRATION (HOMOGENOUS VERSUS
HETEROGENEOUS AGENTS)
Another design goal in our framework is to deal with agent
diversity to enable the integration of different types of mobile
agents (i.e. aerial, ground and marine) and/or agents with
different capabilities (i.e. battery lifetime, image processing
power or size), having this in mind, the system developed
considers scenarios where heterogeneous mobile robots are
able to perform methodological search and find tasks tailored
to the needed operation. The MAUVET platform, explained
in following section, ensures mobile robotic agent hetero-
geneity as the developed centralized system uses standardized
communication interfaces and open software architecture.

C. COORDINATION (CENTRALIZED VERSUS
DECENTRALIZED SYSTEMS)
The coordination of the agents in the system has been devel-
oped to be centralized where the task planning, monitoring
and control functions for the whole mission are deployed on
a single entity. Although the Single Point of Failure (SPF)
is an obvious disadvantage of such architecture, the central-
ized approach ensures consistency and stability throughout a
system of heterogeneous mobile robots performing a search
and find mission where strict methodology of workflow must
be followed. Moreover, with regard to the SPF, we would
like to distinguish between the Physical Single Point of Fail-
ure (PSPF) and Logical Single point of Failure (LSPF).While

VOLUME 8, 2020 108823



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

the PSPF is associated with the hardware hosting the control
software, the LSPF is associated with the central software
bugs, attacks or errors. In fact, our system can be made more
resilient against the PSPF by enabling offloading the running
of the control software to backup sites (or even onboard of
one of the mobile agents with enough computing resources)
since the communication protocols are based on standard-
ized TCP/IP interfaces and technologies. On the other hand,
although the main advantage of decentralized system archi-
tecture is appreciated with dealing with LSPF, the decentral-
ized approach doesn’t really suite our need to follow a strict
workflow by multiple mobile agents with limited onboard
resources performing a choreographed maneuver.

D. FRAMEWORK COMPARISONS
In order to compare ASAFS framework with others devel-
oped, Table 1 summarizes our arguments where multi agent
systems were developed to deal with similar applications.

IV. ASAFS: SYSTEM COMPONENTS
The basic terrain of the experimental area is an open air
space with a good coverage by Global Navigation Satellite
System (GNSS) signal. The area assumed is of circular shape
with a diameter of 300meters or a compact subspace of it. The
whole area is covered by a wireless radio communication sig-
nal from the singleWiFi access point (AP) placed at the center
of the area. It is expected that a standard WiFi access point
should be able to produce a signal with sufficient strength to
cover the designated area. The access point is connected to
the base station by Ethernet.

Fig. 1 shows the basic system components and the inter-
faces among them. Over the experimentation in open air
area, the agents are deployed. The UAV agents are physically
connected to the Base Station (BS) via the AP in a star
topology. It is noticed that different UAV’s are introduced
including ground/aquatic level robotic vehicles while the
operator is interacting with the system via Graphical User
Interface (GUI).

A. ASAFS: SYSTEM HARDWARE
The main hardware components of the MUAVET testbed are
the MUAVET Base station subsystems and the MUAVET
Agents subsystems. TheMUAVETAgent subsystem consists
of onboard PC, Flight controller, GPS receiver, Camera,WiFi
Communication Module and sensors. Functionalities of the
UAV Control software are provided to other modules through
two interfaces. A low level interface is realized as a standard
TCP/IP socket. The socket interface which provides open and
portable way of connecting server and user application is
written in arbitrary programming language. A C++ Appli-
cation Programming Interface (API) is built above the socket
interface in form of C++ functions. ASAFS application code
can exploit the UAV control functionalities simply by calling
functions from this API. The socket interfaces are available
on the server as well as on the UAV’s onboard computer, so it

FIGURE 1. ASAFS general system configuration.

is up to user to decide the architecture of the top level system
(e.g. centralized or distributed).

There is a proprietary communication link between the
UAV and the BS server, this link is designed to reliably
transfer data between agents and BS while controlling total
data rate to avoid overloading the wireless communication
channel. The communication server collects received data,
provides them to modules on the Base Station and allows to
control the agents from the Base Station.

The MAUVET agent is also equipped with a collision
avoidance measures to mitigate the probability of mid-air
agent collision. The basic collision avoidance mechanism
is implemented based on continuous checking of the UAV
actual positions and desired motion directions. Whenever
there are two UAVs approaching each other in distance under
a set threshold, collision condition is checked, which may be
reacted upon and result in prompt stopping (hold position)
of one or both UAVs. The collisions incidents are monitored
and calculated at the server site, which collects all the nec-
essary data about the UAVs’ positions and directions. The
server sends a special internal message to each UAV, telling
it whether it is allowed to continue moving in the desired
direction. For safety reasons, concerning possible message
loss, this message is sent periodically. In [34], we have listed
more details on the mechanism of collision avoidance.

B. THE DEFAULT SCENARIO AND TRAVERSAL PATTERNS
The default experimental setup of the ASAFS system is based
on this scenario with flying drones only, however, the ground
robotic agent are not incorporated in this scenario. Nonethe-
less, system design ensures that ground agents integration via
system interfaces doesn’t necessary impact the testbed’s core
hardware and software components. Fig. 2 shows a sketch of
the default scenario. In this default scenario, the sequence of
events can be summarized in the following steps:

1) Operator feeds the system parameters on the mission
via a GUI.

2) The BS calculates a search plan and assign search areas
to UAV 1, 2,3 and 4.

3) UAV 1, 2 and 3 carry on searching their assigned areas
till either they find the object or assigned search is
concluded.

108824 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

TABLE 1. Framework comparisons.

FIGURE 2. The default scenario in edge networks.

4) The system terminates the operation either when the
objects are found or search is completed.

