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ABSTRACT Random telegraph noise (RTN), as one dominant variation source in the ultra-scaled devices,
has been attractingmuchmore attention, and its analysis is of great importance to understand the fundamental
physical mechanisms. In this work, with the advanced dual-point method, we successfully separate the
impacts of each trap in multi-traps correlated RTN, especially for complex anomalous RTN signals.
A four-level transfer curve and VG-dependent RTN magnitude are extracted in a two-trap transistor from
the sub-threshold region to the linear region. Furthermore, current degradations contributed from each trap
of three- and four-level RTN signals are identified and distinguished. The proposed method can be utilized
to evaluate multiple traps RTN and explore the underlying physics.

INDEX TERMS Noise measurement, transistors, high-K gate dielectrics.

I. INTRODUCTION
Random Telegraph Noise (RTN) has attracted increasing
attentions with the scaling roadmap of device dimension.
In the ultra-scaled devices, random dopant fluctuation (RDF)
and electrical traps in the gate dielectrics cause significant
time-zero and time-dependent variation issues [1]–[3]. RTN
induced variability is observed as the randomly drain cur-
rent fluctuation under the constant gate and drain voltage,
of which the parameters are characterized within a certain
time, i.e., a measurement window [4], [5]. The RTN magni-
tudes including current fluctuation (i.e., 1ID) and threshold
voltage fluctuation (i.e., 1Vth), have been recognized as
dominant degradation factors affecting the performances of
devices and circuits [6]–[8]. Moreover, understanding the
voltage dependence of RTNmagnitudes can provide valuable
information in revealing the underlying physical mechanism
and predicting time-dependent variability in circuit simu-
lation [9], [10]. To extend the limited information within
the measurement window, Franco et. al. swept an entire
transfer curve immediately after a standard RTN method
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with the test sequence shown in Fig.1 (a). It is normally
required a rigorous selection of devices with a single dom-
inant trap that exhibits a longer timing constant and giant
current fluctuation [3]. When it comes to a fast-switching
RTN trap, an oscilloscope-based system is adopted for fast-
measurement of the VG dependent RTN magnitudes, which
is equipped with a dedicated configuration for reducing
the background noise disturbance and increasing measure-
ment accuracy [11]. For obtaining an accurate prediction of
RTN-induced degradation, we reported a straightforward
dual-point method for characterizing a trapped carrier in both
n- and p- FETs [12].

However, these works are normally focused on the device
with a single active RTN trap, whose current variation is
caused by the transitions of a charge between the empty and
occupied state. For a multilevel RTN signal, it is too com-
plicated to analyze and investigate the variation issue, con-
sidering the multiple RTN traps and their possible coupling
effects. Chang et. al. reported a four-level RTN characteriza-
tion in a gate-all-around (GAA) nanowire transistor, in which
the depths of the two discrete traps in the gate oxide are
identified separately by extracting the relative trapping/de-
trapping frequency [13]. Li et. al. measured two traps RTN
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with different bias conditions and low temperatures [14].
Gong et. al. extracted the trap locations and energy lev-
els by analyzing timing constants from the three-level RTN
signals [15], [16]. Moreover, Wang et. al. explained the com-
plex RTN phenomenon by considering metastable states and
trap coupling effect [17], [18]. For better understanding the
evaluation of multi-traps degrading behaviors, it is challeng-
ing to identify and differentiate each trap under different bias
conditions.

In this work, a four-level and full-VG-range transfer curve
is obtained from a planar device with two active RTN traps,
corresponding to four different capture and emission states.
With the advanced dual-point technique, the RTNmagnitudes
of each individual trap are extracted from the sub-threshold
region to the linear region. Moreover, the degradation effect
contributed by each trap is identified and extracted from an
anomalous temporal current signal with two-, three- and four-
level fluctuations, respectively.

