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ABSTRACT The diagnosis of brain tumor types generally depends on the clinical experience of doctors,
and computer-assisted diagnosis improves the accuracy of diagnosing tumor types. Therefore, a convo-
lutional neural network based on complex networks (CNNBCN) with a modified activation function for
the magnetic resonance imaging classification of brain tumors is presented. The network structure is not
manually designed and optimized, but is generated by randomly generated graph algorithms. These randomly
generated graphs are mapped into a computable neural network by a network generator. The accuracy of
the modified CNNBCN model for brain tumor classification reaches 95.49%, which is higher than several
models presented by other works. In addition, the test loss of brain tumor classification of the modified
CNNBCN model is lower than those of the ResNet, DenseNet and MobileNet models in the experiments.
The modified CNNBCN model not only achieves satisfactory results in brain tumor image classification,
but also enriches the methodology of neural network design.

INDEX TERMS Convolutional neural network, complex networks, randomly generated graph, network
generator, brain tumors.

I. INTRODUCTION
In recent decades, an increasing number of hospitals have
adopted artificial intelligence methods to assist medical diag-
nosis as computer technology thrives [1]–[7], which promotes
the reform and development of intelligent medical care at
the same time [8]–[13]. Human higher neural activities such
as memory, intelligence and consciousness are controlled by
the central nervous system of the brain which is the most
complicated structure [14]. Once the tumor metastasizes to
any part of the brain, it will damage the different functions
of the human body whether it is benign or malignant [15].
In addition, brain tissue is more complex than any other part
of the body, making treatment and diagnosis difficult. Tradi-
tionally, in addition to analyzing the symptoms of a patient,
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doctors usually need physiological test results and a series
of images generated by magnetic resonance imaging (MRI,
which is a technology that sends electromagnetic waves to
an object and returns images of its internal structure [16]) to
diagnose the classification of brain tumors.

Medical image analysis is a revolution of practicability
and innovative concepts due to the rapid development of
hardware, and the use of complex mathematical tools, which
can obtain clearly visible medical images [17]. Based on
these medical images, effective image analysis can help doc-
tors diagnose and treat patients. The application of machine
learning in medical image analysis, such as support vector
machines (SVMs) and random forests, has greatly promoted
the development of computer-aided medicine [18], [19].
Since the rapid development of deep learning, medical
image analysis has made great progress, many new tech-
nologies have emerged for medical image analysis, such as
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convolutional neural networks, 3-dimensional convolutional
neural networks, and neural computing [20]–[23].

Image classification for traditional machine learning algo-
rithms, for example, SVM, is hard to implement for large-
scale training samples. In addition, they are quite likely to
fail to solve multi-classification problems. The performance
of a convolutional neural network is determined by the depth,
width, and residual connections of the network. At present,
models used for image classification are generally composed
of convolutional neural networks and are almost regularly
connected. Models with excellent performance rely on more
complex connection modes, and the connection methods of
these modes are effective. In addition, some models achieve
higher accuracy as the depth of the network increases. How-
ever, it increases production costs for industrial realization
and mobile terminal deployment.

A convolutional neural network based on complex net-
works, a new type of model for image classification, is termed
the CNNBCN model [24]. Different from traditional regu-
lar connections, the connection of the CNNBCN model is
not manually designed, but randomly generated by some
random graphs. Although CNNBCN is based on random
graphs, the nodes in these graphs are highly correlated,
not simply pure random. In addition, the network struc-
ture of these random graphs is close to the distribution of
neurons in the human brain. The CNNBCN model uses a
neural network generator to generate random neural net-
works, and the performance on classification tasks is even
better than classic convolutional neural networks. The main
task of the network generator of the CNNBCN model is to
generate a random graph and convert it into an applicable
network. The distribution of connections among nodes in
the generated graph is then applied to a network. Then,
the CNNBCN model uses a heuristic approach to convert
the generated random graph into a directed acyclic graph
(DAG). Finally, the generated DAG is mapped into the
CNNBCN model in which each neuron has a series of oper-
ations such as deconvolution, batch-normalization, and acti-
vation function processing. Therefore, the network that can
be trained directly is attained. In the experiment, a brain
tumor dataset [25] consisting of glioma, meningioma, and
pituitary tumors, is used for training. After testing, the accu-
racy of the trained model can reach 95.49% for brain tumor
classification.