V. TRAVERSAL ALGORITHM COMPONENTS
An overview schematics of the search planning algorithm is
shown in Fig. 3. To produce a path plan for a robot in multi
robotic based searchmission, the process takes few steps. The
shape of a selected region (a polygon) might be classified as
one of the following known polygon types; a convex, con-
cave or self-intersect. As for traversing purpose, initially our
traversal algorithm is designed to deal with convex polygons,
thus in case of concave or self-intersect shaped polygon we
would need to convert the shape into convex shape prior to
further processing.

The conversion of a concave polygon is simply achieved
by ignoring the inner points. In order to do so, the algo-
rithm starts with polygon type detection and in case a con-
cave shape is detected, the region will get converted into
convex shape. However, if the polygon is identified as a
self-intersected polygon, it cannot be converted into convex
and thus the region will be rejected. After that, when the

FIGURE 3. Algorithm components.

region is converted into convex polygon, a region gets rotated
according to its minimum height, the objective is to reduce
the number of turns while traversing. The next step will be to
generate the waypoints for the traversal path associated with
the searched area. In the following subsection we elaborate
more on the traversal path components.

A. POLYGON TYPES AND CONVERSION
The first step is detecting the polygon type using TypeDetec-
tion algorithm. This algorithmworks by checking on the inner
angles of the shape, if any of shape’s inner angles was greater
than 180 degrees, then the shape could be classified as either
a concave or self-intersect polygon. While the selfintersected
polygon is out of our scope, another test is applied to detect
the shape type. This test is run by ignoring one corner point
of the polygon at a time then redrawing the shape edges
then checking whether that corner point was inside the new
polygon or not, if at least one corner point was found inside

VOLUME 8, 2020 108825



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 4. Non-convex polygons.

FIGURE 5. Polygon regularity.

the redrawn polygon, then its type would be identified as
concave. If the polygon was found to be concave such as
in Fig. 4 then it can be converted into convex by removing
inner corner points. That can be done using ConcaveToCon-
vex algorithm. Both TypeDetection and ConcaveToConvex
algorithms complexity are O(n2).
Another relevant classification of the polygon shape is to

classify whether the shape is regular or irregular. In fact,
traversing a regular shape provides better camera coverage
and less computational effort, on the other hand, traversing
irregular polygon shapes may result that some part of the
region remain unvisited, thus not being sensed. This issue was
investigated further in our publication [35]. For this regularity
test, we implement our simple Algorithm (1), to measure
degree of polygon irregularities. The algorithm uses regular
polygon angle equation. The algorithm computes the differ-
ence between each angle and the average angle of the polygon
inner angels. The sum of these differences of angles and edges
are divided by number of edges to find the percentage of
shape regularity. Fig. 5 shows different polygonwith different
regularities as an example.

B. ROTATION
Traversing a polygon in zigzag traversal pattern for example
will result in the agent performing corner maneuvers pretty
often while searching a predefined area. When a drone exe-
cutes a turn, it would probably overshoot outside the traversed
area to ensure inclusion of the points at the polygon’s bound-
ary. The tradeoff of this maneuver will be a wasting valuable
battery and time resources of the flying agent. This problem
will be exacerbated as the number of turn increases; therefore
our design objective of our traversal path would be to reduce
the number of turns.

In order to have less number of turns we would need to
traverse a polygon horizontally where the polygon ismounted
with minimum height (dimension). Fig. 6 shows how the
number of turns is related to the polygon’s traversal align-
ment. It is obvious that if the traversal alignment was made
horizontally (north to south) the number of turns generated
will be much more than in the case the area was traversed

Algorithm 1 Polygon Regularity Algorithm
Input: Polygon’s points

P : {(x1, y1), (x2, y2), . . . , (xn, yn)},
2 : {θ1, θ2, . . . , θn}

Output: Regularity Percentage
1 procedure Regularity(P,2)
2 2← Average angle
3 M ← Polygon perimeter
4 M ← M

n F Average perimeter
5 a← 0
6 m← 0
7 for i← 1 to n do
8 d ←

∣∣2− θi∣∣
9 a = a+ d

360

10 d ←
∣∣∣M −√(xi−1 − xi)2 + (yi−1 − yi)2

∣∣∣
11 m = m+ d

M

12 rangle = 1− a
n

13 rperimeter = 1− m
n

14 r = rangle+rperimeter
2

15 return r

vertically (east to west). Thus instead of rotating the traversal
alignment, we may be have to rotate the shape for simplic-
ity. Therefore, to rotate the shape, we will need to rotate it
around its center of mass. The center of the mass (Cx;Cy) is
calculated using the following equations:

Cx =
1
6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (1)

Cy =
1
6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (2)

where A is the polygon’s signed area, as described by

A =
1
2

n−1∑
i=0

(xixi+1 − xi+1yi) (3)

Moreover, finding theminimum height, which corresponds
to the shortest vertical distance generated by a line per-
pendicular to the x-axis across the polygon, can be done
by rotating the polygon by an angle θi. Since the irregular
polygon has different and uneven angles and edges, we could
not have an equation to determine the minimum height or in
which angle should rotate to have minimal height. The angle
increases in each iteration by a small amount in order to find
minimum height. In theory, the iteration should be repeated
until completing 360◦ to cover most of the possible positions.
However, after reaching 180◦, the rotated position outcome
will give back the same results as in the first half cycle, thus
rotating the shape by 180◦ is going to be enough to obtain
the minimum height. Moreover, beside using on minimum
height, if we had to consider the minimum width, which

108826 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 6. Same region but the number of turns unlike before and after
applying minimum height.

