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ABSTRACT Reversible data hiding (RDH) algorithm is developing rapidly for many years. Usually,
the histogram shifting (HS) based RDH algorithm has two main steps: Firstly, a steep difference histogram is
generated with some effective methods for difference. Secondly, by extending and shifting some differences
in the histogram, bits of information can be embedded into the cover image which can be restored reversibly.
In this paper, we proposed the second-order difference to obtain a steeper difference histogram. Firstly,
we slide a window with size 2 × 2 through the image. For each block, we can get the two first-order
differences by calculating the absolute values of the two differences for its two columns. Thus, the second-
order difference of each block, which is the absolute values of the difference of the two first-order differences,
can be obtained. By extending and shifting the second-order difference, a bit may be embedded into the
block finally. Experiments reveal that the proposed algorithm outperforms the previous state-of-the-art RDH
methods in terms of the computational complexity, image distortion and the embedding performance.

INDEX TERMS Difference expanding, cover image, histogram shifting, reversible data hiding, the second-
order difference, watermarking.

I. INTRODUCTION
Information security is becoming more and more important
as the rapid development of information technology, so data
hiding (DH) technology is becoming the best method to
protect the information transmitted through public media
[1], [2], where secret message is embedded into a cover
digital medium such as image, video or text to produce a
corresponding marked-medium. Usually, image is taken as
the embedding cover medium to hide data. Recently, DH
schemes are classified into two main types: irreversible data
hiding (IDH) schemes [3], [4] and RDH schemes [5], [6].
For someDH applications, such as a communication, medical
[7] ormilitary application, their original imagemust be recov-
ered without any distortion, so RDH methods are developed
rapidly for the recipient cannot completely recover the cover
image with the IDH schemes. In general, the existing RDH
algorithms can be classified into three groups: difference
expansion (DE), HS and encrypted RDH methods.
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The DE method is first proposed by Tian [8], where
the difference between two adjacent pixels is expanded to
embed a secret message. However, it will suffer from unde-
sirable distortion for embedding a location map. Then, Alat-
tar developed it for color image data hiding [9], where the
differences of four pixels are employed to embed 3 secret
message bits and improved the embedding capacity (EC).
And to improve the distortion performance at low embedding
capacities, Thodi et al. [10] embedded data with predic-
tion error expansion (PEE) method instead of DE method,
which makes use of the correlations among the adjacent.
Later, Zhang et al. [11] computed the values of pairs of dif-
ference to generate a two-dimensional-difference histogram,
and designed a specifically difference-pair-mapping (DPM)
to hide data. In 2013, Ou et al. developed PEE to two
dimensional-prediction-error expansion [12]. To obtain a
sharp PE histogram and enhance the embedding performance
Hu et al. [13] optimized histograms modification scheme to
propose a minimum rate criterion RDH algorithm. To make
better use of the pairs of difference with high frequen-
cies, Xue et al. [14] proposed a difference pair mapping
(DPM)RDHmethod, which employs a fine adjusting strategy
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for the optimization of embedding. In [15], Wang et al.
introduced a DE scheme to resist unintentional attacks. To
enhance the quality of the marked image, Maniriho et al. [16]
reduced DE to introduce a pixel-block based RDH method.
Xiao et al. [17] optimize the path of expansion bins selection
according to a specific division for two dimensional predic-
tion error histogram, and with these optimal expansion bins,
they can adaptively determine the histogram modification
mapping. Recently, various DE-based RDH algorithms are
developed rapidly [18]–[21].

Ni et al. [22] proposed the first HS based RDH algorithm,
which employed the high frequencies in image histogram
for embedding data. Nevertheless, it has low EC for the his-
togram of cover image. To fully make use of the correlations
among the adjacent pixels, Hong et al. [23] improved the
prediction accuracy with a set of basic pixels for embed-
ding payload. Then, by changing the order of the Markov
model, Wang et al. [24] designed a HS scheme to achieve an
efficient tradeoff between the quality of marked image and
EC. In [25], Li et al. designed a HS technique to construct
some special shifting and embedding functions so that some
conventional HS algorithms can be taken as specific cases.
Unlike the previous methods, Zhang et al. [26] collected the
pixels with a given complexity to generate a prediction error
histogram (PEH), and adaptively selected the expansion bins
to minimize the embedding distortion. In [27], Kim et al.
employ the median edge detection to generate the predicted
image of cover image so that the secret data can be embedded
into the peak points. Later, Wang et al. [28] introduced a
rate and distortion optimization model and employed genetic
algorithm to search the nearly optimal zero and peak bins for
the improvement of EC and the quality of marked image.
To increase the quality of the marked image, Kumar et al.
[29] construct the segments of size 2, 3, 4 and 5 elements
based on the human visual and then secret data is embedded in
them. Wang et al. [30] use fuzzy C-means (FCM) clustering
method to classify the cover carriers into different clusters for
building the multiple histograms. Recently, other HS-based
RDH algorithms are developed [31]–[33].