The related work of this paper is as follows:
• The structural design of convolutional neural networks
has changed from simply increasing the depth and width
to exploring the complex connection modes such as
ResNet [26] and DenseNet [27]. Currently, in addition
to artificially designed more sophisticated connections,
the automatic generation of neural networks is also an
important research direction. Our work is the application
of randomly generated convolutional neural networks to
the classification of brain tumors.

• With the enhancement of medical equipment and
the promotion of deep learning, computer-aided

detection (CAD) has made rapid progress in lesion
detection, image segmentation, image registration, and
image fusion [17], [19], [20]. Our work applies a new
method based on a convolutional neural network for
medical image analysis.

• Neural network architecture search (NAS) is an algo-
rithm for finding the optimal neural network architec-
ture, which can create some network structures that have
not been explored before [24]. NASNet only allows skip
connections with one downsampling, but other types of
connections are also worth trying. The foundation of the
model on which our work relies is presented in [24],
and the skip connections in the model structure are of
multiple groups and random. It is worth exploring in
more fields, not just for brain tumor classification.

• Over the past decade, with the rise of research on com-
plex networks, random graphs have become an impor-
tant model of complex networks, called random net-
works. Applying random graphs to neural networks is
also a valuable research direction. The results of evalu-
ating the mean of mutual information for random graph
models are provided in [28]. The approach presented
in [29] uses a pre-trained CNN based on the Caffe
deep learning framework for the analysis and classifica-
tion of the random graphs and networks. The presented
CNNBCN model is based on the connection patterns
of random graph and networks to be applied to the
backbone network for feature extraction.

The rest of this paper is divided into four parts.
In Section II, the theoretical analysis of the CNNBCN
network generator is presented. Then, the structure of the
CNNBCN model is given in Section III. For verification,
brain tumor classification experiments among the CNNBCN
model and other classic image classification models are con-
ducted in Section IV. At length, in Section V, the conclusion
of the paper is summarized. In addition, the main contribu-
tions of this paper are as follows:
• In this paper, a new type of convolutional neural network
based on complex networks is applied for medical imag-
ing classification of brain tumors. It enriches practical
and effective methods for medical image analysis.

• Based on the original CNNBCN model, a combination
of activation functions is proposed to replace the original
activation functions, which improves the performance of
the CNNBCN model and the classification accuracy by
about 0.5%− 0.75%.

• The experimental results confirm that the CNNBCN
model is practical and effective. In addition, the combi-
nation of activation functions improves the performance
of the original model. A neural network generated by a
random complex network performs as well as or even
better than an artificially designed convolutional neural
network.

• The CNNBCN model provides a new idea and
method for the construction of neural networks.
Randomly generated networks reduce the manual
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intervention, provide greater exploration space for neu-
ral network structure design, and provide the potential
for better performance.

II. METHODOLOGY
In this section, the theory of randomly generated graphs and
the concept of a network generator, which is the foundation
of the CNNBCN model, are presented.

A. RANDOM GENERATED GRAPH
Constructing a randomly generated graph is the first step
of the network generator. Three algorithms for randomly
generating graphs namely, the Erdos-Renyi (ER) algorithm,
Watts-Strogatz (WS) algorithm and Barabasi-Albert (BA)
algorithm, are provided in [30]–[32] and are used to construct
the randomly generated graph.

First, the simplest representation of the ER random net-
work model is provided in [30], [33]. The total number of
generated graph nodes is denoted as VER where the subscript
ER denotes the corresponding algorithm. At each step, two
nodes are arbitrarily selected and connected with probability
p. The p is determined as

p = 2E/VER(VER − 1), (1)

where E is the number of edges, E ≤ VER(VER − 1)/2.
The process stops when the number of edges reaches E .
The crucial statistical properties of the generated graph are
obtained in the following discussions. The average degree of
the network can be written as [33]

〈κ〉 = p(VER − 1) ' pVER, (2)

where 〈·〉, κ and' represent the corresponding average value,
degree of a node, and asymptotic equality, respectively. The
degree distribution is obtained:

P(κ)ER = 3κVER−1p
κ (1− p)VER−1−κ '

VER→∞
e−〈κ〉

〈κ〉κ

κ!
. (3)

The average cluster coefficient of random networks can be
written as

3ER = p '
κ

VER
∝ V−1ER , (4)

where α ∝ β denotes that α is proportional to β. The average
distance of the nodes in random networks is obtained as
follow:

〈ζ 〉ER '
lnVER
ln 〈κ〉

∝ lnVER. (5)

Second, the WS small-world network model, which is
between the rule network and the random network, is pro-
vided in [31], [33]. Starting from a regular net model, each
edge is randomly reconnected with a probability p while
remaining as a simple graph. Consequently, each node has µ
neighbors, and the generated model is displayed as a regular
net model when p = 0. However, when 0 < p < 1,
the expectation value of the random reconnection edge is
pµVWS(VWS → ∞), where the symbol VWS indicates the

number of generated graph nodes along with the subscriptWS
denoting the related algorithm. Additionally, the generated
model is displayed between the rule and the randomness.
All edges of the model are randomly reconnected and trans-
formed into an ER random mesh model when p = 1. λ is
used to denote the constant degree value of every node in the
rule network corresponding to the small-world model. When
p = 0, the average cluster coefficient 3̂WS is defined as:

3̂WS =
3(λ− 2)
4(λ+ 1)

. (6)

When 0 < p < 1, the probability that neighbors of any
node remain unchanged is (1−p), and the probability of their
adjacency is also (1− p). Therefore, the expectation value of
the average cluster coefficient of the small-world network is
obtained:

3WS =
3(λ− 2)
4(λ+ 1)

(1− p)3. (7)

Using the mean field method to obtain the analytical expres-
sion [30]

〈ζ 〉WS (VWS, p) ≈
V 1/ϑ
WS

λ
0(pλVWS), (8)

where ϑ is the dimension of added edges and

0(θ ) =


constant, θ � 1,

4
√
θ2 + 4θ

artanh θ√
θ2+4θ

, θ ≈ 1,

ln θ
θ
, θ � 1.

When p = 0, the degree distribution of the small-world
network is the same as the rule network. The degrees of
all nodes are λ. When p > 0, since each edge retains one
unchanged endpoint, each node has at least λ/2 edges after
reconnection. The degree distribution is provided in [30]:

P(κ)WS =

ϕ(κ,λ)∑
i=0

3i
λ/2(1− p)

ipλ/2−i
(pλ/2)κ−λ/2−i

(κ − λ/2− i)!
e−pλ/2,

(9)

where

ϕ(κ, λ) = min(κ − λ/2, λ/2).

It is concluded that the degree distribution follows with a
Poisson distribution.

Third, the BA scale-free network closer to the actual com-
plex networks is presented in [32], [33]. Growth and prefer-
ence are two essential attributes of the BA scale-free network
model. The former indicates that a complex network is an
open system, that new basic units are continuously added, and
that the total number of nodes is increasing. The latter means
that the probability of a node connecting a new edge should
bemonotonously dependent on its existing degree. Themodel
presented on the basis of these two principles is expressed as
follows:

VOLUME 8, 2020 89283



Z. Huang et al.: CNNBCNs for Brain Tumor Image Classification With a Modified Activation Function

• When ε = 0, the network has ω0 nodes, and ω(ω 6 ω0)
old nodes are connected with a newly added node where
symbol ε denotes time step in the network.

• A new node is connected to the old node i with a prob-
ability that is proportional to the degree of the node.
Therefore, the connection probability is written as:∏

(τi) =
τi∑VBA−1

j=1 τj
, (10)

where symbol τi and VBA with subscript BA indicate the
concerned algorithm indicates the node i’s degree and
the number of network nodes, respectively.

• Finally, the BA scale-free network model reaches a sta-
ble evolutionary state.

The BA scale-free model degree distribution is provided by
the solution of the master equation in [34], [35]. The steady
state distribution can be written as

P(κ)BA = lim
ε→∞

P(κ, ε) = lim
ε→∞

2
w
(s/ε)

3
2 |s=w2εκ−2

= 2w2κ−3, (11)

where s means the index of a special node. Consequently,
P(κ)BA follows an exponential function [32], [33]. The aver-
age distance of the BA scale-free model changes with VBA is
provided in [30]:

〈ζ 〉BA ≈ ln (VBA)/ ln ln (VBA). (12)

The rule that the average cluster coefficient changes with the
increase of the network size ς was proposed in [36]:

3BA =
ω2(ω + 1)2

4(ω − 1)
[ln
ω + 1
ω
−

1
ω + 1

]
[ln (ς)]2

ς
. (13)

Therefore, the average clustering coefficient of the rule net-
work does not change with increasing the network size.