II. MATERIALS AND METHOD
The device under test is a high-K/metal-Gate (HK/MG) pla-
nar transistor with a channel length/width of 70nm/90nm and
an equivalent oxide thickness of 1.65 nm. The test sequence
of the proposed dual-point technique is shown in Fig. 1(b).
The short-time standard RTN test is performed firstly with
a constant gate voltage (VG_RTN), which could provide the
stochastic and different trapping states for the traps. The drain
current is measured at a high gate voltage (VGH, illustrated
by a blue circle), following by a measurement at a low gate
voltage (VGL, illustrated by an orange circle). The above pro-
cedure can be repeated by sweeping from the sub-threshold
region to the linear region (the orange arrow). With the com-
bination of the obvious current fluctuation at VGH and that
at varying VGLs, a two-level transfer curve, corresponding
to a single trap either trapping or de-trapping, can be plotted.
Moreover, the dual-point technique shows good accuracy at
the scale of several nano-ampere shown in Fig. 1(c). The
transfer curve agrees well with the result measured by sweep-
ing voltage in a device without RTN traps. In the current
(at VGH) versus current (at VGL) plot, the centroid identi-
fication of the discrete data extracted by K-means cluster-
ing algorithm in the previous study [12], which represents
the currents measured with a single trap in both charged
and empty state. However, some errors might occur for a
complex RTN signal in the clustering process, in which it is
trying to separate the scattered points with equal variance and
minimized distance. For instance, the experimental data are
clustered into three groups, which is obviously against the
results guided by the dash circle shown in Fig. 1(d). In this
work, to analyze multi-traps contributed RTN, we replace the
clustering algorithm by the density-based spatial clustering
of applications with noise (DBSCAN), which focuses on
the sample density rather than the distance-based algorithm
(K-means) [19]. DBSCAN can automate the centroid identi-
fication at a fast speed with the advantages of suppressing
noise point and clustering arbitrary spatial shapes, which

FIGURE 1. Experimental date from dual-point (DP) method: (a&b) Test
sequences of sweep voltage and DP method; (c) Transfer curves
measured from a device without traps by SMU and DP method,
respectively; Measured discrete points clustered by (d) K-means and
(e) DBSCAN algorithm, respectively.

FIGURE 2. RTN signal (a) and measured discrete points (b) from a device
with two active RTN traps, which are named as TrapA and TrapB,
respectively.

occurs frequently in multi-traps devices considering the traps
coupling effect and complex transitions between various cur-
rent levels. In Fig. 1(e), the measured currents can be well
clustered into three groups as expected.

One example is shown in Fig. 2(a). By performing stan-
dard RTN measurement under constant (drain and gate) bias
condition, the clear four levels can be observed suggesting
that there are two discrete RTN traps involved.Wemarked the
one with larger fluctuation as TrapA and the small fluctuation
as TrapB, respectively. The highest level (L1) and the lowest
level (L4) stand for the situations when the two traps are both
empty and occupied, respectively. The second-high level (L2)
and third high level (L3) imply that only TrapB or TrapA
is occupied, respectively. We applied the advanced dual-
point method on this device with one measurement result
in Fig. 2(b). Wherein, VGH (0.80 V) is set the same as the
aforementioned RTN test and VGL is 0.50V. Vertically, four
discrete clusters can be clearly observed corresponding to
the four levels in RTN test. Moreover, there is a shift in
the parallel direction, suggesting that our measurement also
captured the impact of traps on the low voltage level. Due to
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FIGURE 3. (a): A four-level transfer curve of a device with two active RTN
traps, whose current fluctuation is caused by TrapA and TrapB,
respectively. (b&c) Local zoomed transfer curves in the (b) sub-threshold
region and (c) linear region, respectively.

the measurement accuracy of the testing equipment, there is a
wide-spreading for each cluster. We extracted their centroids
(illustrated as stars) of the four discrete clusters representing
the measured currents at two different voltages (VGH and
VGL) with four different states (i.e., L1(00), L2(01), L3(10),
and L4(11)), respectively, where 0 being empty and 1 being
captured state of a charge. For example, the centroids of the
right-top cluster correspond to the (00) state measured at
VGH and VGL, respectively.

By fixing VGH and sweeping VGL from the sub-threshold
to the linear region, the entire transfer curve can be obtained,
as shown in Fig. 3(a). The enlarged two regions at lin-
ear and sub-threshold regions are shown in Fig. 3(b&c).
The impact of IV curves with two active traps can be
observed. With this method, it is easy to confirm the RTN
magnitude caused by each individual trap. Under a certain
gate voltage, TrapA leads to a larger current fluctuation
(from L1 to L3) while TrapB results in a smaller one (from
L3 to L4), as arrays shown in Fig. 3(b&c), respectively.
Furthermore, the current fluctuation obtained in the advanced
dual-point technique (Fig. 3(a)) matches well with the tem-
poral RTN signals in Fig. 2(a). What is worth noting is that
the dual-point measurement has successfully identified the
difference of 1.5 mV in the sub-threshold region (Fig. 3(b)),
which is impossible by standard RTN test. Therefore, this
method can simply broaden the measurement window for
voltage sweeping down to the sub-threshold region.

III. RESULTS AND DISCUSSION
Based on the obtained four-level transfer curve from the sub-
threshold to the linear region, the impacts of individual RTN
traps on device performance could be distinguished and stud-
ied independently. In the two-RTN-traps device, the TrapA
induced current fluctuation (1ID) is extracted from the tran-
sition between L1 (00) and L3 (10), illustrated as the orange
square in Fig. 4(a). Similarly, from the transition between L1
(00) and L2 (01), the TrapB induced1ID under different bias
is illustrated as the green circle. The black triangle line corre-
sponds to the relationship between the gate voltage and total
1ID, which is indicating the transition of two traps in empty

FIGURE 4. The relationship between RTN magnitude and gate voltage in a
device with two active traps: (a) 1ID and (b) 1Vth, respectively. The drain
current fluctuations versus (c) VG and (d) gm, respectively.

(L1, (00)) and occupied (L4, (11)) state. Moreover, the total
1ID increases as the gate voltage increases and reduces
slightly towards the linear region, whose trend is dominated
by the contribution of TrapA and roughly equal with the sum
of the contribution of the two individual traps. Similarly, in
Fig. 4(b), threshold variations (1Vth) of each individual trap
are compared at different gate voltages. It is observed that
TrapB caused1Vth (L1(00) to L2(01)) is much smaller than
that of TrapA (L1(00) to L3(10)). According to the reported
3D atomic simulation [20], [21], these results indicate that
TrapA possibly locates nearer to the channel interface. Thus,
as the inversion carriers distribute more closer to the chan-
nel interface at higher VG, the impacts of TrapA turn to
be much more serious. As shown in Fig. 4(c), though the
drain current fluctuation ratio weakly depends on VG in the
subthreshold region, it shows an obvious decreasing trend in
the channel carrier inversion region at higher VG. Generally,
the drain current fluctuations can be explained by the car-
rier number fluctuation model and the mobility fluctuation
model [22], [23]. On the one side, the inversion carrier
density (Ninv) is proportional to (VG-Vth) via Ninv = Cox
(VG-Vth)/LgWg, where Vth is the threshold voltage, Cox is
the gate-channel capacity, and Lg/Wg is the gate length/width.
The roughly linear relationship between the current fluctu-
ations and VG indicates that the number fluctuation con-
tribution is dominant in the inversion region. On the other
hand, as shown in Fig. 4(d), the drain current fluctuations
weakly depend on the transconductance (gm), indicating that
the drain current fluctuations cannot be explained by the
mobility fluctuations. Therefore, the current fluctuations of
both traps are mainly contributed by the carrier number fluc-
tuation model. Furthermore, the threshold voltages can be
extracted from the discrete transfer curves, which are (L1)
0.5733, (L2) 0.5750, (L3) 0.5761, and (L4) 0.5776 V, respec-
tively. Similarly, the extracted sub-threshold swing (S.S) val-
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FIGURE 5. RTN signals of a two-trap device with various gate voltages of
(a) 0.50 V, (b) 0.60 V, (c) 0.70 V and (d) 0.80 V, respectively.

FIGURE 6. Measured discrete points in time-lag plot with different VGL of
(a) 0.50 V, (b) 0.60 V, (c) 0.70 V and (d) 0.80 V, respectively.

ues are (L1) 120.76, (L2) 120.37, (L3) 121.22, and (L4)
117.69 mv/decade, respectively.

In another device with an anomalous RTN signal,
the temporal current signals are also well investigated
with two-, three- and four-level fluctuations, respectively.
In Fig. 5, it shows RTN signals with different gate voltages
of (a) 0.50 V, (b) 0.60 V, (c) 0.70 V and (d) 0.80 V,
respectively. Similarly, the two traps are named as TrapC
(larger current fluctuation, orange circle) and TrapD (smaller
current fluctuation, red circle), respectively. As illustrated,
solid or empty circle means the RTN trap is either in the
captured or emitted state.

The two discrete levels correspond to the random emit-
ting or capturing a charge by one trap while the other remains
a constant state. When comes to Fig. 5(b), four current lev-
els (i.e., L1, L2, L3, and L4) are clearly observed coming
from the different trapping/de-trapping states (i.e., (00), (01),
(10), and (11)) of TrapC and TrapD, respectively. As the

FIGURE 7. Measured discrete points in DP method with constant VGH of
0.80 V and different VGL of (a) 0.70 V, (b) 0.60 V, and (c) 0.50V, respectively.

gate voltage increases, there are only three current levels in
Fig. 5(c&d). It is easy to understand that the highest (L1)
and lowest (L4) levels correspond to the (00) and (11) states,
respectively. Moreover, the medium level is roughly equal
with the average of L1 and L4, whichmight be assigned to the
formation of a new coupled state. Nevertheless, it is still not
clear whether the medium one comes from the traps coupling
effect or the level overlapping between L2 and L3.

Furthermore, the time lag scheme is adopted to facili-
tate the analysis of the measured signals. Fig. 6 shows the
temporal currents in time lag plots, whose x- and y-axis
represent the current sampled at a specific time and the next
time [24], [25], respectively. From the discrete clusters guided
by grey shadow, there are only two trapping/ de-trapping
states of one RTN trap in Fig. 6(a), indicating only one trap
is detectable while the other is not under the gate voltage
of 0.50V. From the numerous clusters in Fig. 6(b), four differ-
ent states of two RTN traps are observed with the gate voltage
of 0.60 V, matching well with the clear four-level result in
Fig 5(b). According to the nine clusters in Fig. 6(c&d), there
are only three different states for two individual traps. It is
valid that the highest and lowest currents are ascribed to
TrapC and TrapD both in the empty (00) and captured (11)
states. Whereas the origination of the medium is still unclear
for analyzing the trapping/de-trapping state of each trap.

This phenomenon can be well revealed by using the
advanced dual-point method. In Fig. 7, the centroid
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identifications are extracted under the VGH of 0.80 V and
different VGL voltages of (a) 0.70, (b) 0.60, and (c) 0.50 V,
respectively. From the current at VGH versus current at VGL
plot in Fig. 7(a), the three discrete clusters (guided as dash
circles) indicate that only three states are extracted for the gate
voltages of 0.80 V and 0.70 V, matching well with the results
in Fig. 5(c&d) and Fig. 6(c&d). Benefitted from the clear
four current levels at the gate voltage of 0.60 V, four discrete
clusters can be seen in Fig. 7(b), indicating the different cap-
ture or emission states at the gate voltage of 0.80 V. Although
there are only two states at the gate voltage of 0.50 V, four
discrete clusters corresponding to different states could be
also been in Fig. 7(c). Thus the medium level is distinguished
and differentiated, which is more likely to be caused by the
overlapping rather than the coupling effect. Noted that the
trap coupling effect can be confirmed by exploring the RTN
timing constants [26], which is beyond this study and needs
further study in detail.

IV. CONCLUSION
With the advanced dual-point technique, a discrete four-level
transfer curve from the sub-threshold to the linear region is
obtained in a high-κ planar transistor, which corresponds to
the four different states of two active RTN traps. The RTN
magnitude contributed by each individual trap is extracted in
a full-VG-range from sub-threshold to linear region. More-
over, a complex and anomalous RTN signal with two-, three,
and four levels is well distinguished and differentiated in this
method, which shows the potential ability to explore the RTN
trap behaviors and variation issues in a multi-traps device.
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