By embedding the secret data into an encrypted image, the
encrypted-image based RDH scheme was firstly proposed by
Zhang et al. [34]. Then, by using public key cryptosystem,
Chen et al. [35] presented an encrypted signal-based RDH
scheme according to Paillier homomorphic encryption, which
improved the payload and signal quality. In [36], the secret
data were embedded into the encrypted image with additive
modulo 256 for encryption, and the secret data were extracted
and the cover image was restored with preserved mean value.
Later, Zhou et al. [37] embedded secret data into an encrypted
image with a public key modulation mechanism. And using
compressive sensing and discrete fourier transform, Xin et al.
[38] could embed secret data into an encrypted image, which
employs both real and imaginary coefficients to recover the
original image and provides flexible payload. In the recent
years, many other RDH algorithms and effective encrypted
RDH algorithms are developed [39]–[41].

For the encrypted technique, the encrypted image is first
obtained from the original image with a special encryption
method, which is taken as a cover image to embed secret
data by a DE or HS embedding method. And for HS-based
technique, it selects pairs of peak and zero bins from the
histogram to be expanded for embedding and shifts other
bins. Generally,DE-based technique selects the peak and zero
bins at the center and tail of the histogram for embedding,
so it can be taken as a special HS-based technique. As we
know, the performance of HS-based RDH algorithm relies
heavily on the steepness of histogram and the method for the
decision of the pairs of peak and zero bins. To obtain a steeper
histogram, a novelHS-based RDH based on the second-order
difference expansion (SODE) is proposed.
Next, we’ll organize this paper as: the related works will

be described in Section 2. Section 3 will introduce the basic
fundamentals of our new scheme. Then, we will discuss and
analyze the parameters of our new scheme in Section 4. The
comparative experiments and analysis will be carried out in
Section 5. And Section 6 will summarize the conclusions.

II. RELATED WORKS
Two DE-based RDH algorithms will be discussed in this
section.

A. OU et al.’s PAIRWISE ALGORITHM [12]
In a cover image, the prediction error of each pixel xi is
calculated by

ei = xi − x̂i (1)

where x̂i is the prediction of xi calculated with a particular
strategy. So, the PEH can be generated with

h (k) = #{1 ≤ i ≤ N : ei = k} (2)

where # is the frequency of prediction errors. Then the predic-
tion error ei can be expanded to embed one secret bit b or not
by

e′i =


2ei + b, ei ∈ [−T ,T )
ei + T , ei ∈ [T ,+∞)
ei − T , ei ∈ [−∞,−T )

(3)

where T is an integer parameter to control the embedding
capacity. With the prediction error sequence (e1, e2, . . . eN ),
Ou et al. got the pair of prediction error sequence
(e′1, e′2, . . . e′N/2) by

e′i = (e2i−1, e2i) (4)

Then, they can generate the 2 dimensional prediction error
histogram (2D-PEH) with

h (k1, k2) = #{1 ≤ i ≤ N
/
2 : e2i−1 = k1, e2i = k2} (5)

By expanding and shifting the pairwise errors, Ou et al.
embedded secret bits in the pairwise errors as Fig. 1 when
T = 1 in (3).

85368 VOLUME 8, 2020



W. Wang, W. Wang: New High Capacity Reversible Data Hiding Using the Second-Order Difference Shifting

FIGURE 1. Modification mappings for Ou et al.’s PEE with T = 1. The
dotted arrow denotes the expansion of the pairwise prediction errors for
embedding, and the solid arrow indicates the shift of the pairwise
prediction errors.

FIGURE 2. 2D-PEH of the first quadrant of Fig. 1 and the rectangle region
of its lower triangle region.

B. XIAO et al.’s PAIRWISE ALGORITHM [17]
To improve the embedding performance and take full advan-
tage of the redundancy of the cover image, Xiao et al.
divided the 2D-PEH in Fig. 1 into three regions: the upper
triangular region, the diagonal region and lower triangular
region. Then, each of the triangle regions was converted
into a rectangular region with coordinate transformation.
Taking the first quadrant of the 2D-PEH in Fig. 1 as an
example, the coordinate transformations of other quadrants
were the same. The lower triangle region in the left of
Fig. 2 transformed into the rectangle region in the right of
Fig. 2 by {

e′2i−1 = e2i−1 − e2i − 1
e′2i = e2i

(6)

III. THE PROPOSED METHOD
To take advantage of the correlations within predic-
tion errors, the 2D-PEH methods in the related works
expand or shift bins in two directions, which provided
lessons for our new algorithm. However, their PEH will
not be changed, so their embedding performances are
not significantly improved. Based on the idea of pair-
wise prediction error methods, we use two pairs of dif-
ference errors to form a second-order difference to obtain
the steeper distributed histogram for the better embedding
performance.

FIGURE 3. The sliding window swij of the pixel pij. (a) is the sliding
window swij scanning at the location (i, j) of the image I, and (b) is the
enlarged window swi,j.

A. SECOND-ORDER DIFFERENCE
For a cover image I with size w × h, where w and h are the
width and height of I respectively, a sliding window swi,j with
size 2 × 2 slides over the image I in raster scanning order
as shown in Fig. 3. When it slides to the pixel pi,j, which is
the pixel at the location (i, j) of image I , the sliding window
includes the four pixels (pi,j, pi,j+1, pi+1,j, pi+1,j+1). Then the
first-order differences (e1i,j, e2i,j) can be obtained by{

e1i,j = abs
(
pi,j − pi+1,j

)
e2i,j = abs(pi,j+1 − pi+1,j+1)

(7)

where function abs(x) returns the absolute value of the vari-
able (x). Then we can get the second-order difference with

di,j = abs(e1i,j − e2i,j) (8)

Let k = i∗ (h− 1)+ j, then, we can get the second-order dif-
ference sequence (d1,1, d1,2, . . . dh−1,w−1), which can be used
to generate the second-order difference histogram (SODH)
for embedding. So, the second-order difference occurrences
are counted and the corresponding SODH is defined as:

hs (k) = #{1 ≤ i ≤ N : di,j = k} (9)

where # is the frequency of the second-order difference
sequence.

As far as we know, there is a great relationship between
the difference histogram distribution and the embedding per-
formance. The steeper the SODH distribution is, the smaller
the image distortion is namely the better the embedding
performance of the algorithm is. Moreover, the steepness of
the SODH for a cover image can be expressed by standard
deviation. According to Eq. (1), the steepness of the related
works can be calculated by

σe1 =

√
1

(w−1)×(h−1)

∑h−1

i=1

∑w−1

j=1
(e1i,j−e1)

2
(10)

σe2 =

√
1

(w−1)×(h−1)

∑h−1

i=1

∑w−1

j=1
(e2i,j−e2)

2
(11)
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FIGURE 4. The PEHs and SODH of gray-scale image Lena. (a) Adjacent
difference PEH, (b) SODH, (c) Rhombic difference PEH.

where ē1 and ē2 are means of the first-order difference
sequences (e11,1, e11,2, . . . e1h−1,w−1) and (e21,1, e21,2, . . .
e2h−1,w−1) respectively. And based on Eq. (8), the steepness
of the proposed method can be calculated by

σd =

√
1

(w− 1)× (h− 1)

∑h−1

i=1

∑w−1

j=1
(di,j − d̄)

2 (12)

where d̄ is the mean of the second-order difference sequence
(d1,1, d1,2, . . . dh−1,w−1).

Second-order difference makes use of the correlation
among 4 adjacent pixels, while first-order difference only
makes use of the correlation between 2 adjacent pixels, so the
correlation of second-order difference is higher than the first-
order difference. To further improve the correlation, some

FIGURE 5. The second-order difference expansion. To turn the
second-order difference into an even number for embedding secret bits,
the pixel pair with the larger first-order difference was expanded by half
of the second-order difference in both directions. (a) e1i,j ≥ e2i,j (b)
e1i,j < e2i,j.

literatures make use of rhombus prediction error, but the pixel
values are changed considerably when we expand the bins,
which will increase the distortion of the cover image. For
example, for the standard deviation of the standard gray-scale
image Lena with size 512 × 512, its standard deviations of
first-order adjacent pixel prediction error, rhombic prediction
error and the second-order difference are 71.9, 26.0 and 39.2
respectively. The PEHs and SODH of the image Lena are
tested as Fig. 4. The standard deviation of the second-order
difference is greater than that of the rhombic prediction error,
and its histogram is closed to that of rhombic prediction
error, rhombic prediction error can only be extended in one
direction, that will change the pixels considerably, while
second-order difference can use the bidirectional expansion
embedding method as following, so it will result in low
distortion.

B. BIDIRECTIONAL DIFFERENTIAL EXPANSION AND
EMBEDDING
Based on SODH, we select some highest bins for expansion
embedding while shift the other bins to create vacancies,
so, for each second-order difference di,j, the marked second-
order difference d ′i,j is calculated by

d ′i,j =

{
2di,j + b di,j ∈ [0,T ]
di,j + T + 1 di,j > T

(13)

where b ∈ {0, 1} is the secret bit to be embedded, and
T is a non-negative integer parameter used to control the
embedding capacity. To further reduce the distortion in the
embedding process, we divide the expanded difference by
halves and assign them to the pixel pair with a larger first-
order difference, respectively, as shown in Fig. 5. So, the four
marked pixels of the two pixel pairs used to calculate the
second-order difference di,j can be obtained with

(
p′i,j, p

′

i+1,j

)
85370 VOLUME 8, 2020



W. Wang, W. Wang: New High Capacity Reversible Data Hiding Using the Second-Order Difference Shifting

=



(
pi,j, pi+1,j

)
e1i,j < e2i,j(

pi,j +
⌊
di,j
/
2
⌋
+ b, pi+1,j −

⌈
di,j
/
2
⌉)

e1i,j ≥ e2i,j, pi,j ≥ pi+1,j, di,j ∈ [0,T ](
pi,j −

⌊
di,j
/
2
⌋
− b, pi+1,j +

⌈
di,j
/
2
⌉)

e1i,j ≥ e2i,j, pi,j < pi+1,j, di,j ∈ [0,T ](
pi,j +

⌊
T
/
2
⌋
+ 1, pi+1,j −

⌈
T
/
2
⌉)

e1i,j ≥ e2i,j, pi,j ≥ pi+1,j, di,j > T(
pi,j −

⌊
T
/
2
⌋
− 1, pi+1,j +

⌈
T
/
2
⌉)

e1i,j ≥ e2i,j, pi,j < pi+1,j, di,j > T

(14)

(
p′i,j+1, p

′

i+1,j+1

)

=



(
pi,j+1, pi+1,j+1

)
e1i,j ≥ e2i,j(

pi,j+1 +
⌊
di,j
/
2
⌋
+ b, pi+1,j+1 −

⌈
di,j
/
2
⌉)

e1i,j < e2i,j, pi,j+1 ≥ pi+1,j+1, di,j ∈ [0,T ](
pi,j+1 −

⌊
di,j
/
2
⌋
− b, pi+1,j+1 +

⌈
di,j
/
2
⌉)

e1i,j < e2i,j+1, pi,j < pi+1,j+1, di,j ∈ [0,T ](
pi,j+1 +

⌊
T
/
2
⌋
+ 1, pi+1,j+1 −

⌈
T
/
2
⌉)

e1i,j < e2i,j+1, pi,j ≥ pi+1,j+1, di,j > T(
pi,j+1 −

⌊
T
/
2
⌋
− 1, pi+1,j+1 +

⌈
T
/
2
⌉)

e1i,j < e2i,j+1, pi,j < pi+1,j+1, di,j > T
(15)

Based on this embedding method, some marked pixels
may be beyond the range [0,255] of gray-scale image pixel.
That means they encounter the overflow/underflow problem.
For brevity, to deal with the overflow/underflow problem,
the same method as [12] was used in our proposed algorithm.

C. BIDIRECTIONAL DIFFERENTIAL COMPRESSION AND
EXTRACTION
Similarly, for a marked image I ′ with size w×h, where w
and h are the width and height of I ′ respectively, a slid-
ing window swi,j with size 2× 2 slides over image I ′ in
the reverse order of Fig. 3. When it slides to the marked
pixel p′i,j, which is the pixel at the location (i, j) of the
marked image I ′, the sliding window includes the four pixels
(p′i,j, p

′
i,j+1, p

′
i+1,j, p

′
i+1,j+1). So the marked pairwise dif-

ference (e1′i,j, e2′i,j) can be obtained by{
e1′i,j = abs

(
p′i,j − p

′
i+1,j

)
e2′i,j = abs(p′i,j+1 − p

′
i+1,j+1)

(16)

Then we can get the second-order difference with

d ′i,j = abs(e1′i,j − e2′i,j) (17)

According to Fig. 5, an expanded difference d ′i,j must be
even before a secret bit is embedded in as the difference is
doubled in both directions. Based on Eq. (14) and (15), if a
secret bit 1 is embedded, it must be odd. So, if the marked
second-order difference d ′i,j ∈ [0, 2T + 1], we can extract
the embedded bit and compress the marked second-order

difference d ′i,j as {
b = mod

(
d ′i,j, 2

)
di,j =

⌊
d ′i,j

/
2
⌋ (18)

The function mod(x, y) returns the modulus after division of
x by y. Then, the cover pixels can be restored as(
pi,j, pi+1,j

)

=



(
p′i,j, p

′
i+1,j

)
e1′i,j < e2′i,j(

p′i,j −
⌊
di,j
/
2
⌋
− b, p′i+1,j +

⌈
di,j
/
2
⌉)

e1′i,j≥e2′i,j, p′i,j ≥ p
′

i+1,j, d
′
i,j ∈ [0, 2T + 1](

p′i,j +
⌊
di,j
/
2
⌋
+ b, p′i+1,j −

⌈
di,j
/
2
⌉)

e1′i,j≥e2′i,j, p′i,j<p
′

i+1,j, d
′
i,j ∈ [0, 2T + 1](

p′i,j −
⌊
T
/
2
⌋
− 1, p′i+1,j +

⌈
T
/
2
⌉)

e1′i,j ≥ e2′i,j, p′i,j ≥ p
′

i+1,j, d
′
i,j > 2T(

p′i,j +
⌊
T
/
2
⌋
+ 1, p′i+1,j −

⌈
T
/
2
⌉)

e1i,j ≥ e2i,j, p′i,j < p′i+1,j, d
′
i,j > 2T

(19)

(
pi,j+1, pi+1,j+1

)

=



(
p′i,j+1, p

′
i+1,j+1

)
e1′i,j ≥ e2′i,j(

p′i,j+1 −
⌊
di,j
/
2
⌋
− b, p′i+1,j+1 +

⌈
di,j
/
2
⌉)

e1′i,j < e2′i,j, p′i,j+1 ≥ p
′

i+1,j+1, d
′
i,j ∈ [0, 2T + 1](

p′i,j+1 +
⌊
di,j
/
2
⌋
+ b, p′i+1,j+1 −

⌈
di,j
/
2
⌉)

e1′i,j < e2′i,j, p′i,j+1 < p′i+1,j+1, d
′
i,j ∈ [0, 2T + 1](

p′i,j+1 −
⌊
T
/
2
⌋
− 1, p′i+1,j+1 +

⌈
T
/
2
⌉)

e1′i,j < e2′i,j, p′i,j+1 ≥ p
′
i+1,j+1, d

′
i.j > 2T(

p′i,j+1 +
⌊
T
/
2
⌋
+ 1, p′i+1,j+1 −

⌈
T
/
2
⌉)

e1′i,j < e2′i,j, p′i,j+1 < p′i+1,j+1, d
′
i,j > 2T

(20)

D. EMBEDDING CAPACITY AND DISTORTION
For the pixel pi,j, after embedding 1 bit of information,
di,j+1 may be changed, the probabilities of its value increas-
ing or decreasing are 50 percent respectively. Based on the
above embedding process as shown in Eq. (14) and Eq. (15),
when di,j = k ∈ [0,T ], we can embed a bit into two pixels,
thus, the embedding capacity (EC) can be approximated as

EC =
∑T

k=0
hs(k) (21)

where hs (k) is the second-order difference occurrences as
shown in Eq. (9). In terms of probability, half of the embed-
ding bits are ‘0’s, and the other half of them are ‘1’s. So, its
embedding distortion (ED) can be approximated as

ED =
T∑
k=0

1
2

(((⌊
k
2

⌋)2

+

(⌈
k
2

⌉)2
)
+

((⌊
k
2

⌋
+ 1

)2

+

(⌈
k
2

⌉)2
))

hs (k)+ T 2
+∞∑

k=T+1

hs (k)
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=

T∑
k=0

(
1
2

((⌊
k
2

⌋)2

+

(⌊
k
2

⌋
+ 1

)2
)
+

(⌈
k
2

⌉)2
)

× hs(k)+ T 2
+∞∑

k=T+1

hs (k) (22)

E. EMBEDDING ALGORITHM
Given gray-scale image I and a non-negative integer param-
eter T , the embedding algorithm as follows Step 1 It scans
image I in raster scanning order.
Step 2 For the current pixel pi,j and its corresponding pixel

block
(
pi,j, pi+1,j, pi,j+1, pi+1,j+1

)
, its first-order differences

(e1i,j, e2i,j) are obtained by Eq. (7).
Step 3 For the current pixel pi,j, its second-order difference

di,j is obtained by Eq. (8).
Step 4 It continues with steps 2-3 until all the pixels have

been calculated.
Step 5 The SODH of cover image I is obtained by Eq. (9)
Step 6 According to this SODH, the threshold value T is

determined with Eq. (21). (Note: as Eq. (21) is an approxi-
mate equation, the selected value for T in step 6 should be
1 or 2 bigger than that from Eq. (21).)

Step 7 It scans image I again in raster scanning order.
Step 8 For the current pixel pi,j and its second-order dif-

ference di,j, the corresponding marked pixels are calculated
with Eq. (14) and (15).

Step 9 It continues to calculate all the pixels according to
steps 7, and finally we get the marked image I ′.
To understand the embedding process of our proposed

scheme, we take an image block sized 10 × 10 from image
Lena to embed the bits of information, as shown in Fig. 6. The
image block from the hat of image Lena is shown as Fig. 6 (a),
the first three specific examples, where the threshold T = 5,
are given as follows.
Example 1: For pixel p1,1, its first-order difference e11,1

and e21,1 are calculated as e11,1 = abs (86− 84) = 2 and
e21,1 = abs (107− 77) = 30, so its second-order difference
is calculated as d1,1 = abs (2− 30) = 28. According to
Eq. (14) and (15), its second-order difference is greater than
threshold T , so the marked pixels are calculated as p′1,1 =
p1,1 = 86, p′2,1 = p2,1 = 84, p′1,2 = p1,2 + bT/2c + 1 =
107 + 2 + 1 = 110, p′2,2 = p2,2 −

⌈
T
/
2
⌉
= 77 − 3 = 74.

Here, no bit of information is embedded. Note, in Fig. 6 (d),
the pixel p22 has been modified as 87, because it is calculated
again when we scan the second line.
Example 2: According to example 1, pixels p1,2 = 107

and p2,2 = 77 have been modified as p1,2 = 110 and
p2,2 = 74. For pixel p1,2, its first-order differences e11,2 and
e21,2 are calculated as e11,2 = abs (110− 74) = 36 and
e21,2 = abs (104− 65) = 39, so its second-order difference
is calculated as d1,2 = abs (36− 39) = 3. According to
Eq. (14) and (15), its second-order difference is less than
threshold T , so the marked pixels are calculated as p′1,2 =
p1,2 = 110, p′2,2 = p2,2 = 74, p′1,3 = p1,3+

⌊
d1,2/2

⌋
+b =

FIGURE 6. An example with T = 5. (a) an image block from image Lena,
(b) pairwise difference e1i,j and e2i,j with Eq. (7), (c) the second-order
difference di,j with Eq. (8), and the secret bits b, where x denote no any
bit of information, (d) the embedding results with Eq. (14) and (15).

104+ 1+ 1 = 106, p′2,3 = p2,3−
⌈
d1,2

/
2
⌉
= 65− 2 = 63.

Here, one bit ‘1’ of information is embedded.
Example 3: According to example 2, pixels p1,3 = 104

and p2,3 = 65 have been modified as p1,3 = 106 and
p2,3 = 63. For pixel p1,3, its first-order differences e11,3 and
e21,3 are calculated as e11,3 = abs (106− 63) = 43 and
e21,3 = abs (111− 76) = 35, so its second-order difference
is calculated as d1,3 = abs (43− 35) = 8. According to
Eq. (14) and (15), its second-order difference is greater than
threshold T , so the marked pixels are calculated as p′1,3 =
p1,3+bT/2c+1 = 106+2+1 = 109, p′2,3 = p2,3−

⌈
T
/
2
⌉
=

63 − 3 = 60, p′1,4 = p1,4 = 111, p′2,4 = p2,4 = 76. Here,
no bit of information is embedded.
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If we keep on doing that, the embedding results are
obtained as Fig. 6. The first-order differences e1i,j and e2i,j
obtained by Eq. (7) are shown as the blocks in Fig. 6 (b)
respectively, so the second-order differences di,j obtained by
Eq. (8) is shown as the left block in Fig. 6 (c). If we use the
randomly selected bits shown as the right block in Fig. 6 (c),
then the embedded results with Eq. (14) and (15) is shown
in Fig. 6 (d).

F. EXTRACTING ALGORITHM
After receiving the marked gray-scale image I ′, we can
extract the bits of information and restore the cover image
I as following:
Step 1 It scans the marked image I ′ in the reverse order of

Fig. 3.
Step 2 For the current marked pixel p′i,j and its correspond-

ing pixel block
(
p′i,j, p

′
i+1,j, p

′
i,j+1, p

′
i+1,j+1

)
, its first-order

differences (e1′i,j, e2′i,j) are obtained by Eq. (16).
Step 3 For the current marked pixel p′i,j, its second-order

difference d ′i,j is obtained by Eq. (17).
Step 4 The embedded bit b is extracted and the second-

order difference di,j is compressed respectively with Eq. (18).
Step 5 The cover pixels can be restored with Eq. (19) and

(20).
Step 6 It continues with steps 1-4 until all the pixels have

been calculated.
Step 7 The cover image I and embedded bits of informa-

tion are obtained.
To understand the extraction process of our proposed

scheme, we take the above pixel block in image Lena to
extract the bits of information and recover the cover pixel
block, as shown in Fig. 6. The image block from the hat of
image Lena is shown as Fig. 6 (a), the last three specific
examples, where threshold T = 5, are given as follows.
Example 4: According to the above embedding examples,

the third pixel p′1,3 from the end is the current marked pixel,
and its corresponding pixel block

(
p′1,3, p

′
2,3, p

′
1,4, p

′
2,4
)
is

(109, 60, 111, 76). So, its first-order differences e1′1,3 and
e2′2,3 are calculated as e1′1,3 = abs (109− 60) = 49 and
e2′1,3 = abs (111− 76) = 35 with Eq. (16). Based on the
Eq. (17), its second-order difference is calculated as d ′1,3 =
abs (49− 35) = 14, which is more than twice the threshold
T . Based on Eq. (18), no bit of information is extracted.
According to Eq. (19) and (20), the pixels can be restored
as p1,3 = p′1,3 −

⌊
T
/
2
⌋
− 1 = 109 − 2 − 1 = 106,

p2,3 = p′2,3 +
⌈
T
/
2
⌉
= 60 + 3 = 63, p1,4 = p′1,4 = 111

and p2,4 = p′2,4 = 76.
Example 5: According to example 4, the values of pix-

els p′1,3 and p′2,3 should be 106 and 63. So the sec-
ond pixel p′1,2 from the end is the current marked pixel,
and its corresponding pixel block

(
p′1,2, p

′
2,2, p

′
1,3, p

′
2,3
)
is

(110, 74, 106, 63). So, its first-order differences e1′1,2 and
e2′1,2 are calculated as e1′1,2 = abs (110− 74) = 36 and
e2′1,2 = abs (106− 63) = 43 with Eq. (16). Based on
Eq. (17), its second-order difference is calculated as d ′1,2 =

abs (36− 43) = 7, which is less than twice the threshold T .
Based on Eq. (18), a bit b = mod (7, 2) = 1 of information
is extracted, and the second-order difference is calculated as
d1,2 =

⌊
7
/
2
⌋
= 3. According to Eq. (19) and (20), the pixels

can be restored as p1,2 = p′1,2 = 110, p2,2 = p′2,3 = 74,
p1,3 = p′1,3 −

⌊
d1,2

/
2
⌋
− b = 106 − 1 − 1 = 104 and

p2,3 = p′2,3 +
⌈
d1,2

/
2
⌉
= 63+ 2 = 65.

Example 6 According to example 5, the values of pix-
els p′1,2 and p′2,2 should be 104 and 65. So the last pixel
p′1,1 is the current marked pixel, and its corresponding
pixel block

(
p′1,1, p

′
2,1, p

′
1,2, p

′
2,2
)
is (86, 84, 110, 74). So,

its first-order differences e1′1,1 and e2′1,1 are calculated as
e1′1,1 = abs (86− 84) = 2 and e2′1,1 = abs (110− 74) =
36 with Eq. (16). Based on the Eq. (17), its second-order
difference is calculated as d ′1,1 = abs (2− 36) = 34, which
is more than twice the threshold T . Based on Eq. (18), no bit
of information is extracted. According to Eq. (19) and (20),
the pixels can be restored as p1,1 = p′1,1 = 86, p2,1 =
p′2,1 = 84, p1,2 = p′1,2 −

⌊
T
/
2
⌋
− 1 = 110− 2− 1 = 107

and p2,2 = p′2,2 +
⌈
T
/
2
⌉
= 74+ 3 = 77.

IV. DISCUSSIONS
In this paper, we use the peak signal-to-noise-ration (PSNR)
to assess the performance of the RDH schemes. The mean
square error (MSE) can be calculated as

MSE =
1

w× h

w−1∑
i=0

h−1∑
j=0

(p′i,j − pi,j)
2 (23)

So PSNR can be calculated as

PSNR = 10log10

(
(255)2

MSE

)
= 20log10

(
255
√
MSE

)
(24)

A. THRESHOLD T
As shown in Fig. 4 (b) as well as the Eq. (14) and (15), the EC
and ED of our proposed algorithm depend on the parameter
T . We select eight standard 512 × 512 gray-scale images as
shown in Fig. 7 to test the relation among T , EC and ED, and
Table 1 lists the experimental results.

Let us consider image Lena, when threshold T is 1, 5,
10, 15 and 20, respectively, the EC is 108236, 212024,
252279 and 256408 bit, respectively, and their PSNR is 49.7,
43.7, 41.2, 40.4 and 39.7 dB, respectively. So, EC increases
with T , and it is increasing more slowly than T does, while
ED decreases with T , but it is decreasing more slowly than T
does. The same results are obtained when we experiment on
the other images shown in Fig. 7.

To further observe this relationship, four of the eight stan-
dard images were selected for further experiments under the
condition of more T values. The experimental results are
shown in Fig. 8. When T ≤ 3, EC increases rapidly as T
increases and ED decreases rapidly as T increases. When
T > 3, with the increasing of T , EC increases slowly and
ED decreases slowly too. And for most applications, T ≤ 3
is sufficient.
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FIGURE 7. Eight standard 512× 512 gray-scale images, which are Lena,
Peppers, Bird, Baboon, Barbara, Chimney, House and Beach respectively.

B. PAYLOAD-LIMITED EMBEDDING
In an application, the payload EC is usually fixed and the
corresponding ED is minimized. Based on Eq. (21) and (22),
the proposed method can be considered as the following
optimal problem

min ED =
T∑
k=0

(
1
2

((⌊
k
2

⌋)2

+

(⌊
k
2

⌋
+ 1

)2
)

+

(⌈
k
2

⌉)2
)
hs (k)+T 2

+∞∑
k=T+1

hs (k)

s.t.
∑T

k=0
hs(k) ≥ EC

(25)

For a given payloadECwhileminimizing theED, our optimal
problem is to determine the minimal threshold T . Taking
image Lena as an example shown in Table 1 and Fig. 8, the T s

TABLE 1. The relation between threshold T and EC for different standard
images with our proposed algorithm.

FIGURE 8. The effect of T on the proposed algorithm for four of the
standard images in Fig. 7. (a) The relation between EC and T, (b) The
relation between PSNR and T.

are 1, 5, and 15 respectively whenECs are 95000, 110000 and
250000 bits respectively.

V. EXPERIMENTS AND ANALYSIS
To evaluate the performance of our proposed algorithm,
we experiment it on the eight standard gray-scale mages with
size 512 × 512 shown in Fig. 7, 100 gray-scale images with
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FIGURE 9. Performance comparison of our proposed algorithm with other related RDH algorithms. (a) Lena, (b) Pepers, (c) Bird, (d) Baboon, (e) Barbara,
(f) Chimney, (g) House, (h) Beach, (i) legends.

size 816× 616 randomly selected from Cambridge database.
Before our experiments, we will convert all of the color
images into gray-scale images. The software used in our
experiments is MATLAB and the experimental hardware is a
PC with i7 3.4 GHz CPU and 4.0 GB RAM. The secret bits in
the experiments are generated with a pseudo random number
generator. To demonstrate the superiority of the proposed
algorithm, five state-of-the-art RDHmethods [17], [28]–[33]
are selected for the comparison.

A. COMPARISON OF PSNR WITH OTHER RELATED
SCHEMES AT THE SAME EC
As PSNR can objectively reflect the quality of embedded
images, we first compare the proposed algorithm with the
state-of-the-art algorithms in terms of PSNR at the same EC
for different images. The distortion performance of these
algorithms is summarized as Table 2, where EC = 30000
and 60000 respectively. For each algorithm, different images

can be embedded with different EC, for example, when EC
= 30000 bits, the PSNRs of [28] are 55.9, 52.0, 57.8, 47.1,
54.4, 54.8,48.8 and 58.5 dB respectively, and PSNRs of the
proposed algorithm are 55.9, 53.2, 58.5, 49.0, 55.3, 56.4,
50.2 and 60.0 dB respectively. And for each algorithm, the
smoother the image, the better the embedding performance,
for example, the PSNRs of the image Beach and Baboon are
39.5 and 33.2 dB respectively for [16] when EC = 60000,
that is to say the image Beach has higher stego-image quality
than the image Baboon, as the image Beach is smoother than
image Baboon, other algorithms have the same results. But
for the same image, the proposed algorithm has the higher
PSNRs than other algorithms at the same EC, for example,
for image Peppers, when EC= 60000 bits, the PSNRs of [16],
[28] and the proposed algorithm are 31.1, 45.7 and 49.7 dB
respectively, and [17], [30] and [33] can’t embed so much
EC into image Peppers. To prove the superior performance of
the proposed algorithm, we calculate the average embedding
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TABLE 2. The PSNR(DB) on different images for EC = 30000 and 60000
bits respectively, ‘N’ denotes it can’t embed so much EC.

performance of these 8 standard images as shown in the
last column of Table 2 when EC = 30000 bits, these aver-
age PSNRs are 40.80, 52.84, 53.66, 53.32, 53.82 and 54.81
respectively. It shows our proposed algorithm outperforms
these state-of-the-art methods with about 34.3%, 4.7%, 2.1%,
2.8% and 1.8% increase in terms of PSNRs. Thus, the pro-
posed algorithm is superior to other algorithms.

B. PSNR VALUES UNDER DIFFERENT PAYLOADS
Then, we continue to compare the performance of the pro-
posed method with the five RDH methods as shown in Fig.
9. The results show that the curve of the proposed method
is not very smooth and jumps at some points. For example,
when EC = 9 × 104 and EC = 6 × 104 in image Lena and
Pepers respectively, the slope of both sides of these points
changed greatly. That’s because, for some value of T for a
certain image, EC is at its maximum at these points, and
in order to increase EC, we have to increase the value of
T . Although some algorithms occasionally perform better
than the proposed algorithm on some images, for example,
in the images Peppers and Baboon shown in Fig. 9 (b) and
(d), algorithm [28] is superior to the proposed when EC <

2 × 104, the proposed algorithm is superior to the algorithm
[28] when EC > 2 × 104, which can meet most application
requirements. For most images, the curve of the proposed
is located at the top of the curves of the other algorithms.
It shows that the embedding performance of our method
is better than other methods. To demonstrate this superior
performance, we continued to experiment on 100 images
randomly selected from the Cambridge image database, and
averaged their performance as shown in Fig. 10, the same
results happened.

Fig. 9 and Fig. 10 show that the ECs of algorithms [30] and
[33] are less than 2 × 104 bits, and EC of algorithm [17] is
less than 6×104 bits. At the same time, the curves of methods
[30] and [33] are below the curve of our method. For [17],

FIGURE 10. Average performance comparison with other related RDH
algorithms on 100 images randomly selected from Cambridge image
database.

it expands a specific 2 dimensional PEH for embedding, and
PEH needs to satisfy two conditions to embed a bit, so its
EC is low. And after embedding, each dimension has been
modified, so it has large embedding distortion. In [30], it uses
Fuzzy C-means (FCM) clustering method to classify the mul-
tiple histograms, only some parts of the clusters can be used
for embedding, so it has low EC. While for [33], blocks are
classified into highly-correlated and lowly-correlated smooth
block, and the lowly-correlated block has a low utilization
rate, so it also has low EC as [30]. Both [30] and [33] use
the multilayer embedding method where some pixels may be
modifiedmore than once, so they will cause higher distortion.
To search the nearly optimal pairs of zero and peak, a genetic
algorithm was employed in [28]. So it has higher embedding
performance when EC is low. But when large payload needs
to be embedded, the multiple-shifting scheme is employed,
which will cause higher distortion. So its performance is
worse than the proposed algorithm for most applications and
images. For [16], each pixel can be embedded with one bit,
but each vector is modified by twice the difference, so it has
large EC and distortion. While the proposed algorithm uses
the second-order difference which has steeper histogram for
each image to embed bits, so it has large EC, in each block,
only half of the pixels can be reduced or increased half of the
difference, so its distortion is small. Moreover, as the window
slides, some pixels increase and then decrease, and some
pixels decrease and then increase, so the overall distortion
decreases further. So our proposed method is superior to the
other methods.

When the payload is small, the steepness of the histogram
has little influence on the embedding performance, so the
advantage of the SODH is not obvious. Therefore, when
the payload is small, some of the state-of-the-art algorithms
may have better embedding performance than the proposed
algorithm for some images, as shown in Fig. 9 and Fig. 10.
As the performance of method [16] is far lower than that of
other methods, we further test the embedding performance
of the proposed algorithm and the other four state-of-the-art
algorithms with low embedding payloads, as shown in Fig. 11
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FIGURE 11. Performance comparison with low EC. (a) Lena, (b) Pepers, (c) Bird, (d) Baboon, (e) Barbara, (f) Chimney, (g) House, (h) Beach, (i) legends.

and Fig. 12. Fig. 11 shows, for some images, the embedding
performance of our proposed method is worse than these
of some other algorithms, and for others, the embedding
performance of the proposed algorithm is better than these of
other algorithms, for example, algorithm [17], [28], [33] are
superior to the proposed for image Peppers, and algorithm
[17] is superior to the proposed for image Bird, but the pro-
posed is superior to other algorithms for images Chimney and
Beach. Fig. 12 shows the average embedding performance of
our proposedmethod is better than those of the othermethods.
So our proposedmethod is superior to othermethods with low
payload too.

Therefore, the proposed algorithm is superior to other
algorithms, especially when the embedding payload is large,
this advantage is more obvious, meanwhile, the proposed
algorithm is more suitable for most data hiding applications.

C. PRACTICAL EVALUATION OF COMPUTATIONAL
COMPLEXITY
Based on Fig. 9 and Fig. 10, for a gray-scale image with
size 512 × 512, the ECs of algorithms [17], [30] and [33]

FIGURE 12. Average performance comparison with low EC on 100 images
randomly selected from Cambridge image database.

are less than 6000 bits and 3000 bits respectively, and their
embedded image quality are less than proposed algorithm.
Although the EC of algorithm [16] is large, its embedded
image quality is far lower than that of the proposed algorithm,
so, its embedding performance is much lower than that of
the proposed algorithm. When EC is less than 20000 bits,

VOLUME 8, 2020 85377



W. Wang, W. