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ABSTRACT This paper presents a new method for extracting 3D point clouds from multi-focus images
of a fibrous web acquired on an optical microscope to analyze microscopic structures of a fibrous web.
The algorithm consists of two major parts: (1) utilizing a convolutional neural network (CNN) to extract
in-focus objects from multi-focus images, and (2) a depth identification module (DIM) which is a frequency
domain-based model used to identify the depths of object points. The network, namely the multi-focus image
deblurring network (MIDN), was designed by introducing gradient features into the network to deblur images
and generate the ranges of focal depths of object points. Based on the results of MIDN, DIMwas constructed
to calculates the focal plane depth for each point. The experiments show that the combination of MIDN and
DIM provides a practical way to generate complete, accurate 3D structures of nonwoven.

INDEX TERMS Image reconstruction, optical microscopy, artificial neural networks, machine vision.

Three dimensional (3D) reconstruction is an important
technique that can be used for multi-focus microscopic
images analysis. Confocal microscopes have been widely
used for 3D reconstruction of the microscopic structures [1],
because it can acquire depth information directly and filter
out background noise. However, the point-by-point imaging
principle of a confocal microscope leads to low-speed scan-
ning and possible damage on samples [2], and its high price
also limits widespread applications [3]. Hence, it is valu-
able to retrieve 3D information from 2D images which are
acquired on regular light microscopes. The optical coherence
tomography is the most common way that uses the sequential
images of an object captured on various focal planes/depths to
reconstruct the 3D surface image [4]–[6]. Quantitative phase
imaging (QPI) can developed to deal with transparent and
translucent objects in optical microscopy [7], [8]. Based on
QPI, LED matrix illumination was utilized to capture images
under different beam angles by controlling the LED arrays
[9]–[11]. However, the aforementioned methods require spe-
cific modifications on microscopes.
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To retrieve 3D information from sequential images, a point
spread function (PSF) and statistical characteristics were
also used to restore non-degraded images from the cap-
tured images. Classical image restoring algorithms, such as
Wiener filter [12] and Kalman filter [13], were proposed to
eliminate the degradation function through linear iterations.
However, if the input signals are interfered by random noise,
the linear iteration-based algorithms cannot acquire stable
results. Some approaches utilized the model of illumination
patterns to create sophisticated mathematical representations
[14], [15], but they relied on high-precision priori knowledge
[16]. Lately, computational optical sectioning microscopy
(COSM) became a popular 3D microscopy method because
of its high accuracy [17]. In COSM, an image sequence is
collected as a series of microscopic images that are focused at
different planes on the specimen [18], and a classical method,
the nearest neighbor deconvolution (NND), is used to remove
the blurriness of the current image. The core idea of NND is
that the current image is influenced by its adjacent images,
and its blurry information can be eliminated by subtracting
the product of two adjacent images from the interlayer PSF.
In addition, the frequency components of the specimen can be
obtained by using frequency components of images to divide

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 87857

https://orcid.org/0000-0003-2618-1391
https://orcid.org/0000-0001-9221-5110
https://orcid.org/0000-0002-5797-9753


J. Hou et al.: CNN for Extracting 3D Point Clouds of Fibrous Web

the Fourier transform of the PSF. As implemented in the
Jassan-Van Cittert method [18] and the maximum likelihood
estimation method [19], [20], frequency-based deconvolution
is another viable approach used in COSM [21]. However,
the actual PSF is not invariant in the 3D space, and most
of these methods assume that the PSF is a variant model.
In addition, using the estimation of PSF to recover the 3D
information of image sequence is not suitable for applications
which need high-speed calculations [21].