B. NETWORK GENERATORS
The main process steps of the network generators are
described in this section. The first step is to obtain a ran-
dom undirected graph. Three models of randomly generated
graphs were described in detail in Section II-A. To make
the network generator structured and complete, a method
that converts the generated graph to a trainable network is
presented. The complexity of a graph is determined by the
number of nodes and edges in a graph. The randomly gener-
ated graph applied in the network is defined as follows.
• ER algorithm: the initial state of the random graph
contains VER nodes and 0 edges. Each pair of nodes
of the random graph, is connected with a probability
of P. The algorithm can be written as ER(P). When
P > ln(VER)/VER, the graph has a large probability of
becoming a connected component.

• WS algorithm: in the initial state of the random graph,
a total of VWS nodes are distributed in circles. Every
node of the random graph is connected to Z/2 neighbor-
ing nodes in total (Z is an even number). Nodes in the

random graph are traversed in clockwise order. For each
node, examine the ith node connected to it. This node
is reconnected with probability P. ‘‘Reconnect’’ means
randomly selecting a node except itself to connect a node
unconnected with the current node, and the connected
edge is not a multiple edge. When 1 < i < Z/2, a new
random map is obtained after repeating the operation
Z/2 times. This algorithm can be written as WS(Z ,P).

• BA algorithm: the initial state of the random graph
contains Q (1 6 Q < VBA) nodes and 0 edges. For each
node added,Q edges are added to the random graph. The
newly added node is connected to the old nodes with
a particular probability that is related to the degree of
nodes. The algorithm terminates when the number of
nodes increases to VBA. This algorithm can be written
as BA(Q).

The second step converts the undirected graph into a
directed acyclic graph (DAG). The graphs generated by
the ER, BA, and WS algorithms are all random undirected
graphs. The generated random undirected graph is converted
to a DAG by a simple method: every node in the graph is
assigned an index, and the direction of each edge is set to
point from the node of the smaller index to the node of
the larger index. Evidently, the directed graph generated by
this algorithm has no cycle. The node indexing strategy of
the ER algorithm is that the indices are assigned randomly.
The node indexing strategy of the WS algorithm is that the
order of the index is assigned in clockwise order. The node
indexing strategy of the BA algorithm is that indices of Q
nodes in the initial random graph are assigned from 1 to Q,
and the remaining indices are assigned according to the order
in which they are added to the graph.

The third step is to map the generated DAG to a trainable
network. The network is composed of a data stream line for
transmitting data and an arithmetic module for processing the
data stream. The former forms a mapping with edges, and the
latter forms a mapping with nodes. This is consistent with
the intuitive understanding. The mapping process is divided
into edge operations and node operations. Since our goal is
mapping a directed graph to a computable neural network,
edge operations are defined as passing data streams from one
node to another. The node operations consist of the following
three steps:
• Aggregation: the input data are summed based on their
weights.

• Transformation: the results after aggregation are pro-
cessed by transformation which contains a series of
operations such as activation functions, 3 × 3 convolu-
tions, and batch normalization (BN) [37].

• Distribution: the results after transformation are trans-
mitted to the next node.

Node operations are shown in Fig. 1. The data are trans-
mitted by the previous node through four input edges. Then,
the learnable and positive weight parametersW1,W2,W3, and
W4, which are processed by the sigmoid function to make
them positive, are used to calculate the sum of the weights.
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FIGURE 1. Schematic diagram of node operations.

In addition, the aggregated data are transformed by a series
of operations such as activation functions, convolutions, and
BN. Finally, data are output to the next node through five
channels. The node operation achieves satisfactory results.
Due to aggregation, the number of channels, both input and
output, is limited.

A generating graph with edge operations and node opera-
tions is obtained. Since the number of input and output nodes
is not determined, the graph cannot be called an effective
neural network. The CNNBCNmodel is used for image clas-
sification, so we transform the generated graph into a network
with explicit input and output. A short and effective method is
used to achieve this goal. The approach is similar to streaming
network technology. An input node and an output node are
added to the graph. The original input nodes are all connected
by the new input node and receive the input data in a module.
Similarly, the original output nodes are all connected to the
new output node. These two new input and output nodes are
not convolved, and they are not counted in the total number of
nodes V . An effective neural network is attained because of
the single input nodes and output nodes. An effective neural
network is often composed of multiple parts, and each part
has a disparate structure with different tasks. Hence, it is
necessary to obtain the feature map by downsampling to
achieve network partitioning. The graph network generated
above is considered as a module. A complete and effective
neural network consists of multiple modules. Each module
is connected to other modules through its input nodes or
output nodes. Thus far, a CNNBCN model including several
modules that can be directly input into training is obtained.

C. MODIFIED MODEL
According to the previous section, a CNNBCN model con-
sisting of several modules is obtained. To optimize the gen-
erated model, a new combination of activation functions
is applied. After many rigorous tests, the combination of
activation functions composed of Gaussian error linear units
(GeLUs) [38] and Rectified linear units (ReLUs) is applied to
several modules of the model. The GeLU activation function
is applied to the first and second modules, and the ReLU
activation function is used in the remaining modules and the
classifier. The GeLU nonlinearity is the expected transforma-
tion of a stochastic regularizer that randomly applies the iden-
tity or zero map to a neuron’s input. The GeLU nonlinearity
weights are input by their magnitude, rather than gates input
by their sign as in ReLU [38]. For GeLU(x), which is assumed

FIGURE 2. Flowchart for generating the CNNBCN model.

to be a standard normal distribution, a mathematical formula
for approximate calculation is provided in [38]:

GeLU(x) = 0.5x(1+ tanh[
√
2/π(x + 0.044715x3)]).

Finally, a modified CNNBCN model that can be directly put
into training is generated.

III. STRUCTURE OF THE CNNBCN MODEL
In this section, the structure of the CNNBCN model is pre-
sented. A computable network is constructed by a network
generator in Section II-B. The generated random graph is
transformed into the DAG and then mapped into a neural
network. The random graph used to construct the neural
network is generated by ER, WS, and BA algorithms. It is
easy to understand the complete generation process of the
model in Fig. 2. A complete CNNBCNmodel is composed of
several modules. The CNNBCNmodel is divided into simple
mode and regular mode due to the complexity of the neural
networks. The number of channels in data feature extraction
is one of their differences. The former has 78 channels and the
latter has 109 channels. The structure of the CNNBCNmodel
is shown in Table 1. In the table, V refers to the number of
nodes and C denotes the number of channels. The pixel size
of the input is 224× 224 after resizing.
The structure of the CNNBCNmodel is provided in Fig. 3.

The neural network is mapped from a random graph, and all
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FIGURE 3. Structure of the CNNBCN model constructed by
WS(Z = 4, P = 0.75) algorithm.

nodes (except custom nodes) are randomly generated and dis-
tributed. Tomake the structure of the generated network more
intuitive, the nodes of the input, output, and hidden layers are
manually limited to be randomly generated within a certain
range. The custom input and output nodes are represented
by a large circular mark, and the input nodes of the random
graph are represented by regular triangle mark. An inverted
triangle means that the output nodes and random nodes in the
network are indicated by small circles. The random graph of
this model is constructed by the WS algorithm. Therefore,
the first layer is input to the random graph network through
module1, and then passes through the four random graph
networks in sequence. Finally, the final result is obtained
after passing through the classifier. Therefore, the CNNBCN
model is composed of several modules and a classifier is
obtained.

IV. COMPARATIVE EXPERIMENTS
A brain tumor dataset provided from Nanfang Hospital,
Guangzhou, China, and General Hospital, Tianjing Medical

TABLE 1. Structure of the CNNBCN model.

FIGURE 4. Sample dataset for three brain tumors.

University, China, from 2005 to 2010 is used for comparative
experiments of the models. This dataset is collected from
233 patients and consists of 708 meningioma images, 1426
glioma images, and 930 pituitary tumor images [39], [40].
The images have an inplane resolution of 512 × 512 with
a pixel size of 0.49 × 0.49 mm2. In addition, the dataset is
publicly available and can be obtained in [25]. Samples of
some brain tumors are provided in Fig. 4.

The experiment consists of three parts. The first part is a
comparison of the three generation algorithms of the orig-
inal model and the modified model. To increase the cred-
ibility of the model and the persuasiveness of the exper-
iment, the second part of the experiment is a compar-
ison of other researchers’ models on brain tumor clas-
sification using the same dataset. The last part is the
performance comparison of other effective image classi-
fication models. The number of nodes in the randomly
generated graph is set as 32. In the comparison experi-
ment, it is reasonable to choose a deeper neural network
model, because a complete CNNBCN network consists of
five modules and each module has 32 nodes. In addition,
the parameters were set to ER(P = 0.2), WS(Z = 4,
P = 0.75), and BA(Q = 5) in the three graph generation
algorithms. Due to the small number of classification labels,
the model is set to a simple mode. The loss function of
this experiment is selected as the cross-entropy loss function
[41], [42]. The experimental results are shown in Table 2,
from which the parameters are intended for evaluating
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FIGURE 5. Training and test results of the original CNNBCN model and the modified CNNBCN model generated by three algorithms: ER, WS, and BA.
(a) Comparison results of training accuracy of the modified CNNBCN model and the original CNNBCN model. (b) Comparison results of training loss of
the modified CNNBCN model and the original CNNBCN model. (c) Comparison results of test accuracy of the modified CNNBCN model and the original
CNNBCN model. (d) Comparison results of test loss of the modified CNNBCN model and the original CNNBCN model (∗ refers the modified CNNBCN
model).

the model performance of the original CNNBCN model,
the modified CNNBCN model and other models.

We separately tested the CNNBCN model and the mod-
ified CNNBCN model generated by the ER, WS, and BA
algorithms for accuracy, loss of training and test for iden-
tifying the type of brain tumor. The modified CNNBCN
model has significantly higher test accuracy than the original
model. The highest test accuracy of the original model is
94.53%, the test accuracy of the modified model increases by
0.5%− 0.75% on average, and the highest accuracy reaches
95.49%. The modified CNNBCN model achieves satisfac-
tory experimental results with the combination of GeLU and
ReLU activation functions. Specifically, subfigures (a)-(d)
in Fig. 5 provide more training and test information about
the original model and the modified model, respectively.
The modified CNNBCN model uses less training time to
reach the convergence state, as can be seen in subfigures
(a)-(b). Besides, the comparison results between the modified
CNNBCN model and the original CNNBCN model in terms
of test accuracy and test loss are given in subfigures (c)-(d)
from which it is clear to see that the modified model is better
than the original model.

Some models presented by other researchers for brain
tumor image classification are provided in Table 2. Since
these models use the same dataset as our models, they are in

appropriate contrast. ThemodifiedCNNBCNmodel achieves
better results compared to other works. In addition, the test
accuracy of the modified CNNBCN model and other perfor-
mance parameters are better than those of the other presented
models. The experimental results compared with other classic
convolutional neural network models are shown at the bottom
of Table 2. From this table, the results of training and test are
visually presented. The modified CNNBCNmodel generated
by the randomly generated graph algorithm achieves satisfac-
tory results. Their training accuracy rates are all 100%, and
the test accuracy rates are all above 95%. In comparison with
other image classification models, the modified CNNBCN
model also achieves a higher ranking. The test loss of the
CNNBCN model is minimal in comparison with other image
classification models. In particular, the training time of the
modified CNNBCN model is lower than that of other con-
volutional neural network models of the same depth, such
as ResNet-151 and DenseNet-161. In addition, the test accu-
racy of the modified CNNBCN model is higher than that of
EfficientNet-b0 which is equipped with the strongest image
classification performance in Table 2. The results show that
the modified CNNBCN model generated by the randomly
generated graph algorithm achieves satisfactory results in
the classification of brain tumor images, which provides a
feasible prospect for the construction of neural networks.
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TABLE 2. Comparisons of training accuracy, test accuracy, training loss and test loss among the CNNBCN model and the modified CNNBCN models
generated by three random graph generation algorithms, several models proposed by other work, and other image classification models.

V. CONCLUSION
The convolutional neural network based on complex net-
works with a modified activation function for image classi-
fication of brain tumors, abbreviated as CNNBCN, generated
by ER, WS, and BA algorithms has been presented in this
paper. Experimental results have shown that the classifica-
tion accuracy of the original CNNBCN model and mod-
ified model are better than some manually designed neu-
ral networks. In addition, its performance is comparable to
one of the best current image classification models. The
CNNBCN model has not only achieved satisfactory results
in the field of brain tumor image classification, but also
provided a reference for the design of network structures.
The construction of neural networks by using connectomes
of animals and even humans will be considered in our future
work.
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