FIGURE 7. MinimumHeight method finds that the minimum height was
3.0 cm at angle 44.5◦.

corresponds to the shortest horizontal distance generated by a
line perpendicular to the y-axis across the polygon, we could
limit the polygon rotation to 90◦ degrees instead. Fig. 7 shows
an example of polygon rotation using both the minimum
height and minimum length distances across the polygon.

It is obvious that, the number of iteration and the angular
rotation increment are related. The accurate value of the
minimum height would be obtained with smaller incremental
values which will result on the higher number of iteration.
In our example in Fig. 7 we have this increment set at 0.1
degrees.

C. ZIGZAG PATH TRAVERSE ALGORITHM
In our setup, the detection of objects of interest is achieved by
a down-looking camera. Objects of interest are represented
with special visual markers placed on the ground. Those
objects’ dimensions and camera specifications will be used
to compute the maximum drone height within the range to
detect the marked object. Fig. 8 shows the geometry of the
problem where the camera visual specifications are related to
the height of the robot.

The Traverse algorithm (2) requires region points P, pat-
tern dimension (W×H ), and camera specifications C . As the
drone traverse an area by following the waypoints, over-
lap of camera’s view may occur between adjacent traversed
lines. That is, the overlapped regions are scanned twice,
in Fig. 11 the darker colored blue areas represent the overlap-
ping regions that were visited twice in each direction as the

FIGURE 8. Scene width.

FIGURE 9. Drone height and overlap.

robot traversed two adjacent lines. Overlapping is obvious to
be a function of the height, the lower the height the less the
overlapping. In fact overlapping consumes extra energy due
to redundancy and may give conflicting results of the objects
located in overlapped regions.

The output of algorithm (2) is the drone flying range (hmin,
hmax) and the flying height based on the desired overlap
between each two adjacent lines. Equation 6 presents the
relationship between the drone flying height and the desired
overlap. Fig. 9 shows that the relation is linear where zero
overlap can be obtained when the drone is flying at hmin and
100% overlap is obtained when h equals hmax . The maxi-
mum flying height hmax is calculated based on the camera’s
optical specifications which are fed to the algorithm as input
parameters C in order to ensure that the algorithm does not
give flying height that is higher than the object recognition
range.

hmax =
wpattern × cres

2Cp × tan(Cfov2 )
(4)

wscene =
wsensor × h

f
(5)

where wpattern is the pattern’s minimum value of width and
height i.e. min(W ,H ), Cres is the camera resolution, Cfov
is the field of view, and Cp is the minimal number of
pixels.

VOLUME 8, 2020 108827



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 10. Traversing path whole region.

FIGURE 11. Showing path coverage with overlap.

The relation between drone flying height and overlap is
given by:

h =
1
2
hmax × (1+ v) (6)

where v is overlap percentage
Algorithm (2) shows that once the area is selected by

identifying the corner points P, of the searched area, the
traversal algorithm starts with testing the polygon to deter-
mine whether convex or non-convex and convert it into con-
vex if possible using the testConvexAndConvert(P)
method. The polygon is then rotated to find the minimal
height of the shape as explained in section V-B. Now we
can apply the zigzag traversal algorithm to calculate the
coordinate of the waypoints in the desired trajectory in which
the polygon gets divided according to its minimal height in
order to generate a path.

The path segments are generated as parallel horizontal
lines (perpendicular to the minimal height) then they will be
connected at the appropriate corners to construct a zigzag
traversal pattern. In order to arrange the spacing between the
parallel segments, we use the variable step which equals to
half the scene width (step = wscene/2) at maximum flying
height.

The first segment of the zigzag path is spaced half a step
from the minimal height top end as shown in Fig. 10. The
waypoints in the drone trajectory are determined by finding
the coordinate of intersected points between the generated
horizontal lines and the polygon edges. Finally the algorithm
checks whether it reaches the polygon boundary and ensures
that the last segment is placed inside the boundary. The

algorithm complexity is related to polygon minimal height
and number of edges O(n2).

Algorithm 2 Traversing Path Algorithm
Input: Points P : {(x1, y1), (x2, y2), . . . , (xn, yn)},

Pattern dimension W × H : {float×float},
Camera Specifications C ,
[Overlap V : where {0.0 ≤ V ≤ 1.0}
Drone Height H ]

Output: pt path points,
hmax maximum flight height,
hmin minimum flight height,
θ rotating angle,
h drone flying height

1 procedure Traverse(P,W ,H ,C)
2 if not testConvexAndConvert(P) then
3 return nil

4 θ ← findMinimalHeightAngleAndRotate(P) Find
minx ,miny,maxx ,maxy of the polygon

5 hmax =
wpattern×cres

2Cp×tan(
Cfov
2 )

6 hmin = hmax/2
7 h = hmax × (1+ V )/2
8 step← wsensor×hmax

2f
9 i← 0

10 y = miny +
step
2

11 pt ← {}
12 while y ≤ maxy do
13 L ← {(minx , y), (maxx , y)}
14 (p1, p2)← PolygonLineIntersect(P,L)
15 pL ← pick left point from (p1, p2)
16 pR← pick right point from (p1, p2)
17 p← Generate points between pL and pR
18 Insert {pL , {p}, pR} into pt
19 if y+ step ≥ maxy then
20 y = min(y+ step

2 ,maxy)
21 else
22 y = y+ step

23 i = i+ 1

24 rotatePointsBy(pt,−θ ) return {pt, hmax , hmin, h, θ}

D. TASK DIVISION
As explained earlier in the default scenario, it is expected that
in order for the search mission to be carried out by multiple
robotic agents, each of them are assigned to traverse a specific
region. As for mission division, we propose two strategies;
Path Division and Region Division. Initial location for each
drone is counted in both strategies. Starting from the home
location H , each drone flies to its assigned starting point in
the traversed area and return to the home location H from
its last assigned point. Thus the input capability C in both
algorithms (3, 4) should account for the capability to fly back
and forth from home location Ch and the capability needed

108828 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 12. Each drone assigned path. (a) whole path covered, however;
(b) shows small part of the path uncovered due to the low capability of
drones 2 and 3.

to traverse the area C ′ where C ′ = C − Ch. The method
findFlyFromToHomeCost is responsible for calculating
Ch which depends on the farthest distance between the home
location H and any point in the traversed area. The farthest
distance in the Path Division algorithm (3) is calculated
based on the last waypoint in the traversal path. However,
in the Region Division algorithm (4), the farthest distance
is calculated based on the farthest polygon edge from home
location H .