Deep learning has been widely used in microscopic image
segmentation and restoration [22]. Rivenson et al. [23] elab-
orated a deep learning model for improving the resolution
of optical microscopic images without hardware adaptation.
Ronneberger et al. [24] proposed a pioneering model of deep
learning in microscopy, called U-Net, and took full advan-
tages of feature maps in the contracting path to increase the
accuracy of pixels localization. Weigert et al. [25] explored
a U-net based network to eliminate the influence of noise
and the need for the PSF, and performed unsupervised and
end-to-end training through the peak signal to noise ratio
loss function. Compared with the traditional deconvolution
method, i.e., Richardson-Lucy deconvolution algorithm [26],
the proposed CNN model achieved higher quality restoration
with faster speed. The CARE network, which is another U-net
based network [27], utilized the synthetic ground-truth and
fluorescence microscopic images as the training dataset to
optimize the model to raise the efficiency of the fluorescence
microscopic images restoration. Other CNN models, such
as Residual Network [28], [29] and Generative Adversarial
Network [30], were also reported for enhancing the quality
of microscopic images. For the application of finding focal
planes from image sequence, Li et al. [31] developed a three-
layer network to generate the clearest layer map from multi-
focus images, and Conchello and Lichtman [18] designed a
two-input network to generate the probability map of fusion.
However, these methods have not been used for the 3D
reconstruction of an examined sample whose thickness is far
beyond the depth of view of a microscope.

Nonwoven materials have a wide range of applications,
particularly in filtering devices andmedical masks. The filter-
ing performance of a nonwoven depends on its 3D structure
and important parameters such as porosity and filling ratio of
fibers. Because a nonwoven is constituted by massive cross-
ing fibers and its thickness significantly surpasses the depth
of view of a light microscope, retrieving the 3D structure of a
nonwoven from its multi-focus images remains challenging.
Normally, this transformation requires to separate in-focus
pixels i.e., object points in each image from the background
and to determine the best focal plane for each object point.
Park et al. [44] proposed a patch-level CNN model to extract
high-dimensional features from hand-crafted features, and
used another CNN model to localize the in-focus regions.
However, the experiments showed that this method cannot
distinguish the low-contrast focus regions. Zhao et al. [43]
designed a multi-stream network (BTBNet) to detect in-focus
regions. The BTBNet combines multiple convolutional layers

to compose streams, and utilizes the streams to extract fea-
tures in different scales. At the end of BTBNet, the features
are input into a decision network. Although the BTBNet
can detect the in-focus regions accurately, the sophisticated
network structure has high computational costs.

In this paper, we present a two-step approach to reconstruct
3D image of fibrous webs by utilizing sequential microscopic
images captured at different focal planes. In the first step,
a CNN model, which is named as the multi-focus image
deblurring network (MIDN), is used to extract in-focus/sharp
pixels from optical sections. The MIDN can extracts features
from the optical sections and generates a feature map by
the encoder-decoder structure. To improve the performance
of the network, the gradient features are introduced into the
network, and generate a probability map. A modified Condi-
tional Random Field is used to connect the feature map and
the probability map and utilized convolutional layers to gen-
erate the map of in-focus objects. In the second step, a depth
identification module (DIM) is utilized to select an optimal
depth for each objects points from the results of MIDN with
the frequency domain information. The DIM, inspired by
the NND algorithm, focuses on the power spectrum changes
between adjective layers and uses Gaussian kernels to smooth
the distribution of power spectrum changes. Nonwovens are
selected as examples for acquiring multi-focus images on
an optical microscope and used for training and validating
the proposed 3D reconstruction algorithm. The major tasks
performed in the research include: (1) the introduction of the
activation path, which is derived from Conditional Random
Field, into the CNN; (2) the creation of a microscopic multi-
focus image dataset of nonwovens; and (3) the design of a
depth identificationmodule (DIM) for the optimal focal plane
determination in a high speed.

I. MIDN FOR IMAGE IN-FOCUS POINTS EXTRACTION
A. ARCHITECTURE OF CONVOLUTIONAL NEURAL
NETWORK
The well-known network U-net is composed of an encoder
path and a decoder path, and the strategy of U-net utilizes rich
features to generate higher accuracy outputs. Hence, we take
advantages of U-net and design a light weight network, called
Multi-focus Image Deblurring Network (MIDN), as shown
in Figure 1. In the MIDN, the captured image f (x, y, z) is fed
into the network, and the network generates in-focus point
candidates on current image ĝ(x, y, z). As the ground truth,
the sets of in-focus pixels g(x, y, z) are used to supervise
the optimization of MIDN. The difference between output of
network and the ground truth, |ĝ(x, y, z) − g(x, y, z)|, is the
objective function of MIDN, and the function approaches to
the minimum in the training. The architecture of MIDN is
shown in Figure 1 and the specific setup of theMIDN is listed
in Table 1.
The MIDN consists of feature extracting path, activation

path and output path. Although the feature extracting path
inherits the similar structure of U-net, it needs less float
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FIGURE 1. The architecture of MIDN. Each box indicates a layer. The original images are fed into the Conv1 layer and the gradient
maps are fed into the Conv15 layer. The dash lines represent the feature maps of convlutional layers are copied and concatenated
with the feature maps of deconvolutional layers. The outputs of Conv14 layer are activated by the outputs of Conv17 layer, then fed
into the Conv18 layer.

point operations (FLOPs) to generate results. The feature
extracting path involves 14 convolutional layers, 3 pooling
layers and 3 deconvolutional layers. The first 8 convolutional
layers and 3 pooling layers are adopted to extract the features
from inputs, the last 6 convolutional layers and 3 deconvo-
lutional layers are utilized to build the high quality outputs.
To increase the output resolution and accuracy, the feature
maps are copied and combined with the feature maps of
the deconvolutional layers as shown in Figure 1. Besides
the feature extracting path, a branch of three convolutional
layers is added to the network. The branch introduces gray
gradients of pixels before generating a feature map. The
generated feature maps give coefficients to all the pixels of
the feature extracting path results, and thus the branch is
called the activation path in this paper. At the end of the
network, the output path is designed to generate the results
according to the products of the activation path outputs and
the feature extracting path outputs. Compared to the U-Net
structure, the float point operations (FLOPs) of MIDN are
about 1.1×1011 and it obviously less than the original U-Net
whose FLOPs are about 1.7× 1011.

B. ACTIVATION PATH OF MIDN
Generally, different kinds of objects have various features
which can be utilized as clues to classify objects. However,
in in-focus object detection, clear objects (on the focal plane)
and blurry objects (out of the focal plane) often have similar
characteristics such as the topological structures and the col-
ors. To distinguish objects in a low-contrast region, intensity

gradients, a degree of clearness, can be introduced into the
network to increase the accuracy of the output. The gradient
magnitude, |∇f |, at pixel (x, y) is defined as follows:

|∇f | =

√
(
∂f
∂x

)2 + (
∂f
∂y

)2 (1)

where the |∇f | indicates the gray value distribution over
an image, the ∂f

∂x and ∂f
∂y indicate the partial derivatives of

the f . As reported in [32], [33], Conditional Random Field
(CRF) is an effective method to feed additional features into
a CNN and exampled by DeepLab [34] such as a recurrent
neural network (RNN) in [33]. In the CRF as RNN model,
the regular CNNoutputs are regarded as priori probability and
used to calculate the energy of label assignments, E(x), with
pairwise potential. E(x) can be calculated as the [33] reported:

E(x) =
∑
i

ϕu(xi)+
∑
i<j

ϕp(xi, xj) (2)

where ϕu denotes the unary potential which measures the
probability of assigning label xi to pixel i, and ϕp(xi, xj) is
the pairwise potential which measures the cost of assigning
labels xi and xj to pixels i and j respectively. In Eq2, the pair-
wise potential supplies a penalty mechanism to the label
assignment, in which the energy decreases when pixels get
inappropriate labels. Generally, the pairwise potential of fully
connected CRF is calculated as an RNN or a post-processing
model. Incorporating such a fully connected CRF into a CNN
is rather time-consuming. In this paper, the concerned regions
center on the edges of objects, and we focus on building the
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TABLE 1. The setup details of MIDN.

FIGURE 2. Illustration of Clique. According to the gradient map, the green
pixels have higher gradient values and the gray pixels have lower
gradient values, and all the neighbors give activation coefficients to the
center pixel.

relationship in edges rather than the whole image. So we
design an activation path to calculate the local potentials in a
novel method. The pairwise potential in Eq2 allows different
features, such as gradient, color, to be brought into the energy
calculation, and different pixels to be paired up. To connect a
pixel with its neighbors, the pixel and its eight neighbors are
treated as a clique as Figure2.

In Figure2, the center pixel is influenced by its surrounding
neighbors, and the center pixel receives a penalty coefficient

c defined as:

c =
i=8∑
i=1

σ (ωi × fi) (3)

where fi and ωi denote that the gradient intensity and the
coefficient of neighbor pixel i, and σ (. . .) is the symbol of
the sigmoid function. Different from the theorem of [36],
the pairwise term of Eq.2 is converted to the clique potential
as Eq.3, and it describes that the compatibility between focus
degree and gradient value. Since the gradient values of edge
points are non zero, c is also greater than zero, the neighbors
intend to encourage rather than penalize the center pixel.
Hence, we propose to change the form of Eq2 to the following
form:

Q(x) = ϕu(x)+ cx = ln(eϕu(x) × eεcx ) (4)

where Q(x) is the energy of labeling pixel x, ϕu(x) indicates
the unary potential and εcx denotes the normalized penalty
coefficient of pixel x. Compared with the Eq2, Eq4 takes
the natural log and converts the clique potential to the coef-
ficient of unary term. In Eq4, ε is a normalized coefficient
of cx , which is used to allow εcx to be negative numbers
that impose penalty to the center pixel. The Eq3 is easily
considered as the convolution operation, so we design the
Compatibility Layer (Conv15) to calculate the penalty coef-
ficient c. The Compatibility Layer includes 64 kernels, and
the kernels are initialized with constants. The kernels can be
optimized during the network training, so the Compatibility
Layer can give appropriate coefficient ω to the center pixel
under different situations. Besides the Compatibility Layer,
the activation path also involves Gaussian Layer (Conv16)
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and Fusion Layer (Conv17). The traditional CRF models
utilize Gaussian kernels to eliminate the isolated points in an
image. In our model, the Gaussian kernels are considered as a
Gaussian Layer whose kernels are are initialized with Gaus-
sian distribution whose mean value and variance are 0 and
1 respectively, and the Gaussian kernel also be optimized by
the training. The Gaussian Layer not only smooths the feature
maps, but also extracts the high dimensional features. At the
end of the activation path, 1× 1 kernels of Fusion Layer are
used to weight different features and calculate the c of each
pixel.

Figure 3 shows a few multi-focus images of a nonwo-
ven sample and their corresponding maps of in-focus points
which are generated by MIDN. In the outputs of MIDN,
each point value indicates the probability of the pixel in the
focal plane. A multi-focus image contains both focused and
defocused fiber pixels captured at one focal plane or layer,
and the layer number indicates the depth position, z, in the
imaging system. After MIDN, only in-focus pixels of fibers
are filtered out and selected as candidate points for voxels
of fibers in the 3D space. Some of these pixels may remain
focused in several consecutive multi-focus images and will
appear in the outputs as well.

II. DEPTH DEFINITION BY FREQUENCY MODEL
In the maps of in-focus points, each candidate point that
appears in multiple MIDN results is associated with different
depths z. For the same (x0, y0), we need to identify an optimal
z0 to form a voxel, (x0, y0, z0), that builds the 3D structure
of the nonwoven. Since the intensity of a pixel in an image
is always associated with its neighboring pixels, it can be
regarded as a spread-out region/patch centered at the current
pixel. This intensity distribution of this patch can be approxi-
mated by a two-dimensional Gaussian function, g(r, σ ), with
a radius of r and a spatial constant σ . Denote the intensity
distributions of the same circular region (r) or patch in two
adjacent multi-focus images as fi(r) and fi+1(r). The patches
include the corresponding points on the original sample as
f0(r) . As an invariant linear system, the imaging process of
adjacent images in sequential can be represented as:

fi(r)
fi+1(r)

=
f0(r)⊗ g(r, σi)+ oi(r)

f0(r)⊗ g(r, σi+1)+ oi+1(r)
(5)

Here, the function g(. . .) indicates the PSF and the o(r) is the
defocus term. According to the Fourier transform, fi and fi+1
can be described as follows:

Fi(λ)
Fi+1(λ)

=
F0(λ)× G(r, σi)+Oi(r)

F0(λ)× G(r, σi+1)+Oi+1(r)
(6)

where F and f , G and g, O and o are the Fourier pairs, and σi
equals to 1

√
2πσi

. Subscripts i and i+1 refer to two consecutive
focal planes. According to the [37], the images of in-focus
objects tend to have more high frequency components and
higher power in the frequency domain. The patches in this
paper are around the candidate points which are selected by
MIDN, and most of the pixels in the patches are near the focal

planes. Hence, the low frequency components in Eq6 occupy
a small percentage of patch areas. To simplify computation,
we assume the low frequency term, O, as a constant, and
rewrite the Eq6 as:

Ci = lnFi − lnFi+1 = 2π2(σ 2
i − σ

2
i+1) (7)

The difference between lnFi and lnFi+1 is Ci. Different from
the in-focus points, the out-focus points change slowly and
the low frequency components between connected layers are
eliminated approximately through Eq7.

Assume that the depth range of candidate point P(x0, y0) is
[zmin, zmax] which is defined by MIDN. As the [38] reported,
the frequency domain, gradients and variance are generally
used to measure the clearness degree of P(x0, y0) . Among
different measurements, the variance is the most efficient
method to identify the focal depth of pixel. However, some
overlapped objects have more than one focal plane, and
the variance also cannot reflect the multiple focal planes as
shown in Figure 4. Compared to the variance, the distribution
of Ci has an obvious valley in the scope of [zmin, zmax], and
the Ci is more sensitive to the change of focus.
During the procedure of focus, a pixel can remain in-focus

in multiple layers when the corresponding object point near
the focus plane, and the patch of this point becomes blur as
the sample away from the focal plane. So the difference in
power spectrumCi keeps low level near focal plane. Since the
accurate ground truth for lnFi is not available, the optimiza-
tion of Ci can only be solved by a non-supervised method.
Thus, we build a model (Figure 5) which is created to identify
the optimized depth of object points. The MIDN gives the z
scopes of candidate pixels, and the patches (in the scopes)
whose center at the candidate pixels are fed into the cells.
Each cell involves a Gaussian kernel and Fourier transform.
The Gaussian kernels (mean value is 0 and variance is 1)
are used to eliminate the noise of patches, and the Fourier
transform is used to convert the patch into the frequency
domain and calculate the integral of the power spectrum.
After that, we use two one-dimensional convolutional layers
whose kernels are set to be 5×1×1 to smooth the distribution
of the integrals of the power spectrum. The illustration of this
algorithm and the smoothing results are shown in Figure 5.
The Figure 5 shows that the distribution of integrals is

converted as a smooth curve, and the layer of minimum points
between two peaks of curve is the optimized depth of the
current point.

III. DATASET FOR DETECTING IN-FOCUS OBJECTS IN
MICROSCOPIC IMAGES
Most of the approaches of clear regions are evaluated on
the public blur detection dataset [45], which involves over
1000 natural scene images and provides human annotations
for blur region detection. The labels of the dataset mark the
whole object regions. But in this application, we only need
to extract fine structures of the objects such as fiber con-
tours from microscopic images. No suitable dataset is avail-
able for detecting in-focus regions in a microscopic image.
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FIGURE 3. The MIDN results of multi-focus images. The left image sequence involves the microscopic images, and the right image
sequence involves the maps of in-focus points.

FIGURE 4. Illustration of different measurements. (a) is the objects overlap areas. (b) is the illustration of different clear degree
measurements which are supplied by [38], where the blue line is frequency domain change, the gray line is the gradients change,
the orange line is the variance change. (c) is the variance and C changes of first fiber in (a), where the z scope of this fiber is defined
by MIDN. (d) is the variance and C changes of second fiber in (a), where the z scope of this fiber is defined by MIDN. The blue lines
and the orange lines in (c) and (d) are C distribution and variance distribution respectively.

We captured a set of nonwoven microscopic images using
a motorized microscope equipped with a JAI BM-141GE
camera and a UPLSAPO 10X object lens to create a new

dataset. Since the thickness of nonwoven sample was larger
than the microscopic depth of view, 100 layer/sections were
captured at each (x,y) position (see Figure 6). The size of the
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FIGURE 5. Illustration of depth definition model. (a) is the model structure. The z scope is defined by the results of MIDN. The green
boxes indicate the cell, and each cell involves Gaussian operation and Fourier transform. The cells output the integral of the power
spectrum in frequency domain. The cell outputs compose a vector which is illustrated as the dash line box. We input the vector into
the 1-d convolutional layers, and output the smooth curve as (b). (b) is the C distribution curves, where the blue curve indicates the
original C distribution.The green curve and red curve are the curves which are smoothed by one convolutional kernel and two
convolutional kernel respectively. Comparing with one 1-d convolutional layer, using two 1-d convolutional layers can generate a
smooth curve which can be detected the local minimum points easily.

FIGURE 6. The illustration of nonwoven sample images capturing. The red box indicates the acquisition point of sections. In one
acquisition point, 100 sections were captured by optical microscope. Hence, the captured sections can cover the thickness of
nonwoven samples. We collected more than 10000 raw images, and selected 6400 images from raw images to build the dataset.

FIGURE 7. The curves of kurtosis responses. The blue curves indicate the kurtosis distributions of blur pixels and the red curves
indicate the kurtosis distributions of clear pixels. (a) illustrates the kurtosis distribution of clear pixels and blur pixels which are
marked by one observer. (b) illustrates the kurtosis distribution of clear pixels and blur pixels which are marked by two observers.
Compare with the curves of (a), the curves of (b) have smaller overlapped regions.
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FIGURE 8. The learning curves of model training. The green boxes indicates the minimum losses of validation set. (a) shows the
learning curves of training the feature extracting path in two-step strategy. (b) shows learning curves of the model after unlocked
parameters. (c) shows that the learning curves of training the network as a whole. (d) is the sample of testing set. (e) is the sample
of network output (8 epochs) under the strategy of training the network as a whole. (f) is the sample of feature extracting path
output, where training the model 7 epochs and froze other parts. (g) is the sample of the final result after 13 epochs training
(two-step strategy).

FIGURE 9. The testing results of models. (a) includes the Precision/Recall curves of different networks. (b) represents the
comparisons of Precision, Recall and the F-score between different state-of-the-art models. The results show that our model
achieves the highest accuracy between models.

captured images is 1024× 768 pixels. An area of 320× 320
pixels was randomly cropped out from each image for the
training. Our dataset contains 7000 images, 5000 images
were used as the training set, 1000 images as the validation
set and the rest 1000 images as the testing set. The ground
truth images of fiber edges in the dataset were labeled by two
human observers manually. According to the reference [45],
the distribution of kurtosis values is an effective measurement
for clearness. The Figure 7 shows that the kurtosis distribution
of in-focus pixels (marked by ‘‘1’’) and kurtosis distribution

of blur pixels (marked by ‘‘0’’) have small overlap part
between each other. In contrast, the in-focus pixels and blur
pixels on the ground truths which are labeled by one observer
have similar kurtosis distributions. Although more observers
can lead to more labeling reliability for the ground truths,
the human annotations are expensive and time consuming.
The strategy of labeling by two observers is the best trade-
off between accuracy and time cost. According to the ground
truths, the proposed dataset is divided into two parts: in-
focus points (positive samples) and out-focus points (negative
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FIGURE 10. The comparison of feature extracting path result and output
path result. Compare with the feature extracting path, the output path
can extract details of the objects and generate clear result.

samples). Compared to the large number of negative samples,
the positive samples only occupy a small proportion of all the
samples. To overcome the imbalance losses between positive
samples and negative samples, we applied the class-balanced
cross-entropy loss function as follows, [40]

l(X ,W ) = −β ×
∑

i∈positive

logPr(yi = 1|Xi,W )

− (1− β)×
∑

i∈negative

logPr(yi = 0|Xi,W ) (8)

where β = Nnegative/(Npositive + Nnegative). The Nnegative and
Npositive indicate the points number of out-focus pixels and
in-focus pixels respectively. The CNN output value which is
activated by sigmoid function (Pr) and the in-focus probabil-
ity at pixel i are represented by Xi and yi respectively. The
l(X ,W ) denotes the loss value, in which the W indicates all
the parameters of the network.

IV. EXPERIMENTS
A. MIDN FOR IMAGE IN-FOCUS POINTS EXTRACTION
The MIDN was implemented on a deep learning framework
– Pytorch. The network training was performed on a single
graphics card – GTX 2080TI. The convolutional kernels and
deconvolutional kernels of the network were initialized by
Xavier algorithm [39], and the max pooling was adapted in
the experiments. During the training, the original images and
the gradientmapswere fed into the feature extracting path and
activation path respectively. Of the parameters in the network
optimizer, the stochastic gradient decent algorithm was used
to optimize the network and the learning rate was fixed as
1 × 10−5. In addition, the momentum of learning was set to

0.99. We rotated the images to 4 different angles, and aug-
mented dataset,which includes 20000 training images, was
4 larger than the unaugmented set. The training strategy of the
MIDN was divided into two steps: the feature extracting path
training and the whole network training. The Figure 8 shows
that the learning curves of training the network in different
strategies. The experiments of training the MIDN as a whole
show that the loss values decreased to the local minimum
points after 8 epochs training, and the loss of the validation set
decreased to 0.02775. The loss values could not decrease in
the following training, and the images show that the results
still involved a large number of out-focus points. Hence,
we adopted a two-step training strategy. At the beginning
of training, we utilized the ground truths to optimize the
feature extracting path, and froze the parameters of other parts
of MIDN. Here, the outputs of feature extracting path were
activated by sigmoid function, and calculated the losses with
ground truths by the class-balanced cross-entropy loss func-
tion. The loss values of the feature extracting path decrease
to about 0.0179 after 7 epochs, and the changes of loss values
tended to stability. Then, we unlocked all the parameters of
network and continued to train the whole network. The train-
ing was terminated after 10 more epochs. It is very important
that the final model is selected when the least validation
loss is reached, so we selected the model which was trained
by 6 epochs as shown in Figure 8(b). Compared to training
the network as a whole, the two-step strategy offered lower
training losses (0.01415) and validation losses (0.00946), and
the samples showed that the outputs reserved higher accurate
results. In this paper, the standard measurements, precision,
recall and F-Score. In this paper, the standard measurements:
precision, recall and F-Score ( 2×Precision×RecallPrecision+Recall ) of themodels
were evaluated on our datasets. In addition, we also added the
mean absolute error(MAE) which describes the pixel-wise
differences between ground truth and the results. The MAE
is calculated as:

MAE =
1

W × H

W∑
x=1

H∑
y=1

|G(x, y)−Mfinal(x, y)| (9)

where W and H represent the width and height of the images,
and x and y indicate the coordinates of the pixels respectively.
The smaller MAE, the higher the accuracy. To compare the
performance of different algorithms, we used three state-
of-the-art in-focus region detection models: BTBNet [43],
LBP [47] and MGF [46]. Because most of the objects are
fiber edges in the dataset, the state-of-the-art edge detection
models, such as BDCN [42], RCF [41], HED [40] and U-Net
[24], were also selected to compare with the MIDN.

The precision and recall results are shown on the Fig-
ure 9. The results show that the F-score of our proposed
model MIDN reaches 0.833, which is the highest when
compared with the in-focus region detection model BTB-
Net (F-score = 0.830) and the edge detection model BDCN
(F-score = 0.829). We also observed a phenomenon in which
the precision/recall curve of MIDN is not as long as the
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FIGURE 11. The comparison of test results.

TABLE 2. The MAE results and processing single image time.

other curves. This is because the activation path supplies
encouragements to the confident points and eliminates the
false points by the penalties. Although the U-Net involves
more FLOPs than the MIDN and the feature extracting path
is inherited by the U-Net, the MIDN increases the F-score
by 24.8% from the original U-Net. Figure 10 shows that the
results of the feature extraction path result and the output
path. The feature extraction path involves most of the true
points, but the topological structures of objects are coarse.
In contrast, the output path has higher accuracy, and most of
the false points are filtered. Thereby, introducing effective
features by the activation path can effectively improve the
performances of the deep learning model.

The Table 2 reports the MAE values and the speeds. The
BDCN has the lowest MAE among all the evaluated models.
Although our model (MIDN) has a slight higher MAE than
the BDCN, the MIDN takes 40.5% less time to process a
single image than the BDCN. The average speed of process-
ing one image by the MIDN is 0.094 second and it is fastest
among all the deep learning models. The LBP is a non-deep
learningmethod. Although the LBP has a shorter process time
per image (0.072s) than the MIDN (0.094s), its MAE value
(24.143) is much higher than that of the MIDN (21.501) and
F-score of LBP is much lower than our model. Figure11 pro-
vides the visual comparisons of several deep learning models
with the ground truths. The MIDN demonstrates the closest
results to the ground truths among the evaluated models.

B. DIM FOR DEPTH IDENTIFICATION
After the training of the MIDN, the testing dataset and train-
ing dataset are converted to the two sets of candidate points
maps. Here, the outputs of the MIDN supply the candidate
points and their coordinates (x, y, z), in which z refers to the
layer index, which can be converted to depth D byD = z×dδ ,
where the dδ denotes the distance between two layers. In this
paper, the radius of patches was set to 7, and the high-pass
filter was the Gaussian filter whose variance and radius were
set to 1 and 7, respectively. We generated a 3D point cloud
of the testing set to evaluate the performance of the DIM.
To verify the performance, we proposed a Euclidean distance
based measurement to evaluate the accuracy of 3D point
clouds. Because of the continuity of fibers, each section of
fibers has similar depth. It can be summarized that the fibers
in non-crossing regions can be cut into multiple short sections
and the variance of depth of points in the same fiber section
is defined by following:

S2 =

∑n (D− Di)
n

(10)

where the S2 denotes the variance between points in same
section, n indicate the points number of the section. Di and
D̄ are represent the depth of point and average depth of
this section respectively. A smaller value of S2 represents
higher continuity and higher quality of the 3D point cloud.

87866 VOLUME 8, 2020



J. Hou et al.: CNN for Extracting 3D Point Clouds of Fibrous Web

FIGURE 12. The point clouds of a test nonwoven. (a) one multi-focus image, (b)-(d) different views of the point clouds, and (e)
enlarged view of a red box area in (c).

We marked the non-crossing regions in an image manually
and cut fibers into 5-pixel length sections.

To compare the performance of the DIM with other
method, we used the sharpness calculation strategy which
is presented in [38] to find the most optimal to build the
comparison model. The coefficients S2 of 3D models which
are built by the sharpness calculation and the DIM converge
to 25.3 and 22.7, respectively. The S2 of the DIM model

is 10% lower than that of the sharpness calculation model,
meaning that the DIM can generate more continuous point
clouds with less noise than the comparison model. Figure 12
shows the 3D point clouds which are extracted by the DIM.
The 3D point clouds exhibit a complete 3D structure of the
nonwoven, even in those fiber crossing regions, and permits
more accurate quantitative analysis on porosity and fiber ori-
entations. Thus, the proposed model is effective in extracting
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3D point clouds and filtering noise from multi-focus
images.

V. CONCLUSION
In this research, we designed a multi-focus image deblurring
network (MIDN) and a depth identification module (DIM) to
extract 3D point clouds from microscopic images of a non-
woven web. The proposed network MIDN takes advantage
of U-net and introduces the gradient maps to facilitate in-
focus pixel selection. A new dataset of microscopic images
was collected to build human annotations of ground truths.
The experiments show that MIDN has better performance
than the state-of-the-art networks on the testing dataset. The
DIM combines the Fourier Transform and Gaussian kernels
to find the minimum energies among multi-focus images.
The experiments also demonstrate that DIM can deter the
noise in point clouds effectively. The hybrid MIDN and DIM
method can generate a complete, accurate 3D structures of a
nonwoven web from its microscopic multi-focus images.
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