1) PATH DIVISION
The algorithm (3) will divide the total traversal distance and
return the set of waypoints for each drone. The algorithm
inputs requires the following; the traversal waypoints of
the whole region, which was already generated by Traverse
algorithm (2), each drone capability ci as percentage, and
home location H . Drone’s capability is computed according
to battery level, maximum working time as fully charged,
and drown maximum average speed. Using these information
we can compute the maximum distance (di) that a drone
is capable to cover. After the distances (w) for all drones
are calculated, the capability factor ci can be calculated by
dividing each drone’s maximum flight distance over group
total distance.

In compPathLenAndDroneMaxPathLen the actual
distance that each drone needs to traverse will be generated
as a fraction out of the whole traversing path T . This dis-
tance should be less than or equal to the maximum distance
that a drone can traverse. For example if the total length
of the traversal path over the coverage area is 870 meters
for drone 1 which has capability factor of c1 = 0.3 and
maximum flight distance 300 meters (capability), then the
distance assigned to this drone to traverse starting from point
(x1, y1) in the traversal path T is d1 = 261 meters. Therefore,
several waypoints from the traversal path T will be assigned
to drone 1, where the path length stating from (x1, y1) to
(xj, yj) is less than or equal to 261 meters. This scenario is
repeated for each drone until reaching the end of traversing
path as shown in Fig. 12(a) or when the last drone is assigned
with its path as shown in Fig. 12(b). The complexity of Path
Division algorithm (3) isO(m×n) wherem is the total number
of waypoints and n is number of drones.

Algorithm 3 Divide Traversing Path for Each Drone
Input: Each Drone capability C : {c1, c2, . . . , cn}

where 0 < ci ≤ 1,
Traversing path
T : {(x1, y1), (x2, y2), . . . , (xm, ym)}
Home Location: H

Output: A list of Path for each Drone
1 procedure PathDivision(C,T )
2 Ch← findFlyFromToHomeCost(H ,T )
3 C ′← recalculateDronesCapability(C,Ch)
4 D← compPathLenAndDroneMaxPathLen(T ,C ′)
5 R← {} empty list for each drone path
6 Add H point to R
7 for each drone diinD do
8 Ri← extract path with di length from T

9 Add H point to R as last point to back home
10 return R

2) REGION DIVISION
Region Division algorithm (4) uses divide and conquer strat-
egy. In eachDroneMaxMinAreaWithHY method, the
polygon’s minimal height is divided by number of drones (n)
as shown in Fig. 13. The boundary of the polygon segment
will be a horizontal line going through the polygon. There-
fore, the number of horizontal lines will be (n − 1). An area
will be computed for each drone according to each drone
capability.

The algorithm calculates the maximum and minimum
areas by adding and subtracting the tuning factor (1) The
whole region area is used to decide whether the actual parti-
tion is reached. The coordinates of the segments will result
from finding the intersection points of the cross-sectional
lines with the polygon segments. The initial step of recursion
function in the algorithm is to prepare the division value of y
for each partition and area range. The area range is computed
by equations (7) and (8). This strategy provides rangemargins
to find actual partition for each drone.

areamin = areasegment −1 (7)

areamax = areasegment +1 (8)

The recursion construct in the algorithm depends on four
parameters (R, i,G,Q) those can be identified as Rwhich rep-
resent the remaining polygon area after each slicing process
i the indexing of the current drone, G as the range assigned
height of each drone, andQ coordinates of the sliced polygon
points. The complexity of the region division algorithm is
approximated as O(n log n).

VI. PERFORMANCE ANALYSIS
In order to study and evaluate the efficiency of the proposed
algorithm, the impact of developed task division strategies

VOLUME 8, 2020 108829



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

Algorithm 4 Divide Region for Each Drone Algorithm
Input: Region as polygon points

P : {(x1, y1), (x2, y2), . . . , (xn, yn)},
Rotation angle in radian A
where 0 ≤ A ≤ 2π ,
Each Drone capability C : {c1, c2, . . . , cm}

where 0 < ci ≤ 1,
Home Location: H

Output: A list of Paths for each Drone
1 procedure) RegionDivision(P,A,C,H , [R, i,G,Q])
2 if (R, i,G,Q) ∈ null then

F Recursion Base Case
3 Ch← findFlyFromToHomeCost(H ,T )
4 C ′← recalculateDronesCapability(C,Ch)
5 ;
6 G← eachDroneMaxMinAreaWithHY(P,C’)

F Polygon height gets divide by
number of drones which called
Horizontal Y

7 return RegionDivision(P,A,C ′,H ,P, 1,G, {})

8 T ← extract polygon that above Qiy from R
9 if T > Gimin areaandT < Gimax area then
10 Qi = T
11 Remove polygon Qi from R
12 if Current Drone is second last one then
13 Qi+1 = R
14 return Q F Recursion end point
15 else
16 return

RegionDivision(P,A,C,H ,R, i+ 1,G,Q)

17 else if T > Giarea then
18 T ← extract polygon that above Qiy from R
19 decrease Gi area by half of assign area
20 return RegionDivision(P,A,C,H ,R, i,G,Q)

21 else if T < Giarea then
22 increase Gi area by half of assign area
23 return RegionDivision(P,A,C,H ,R, I ,G,Q)

and the effect on the actual flight path execusion by the UAV
are studied.

A. PATH ERROR ESTIMATION AND ANALYSIS
The flight path determined by the algorithm is passed to
the UAV. The actual path followed by the drone is obtained
using GPS localization coordinates. The precision of both the
actual and required path is based on GPS accuracy. In order
to obtain the relationship between the error and the speed
of the trajectory, data from flight trajectory is obtained for
different drone’s maximum average velocities like 0.5 m/s,
1 m/s, and 5 m/s.

Fig. 14 displays the relationship between the projected and
the actual flight path for a selected trajectory segments over

FIGURE 13. Region division and traversing path (Drone 1: 53.3%, Drone
Two: 32.97%, Drone 3: 13.74%).

FIGURE 14. Planned Trajectory and Actual Flight Path.

several sections in multiple flight trails. The selected section
is a straight lines without turns and thus theoretically a very
minimal error is expected.

The expected trajectory is indicated using red color while
the actual trajectory is specified using blue color. It could
easily be observed that the actual and the expected path are
not quite similar considering limitations from GPS accuracy.
Fig. 15 shows how drone average speed changes over the
straight line path. It is also observed that drone speed changes
over the executed path determined by two points fed to the
autopilot controller. From Fig. 15, we can summarize the
following:
• The drone starts with minimal speed and accelerates
towards the maximum allowed speed. Then while mov-
ing to the end to the trajectory or towards a turning
point, the speed is reduced so as to enable tilting without
falling.

• Increase in speed causes the difference between the
expected and actual path, denoted as error, to increase.
Data analytics reveal that the average speed obtained
by excluding the outlier is 1.92 m/s, with corresponding
error of 0.48 m.

The relationship between speed and error were further
studied using curve fitting as shown in Fig. 16 Data was

108830 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 15. Speed and error mapping.

FIGURE 16. Error - speed relationship.

obtained from the drone for seven trajectories. The actual and
expected path of the trajectory was compared with regards to
the speed of the drone. The maximum drone speed allowed
was 5 m/s. The data obtained is fitted using a linear curve.
Statistics obtained from the figure below reveals that error
increases with proportion to the increase in speed. The curve
fits reasonably well with an adjusted R2 value of 0.6767,
which indicates that about 67% of variance in the deviation
is explained by the equation (9).

error = a× sin (speed− π )+b× (speed− 10)2+c (9)

where

0.04381 ≤ a ≤ 0.2275

−0.01048 ≤ b ≤ −0.005706

0.8921 ≤ c ≤ 1.21

a = 0.1356, b = −0.008092, c = 1.051

Increasing the speed shows increase in error. Similar study
[36] concluded that there is deviation from the planned tra-
jectory at the beginning and the end of the trajectory. Also,
deviations were observed while decelerating from higher
speeds. Strong aerodynamic effects was stated as one major
factor for such deviation. Our experiments deviates only
from the planned trajectory only at higher speeds and con-
sidering GPS precision, such an error could be considered
negligible.

Considering the relation between starting point and end
point with the speed and error of the trajectory, it is obvious
that this path error would create gaps in the searched area
and hence compromise the accuracy of the search mission.

FIGURE 17. Division cost.

As counter measures we might either 1) ensure the camera
field of view is wide enough to compensate for the expected
error, which could be realized based on flying height of
the UAV, as explained in section V-C, or 2) apply further
segmentation on the straight lines in the paths. Those two
strategies will be further studied and simulated in the future
by our group as we have identified this issue at this stage.

B. IMPACT OF PATH DIVISION AND REGION DIVISION
In section V-C, we suggested two approaches that can be
used for task division among several drones performing a
cooperative searched mission, Fig. 12. In the path division
approach in algorithm (3), each drone’s task is assigned its
portion that is calculated as a fraction of the total path length
according to each drone’s capability. The second approach
using the Region Division algorithm (4) divides the region
first according to each drone capability then generate the
waypoints by the traversal algorithm (2).

Fig. 17 explains the difference in performance between the
two approaches in terms of processing time. It is obvious that
Region Division algorithm (4) costs more processing time
than Path Division algorithm (3) as the number of drones (or
divisions) increases. The increase in processing time between
the two approaches can be in the order of three folds. We can
conclude that the path division might suite computation on
the drone itself while the most computationally intensive area
division approach suites calculation on the base station.

C. EXPERIMENTAL RESULTS FOR ZIGZAG TRAVERSAL
PATTERN
The Goals of this experiment is to study the behavior of
an UAV flying in zigzag trajectory points generated by the
algorithm. In this experiment multiple targets are placed in
the area. UAV is placed on the predefined position. The
launching and landing procedure is demonstrated within this
setup. The input to this experiment is a predefined trajectory
for a UAV at different speed and flying height. The outputs
are post-processed data providing comparison using the given
trajectory and its real execution onboard logged flying record.

VOLUME 8, 2020 108831



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

FIGURE 18. Experiment result shows a plot of the zigzag trajectory
execution at speed 3m/s and height 15m.

FIGURE 19. Experiment result shows a plot of speed variation along the
trajectory for zigzag trajectory.

TABLE 2. Performance comparison between zigzag and segmented
zigzag trajectory at maximum speed 3m/s.

Fig. 18 shows an example of the plotted trajectory points of a
zigzag traversal run.

In Fig. 19, we show the recorded changes of the speed
along the flight trajectories where you can notice that vari-
ation over the zigzag trajectory. To compare the performance
of different trajectory plan performance, we have chosen to
compare the zigzag to spiral trajectory parameters at dif-
ferent speed 3 and 6 m/s. Table 2 shows the comparison
results.

With respect to the effect of speed on the localization error,
it is evident that if we compare the zigzag @ 6 m/s maximum
speed with the zigzag @ 3 m/s maximum speed, we can find
that error increased while the battery lifetime is improved
in the latter case. As for the object detection, we can report
that objects were detected in all cases with good precision
of object localization less than the average accumulated error
by 50%.

FIGURE 20. Multi-drones experiment (Zig-Zag Traversal).

To verify the developed system integration where a group
of heterogeneous robots perform a joint search task, we have
considered a more detailed scenario as shown in Fig. 20.
Three different UAVs were used to traverse the area look-
ing for tagged objects. The events of the scenario unfold
as soon as the operator enters the search area coordinates
through the GUI interface, the three UAVs are eventually
launched from the initial locations which is located on north
of the searched area. The drones simultaneously travel to
their calculated starting points in the searched area using
both the task division and the traversal algorithms then
they execute the waypoints based on their assigned paths.
As soon as there are no more waypoints to execute, i.e. the
assigned area is traversed, the drone flies back to the home
position.

VII. CONCLUSION
In this paper we have presented several findings with relation
to the ongoing work to develop a heterogeneous platform
for multi-agent robotic testbed. We laid out the fundamental
agent’s traversal algorithms with different functional com-
ponents. Using real data from trajectory execution by the
drones, we have identified that the behavior of the drone
is subject to autopilot controller and localization accuracy.
A compromised path adherence accuracy will badly impact
the camera scan coverage by creating gaps in between the
traversed lines of the zigzag trajectory thus increase the
probability of missing a target. To overcome this problem,
we may induce camera scanning overlapping between the
adjacent traversed lines by varying the drone height, we have
shown how our algorithm takes care of this issue. We have
also identified that path adherence error is subject to the
maximum average speed set by the operator. We have sta-
tistically analyzed this relationship based on our setup. Basi-
cally, we found out that the higher the maximum execution
speed, the more erroneous the traversal path. Regarding to
the developed task division algorithms, the analysis of the

108832 VOLUME 8, 2020



A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

processing cost indicates that the path division strategy is
more efficient than the region division strategy while both
of them take into consideration the robotic agents capabil-
ities in order to assign the task to each of them propor-
tionally. Finally we have presented some field experiments
using the developed platform to provide overall realization
of system performance and system integration. In future
work, further performance enhancement and optimization of
the algorithm swill be proposed, developed, analyzed and
tested.

ACKNOWLEDGMENT
This work was supported by the Deanship of Scientic
Research (DSR), King Abdulaziz University, Jeddah, under
Grant RG-1-611-39.

REFERENCES
[1] (2020). SPARC’s Strategic Research Agenda. [Online]. Available:

http://sparc-robotics.eu/roadmap/
[2] A. S. O. Shehory, Agent-Oriented Software Engineering: Reflections

on Architectures, Methodologies, Languages, and Frameworks. Berlin,
Germany: Springer, 2014.

[3] E. Lavendelis, A. Liekna, A. Nikitenko, A. Grabovskis, and
J. Grundspenkis, ‘‘Multi-agent robotic system architecture for effective
task allocation and management,’’ in Proc. Signal Process., Robot. Autom.
(ISPRA), 2012, pp. 167–174.

[4] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, ‘‘Swarm robotics:
A review from the swarm engineering perspective,’’ Swarm Intell., vol. 7,
no. 1, pp. 1–41, Mar. 2013.

[5] M. Schwager, D. Rus, and J.-J. Slotine, ‘‘Decentralized, adaptive cov-
erage control for networked robots,’’ Int. J. Robot. Res., vol. 28, no. 3,
pp. 357–375, Mar. 2009.

[6] C. A. C. Parker and H. Zhang, ‘‘Cooperative decision-making in
decentralized multiple-robot systems: The best-of-N problem,’’
IEEE/ASME Trans. Mechatronics, vol. 14, no. 2, pp. 240–251,
Apr. 2009.

[7] S. Berman, V. Kumar, and R. Nagpal, ‘‘Design of control policies
for spatially inhomogeneous robot swarms with application to commer-
cial pollination,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2011,
pp. 378–385.

[8] G. Sartoretti, M.-O. Hongler, M. E. de Oliveira, and F. Mondada, ‘‘Decen-
tralized self-selection of swarm trajectories: From dynamical systems the-
ory to robotic implementation,’’ Swarm Intell., vol. 8, no. 4, pp. 329–351,
Dec. 2014.

[9] M. Vigelius, B. Meyer, and G. Pascoe, ‘‘Multiscale modelling and analysis
of collective decision making in swarm robotics,’’ PLoS ONE, vol. 9,
no. 11, Nov. 2014, Art. no. e111542.

[10] S. Hert and V. Lumelsky, ‘‘Polygon area decomposition for multiple-robot
workspace division,’’ Int. J. Comput. Geometry Appl., vol. 08, no. 04,
pp. 437–466, Aug. 1998.

[11] I. Maza and A. Ollero, Multiple UAV Cooperative Searching Operation
Using Polygon Area Decomposition and Efficient Coverage Algorithms.
Tokyo, Japan: Springer, 2007, pp. 221–230.

[12] J. F. Araújo, P. B. Sujit, and J. B. Sousa, ‘‘Multiple UAV area decompo-
sition and coverage,’’ in Proc. IEEE Symp. Comput. Intell. Secur. Defense
Appl. (CISDA), Apr. 2013, pp. 30–37.

[13] M. Duckham, L. Kulik, M. Worboys, and A. Galton, ‘‘Efficient
generation of simple polygons for characterizing the shape of a
set of points in the plane,’’ Pattern Recognit., vol. 41, no. 10,
pp. 3224–3236, Oct. 2008. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0031320308001180

[14] A. Koubaa and B. Qureshi, ‘‘DroneTrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the Internet,’’ IEEE Access,
vol. 6, pp. 13810–13824, 2018.

[15] (2018). MAVLINK. [Online]. Available: http://qgroundcontrol.
org/mavlink/start

[16] (2018). Robot Operating System. [Online]. Available: http://www.ros.org

[17] (2018). Analysing ROS Distribution Capabilities. [Online]. Available:
http://www.dcs.gla.ac.uk/research/rosie/ros-limits-2016-08-11.html

[18] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, ‘‘PIXHAWK: A micro aerial vehicle design for autonomous
flight using onboard computer vision,’’ Auto. Robots, vol. 33, nos. 1–2,
pp. 21–39, Aug. 2012, doi: 10.1007/s10514-012-9281-4.

[19] B. H.-Y. Lee, J. R. Morrison, and R. Sharma, ‘‘Multi-UAV control testbed
for persistent UAV presence: ROS GPS waypoint tracking package and
centralized task allocation capability,’’ in Proc. Int. Conf. Unmanned Aircr.
Syst. (ICUAS), Jun. 2017, pp. 1742–1750.

[20] A. Barnawi, A. Al-Barakati, and O. Alhubaiti, ‘‘A GUI interfaces for a
multiple unmanned autonomous robotic system,’’ in Proc. Int. Conf. Softw.
Eng. Res. Pract., 2018, pp. 36–41.

[21] A. Barnawi, A. Al-Barakati, A. Khan, F. Bajaber, and O. Alhubaiti, ‘‘A pro-
posed architecture for a heterogeneous unmanned aerial vehicles system,’’
Int. J. Electr. Electron. Eng. Telecommun., vol. 7, no. 3, pp. 119–126,
Jul. 2018.

[22] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, ‘‘MASON:
A multiagent simulation environment,’’ Simulation, vol. 81, no. 7,
pp. 517–527, Jul. 2005.

[23] J. C. del Arco, D. Alejo, B. C. Arrue, J. A. Cobano, G. Heredia, and
A. Ollero, ‘‘Multi-UAV ground control station for gliding aircraft,’’ in
Proc. 23rd Medit. Conf. Control Autom. (MED), Jun. 2015, pp. 36–43.

[24] J. Tisdale, A. Ryan, M. Zennaro, X. Xiao, D. Caveney, S. Rathinam,
J. Hedrick, and R. Sengupta, ‘‘The software architecture of the berke-
ley UAV platform,’’ in Proc. IEEE Int. Conf. Control Appl., Oct. 2006,
pp. 1420–1425.

[25] L. F. Bertuccelli and J. P. How, ‘‘Search for dynamic targets with
uncertain probability maps,’’ in Proc. Amer. Control Conf., 2006,
p. 6.

[26] Y. Yang, A. A. Minai, and M. M. Polycarpou, ‘‘Decentralized cooperative
search by networked UAVs in an uncertain environment,’’ in Proc. Amer.
Control Conf., vol. 6, 2004, pp. 5558–5563.

[27] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand, ‘‘Coop-
erative control for multiple autonomous UAV’s searching for tar-
gets,’’ in Proc. 41st IEEE Conf. Decis. Control, vol. 3, Dec. 2002,
pp. 2823–2828.

[28] M. Polycarpou, Y. Yang, and K. M. Passino, ‘‘A cooperative
search framework for distributed agents,’’ in Proc. IEEE Int.
Symp. Intell. Control, Mexico City, Mexico, vol. 16, 2001,
pp. 1–6.

[29] K. Zhang, E. G. Collins, Jr., and D. Shi, ‘‘Centralized and dis-
tributed task allocation in multi-robot teams via a stochastic cluster-
ing auction,’’ ACM Trans. Auto. Adapt. Syst., vol. 7, no. 2, p. 21,
2012.

[30] H.-L. Choi, L. Brunet, and J. P. How, ‘‘Consensus-based decentralized
auctions for robust task allocation,’’ IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[31] M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz, B. Grocholsky,
V. Kumar, C. J. Taylor, Y. Endo, R. C. Arkin, B. Jung, D. F. Wolf,
G. S. Sukhatme, and D. C. MacKenzie, ‘‘Adaptive teams of autonomous
aerial and ground robots for situational awareness,’’ J. Field Robot., vol. 24,
nos. 11–12, pp. 991–1014, 2007.

[32] L. Merino, F. Caballero, J. R. Martínez-de Dios, J. Ferruz, and A. Ollero,
‘‘A cooperative perception system for multiple UAVs: Application to
automatic detection of forest fires,’’ J. Field Robot., vol. 23, nos. 3–4,
pp. 165–184, 2006.

[33] A. Viguria, I. Maza, and A. Ollero, ‘‘Distributed service-based cooper-
ation in aerial/ground robot teams applied to fire detection and extin-
guishing missions,’’ Adv. Robot., vol. 24, nos. 1–2, pp. 1–23, Jan. 2010,
doi: 10.1163/016918609X12585524300339.

[34] A. Barnawi, ‘‘An advanced search and find system (ASAFS)
on IoT-based mobile autonomous unmanned vehicle testbed
(MAUVET),’’ IEEE Internet Things J., vol. 45, pp. 3273–3287,
Feb. 2018.

[35] Y. Cao, R. Wang, M. Chen, and A. Barnawi, ‘‘AI agent in software-
defined network: Agent-based network service prediction and wireless
resource scheduling optimization,’’ IEEE Internet Things J., Oct. 2019,
doi: 10.1109/JIOT.2019.2950730.

[36] M. Hehn and R. D’Andrea, ‘‘Quadrocopter trajectory generation
and control,’’ IFAC Proc. Volumes, vol. 44, no. 1, pp. 1485–1491,
Jan. 2011.

VOLUME 8, 2020 108833

http://dx.doi.org/10.1007/s10514-012-9281-4
http://dx.doi.org/10.1163/016918609X12585524300339
http://dx.doi.org/10.1109/JIOT.2019.2950730


A. Barnawi et al.: Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service

AHMED BARNAWI received the M.Sc. degree
from the University of Manchester (UMIST),
U.K., in 2001, and the Ph.D. degree from the Uni-
versity of Bradford, U.K., in 2005. He is currently
a Professor of information and communication
technologies with the Faculty of Computing and IT
(FCIT), King Abdulaziz University (KAU). He is
the Managing Director of the KAU Cloud Com-
puting and Big Data Research Group. He acted
as an Associate and Visiting Professors in Canada

and Germany. He is an Active Researcher with good research fund awards
track. He published near to 100 articles in peer reviewed journals. His
research interests include big data, cloud computing, future generation
mobile systems, advanced mobile robotic applications, and IT infrastructure
architecture.

MARWAN ALHARBI received the Master of Sci-
ence degree from the University of Denver, USA,
in 2014. He is currently a Lecturer of informa-
tion technology with the Faculty of Computing
and IT (FCIT), King Abdulziz University (KAU).
His research interests include machine learning,
AI and blockchain, and the IoT.

MIN CHEN (Senior Member, IEEE) has been
a Full Professor with the School of Computer
Science and Technology, Huazhong University of
Science and Technology (HUST), since February
2012. He is the Director of the Embedded and Per-
vasive Computing (EPIC) Lab, HUST. He is Chair
of the IEEE Computer Society (CS) Special Tech-
nical Communities (STC) on Big Data. He was an
Assistant Professor with the School of Computer
Science and Engineering, Seoul National Univer-

sity (SNU). He worked as a Postdoctoral Fellow with the Department of
Electrical and Computer Engineering, University of British Columbia (UBC)
for three years. Before joining UBC, he was a Postdoctoral Fellow at SNU
for one and half years. His research interests include cognitive computing,
5G networks, embedded computing, wearable computing, big data ana-
lytics, robotics, machine learning, deep learning, emotion detection, the
IoT sensing, mobile edge computing, and so on. He received the Best
Paper Award from QShine 2008, the IEEE ICC 2012, ICST Industrial IoT
2016, and the IEEE IWCMC 2016. He serves as a Technical Editor or an
Associate Editor for the IEEE NETWORK, Information Sciences, Information
Fusion, and IEEE ACCESS, and so on. He served as a leading Guest Editor
for the IEEE WIRELESS COMMUNICATIONS, the IEEE Network, and the IEEE
TRANSACTIONS SERVICE COMPUTING, and so on. He is a Series Editor of the
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. He is Co-Chair of the
IEEE ICC 2012-Communications Theory Symposium and the IEEE ICC
2013-Wireless Networks Symposium. He is General Co-Chair for IEEE
CIT-2012, Tridentcom 2014, Mobimedia 2015, and Tridentcom 2017. He is
Keynote Speaker for CyberC 2012, Mobiquitous 2012, Cloudcomp 2015,
IndustrialIoT 2016, Tridentcom 2017, and the 7th Brainstorming Workshop
on 5G Wireless. He has over 300 publications, including over 200 SCI
articles, over 100 IEEE TRANSACTIONS/Journal articles, 32 ESI highly cited
articles and ten ESI hot articles. He has published eleven books: OPNET
IoT Simulation (2015), Big Data Inspiration (2015), 5G Software Defined
Networks (2016), Introduction to Cognitive Computing (HUST Press 2017),
Big Data: Related Technologies, Challenges, and Future Prospects (2014),
Cloud Based 5G Wireless Networks (Springer, 2016), Cognitive Computing
and Deep Learning (China Machine Press, 2018, and Big Data Analytics
for Cloud/IoT and Cognitive Computing (Wiley, 2017). His Google Scholar
Citations reached 21 300 with an H-index of 73 and i10-index of 221. His
top article was cited 2600 times. He was selected as Highly Cited Research
at 2018. He received the IEEE Communications Society Fred W. Ellersick
Prize, in 2017, and the IEEE Jack Neubauer Memorial Award, in 2019.

108834 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	A FRAMEWORK FOR SEARCH AND FIND SYSTEM
	COOPERATION (AUTONOMOUS VERSUS NON-AUTONOMOUS SYSTEMS)
	INTEGRATION (HOMOGENOUS VERSUS HETEROGENEOUS AGENTS)
	COORDINATION (CENTRALIZED VERSUS DECENTRALIZED SYSTEMS)
	FRAMEWORK COMPARISONS

	ASAFS: SYSTEM COMPONENTS
	ASAFS: SYSTEM HARDWARE
	THE DEFAULT SCENARIO AND TRAVERSAL PATTERNS

	TRAVERSAL ALGORITHM COMPONENTS
	POLYGON TYPES AND CONVERSION
	ROTATION
	ZIGZAG PATH TRAVERSE ALGORITHM
	TASK DIVISION
	PATH DIVISION
	REGION DIVISION


	PERFORMANCE ANALYSIS 
	PATH ERROR ESTIMATION AND ANALYSIS
	IMPACT OF PATH DIVISION AND REGION DIVISION
	EXPERIMENTAL RESULTS FOR ZIGZAG TRAVERSAL PATTERN

	CONCLUSION
	REFERENCES
	Biographies
	AHMED BARNAWI
	MARWAN ALHARBI
	MIN CHEN


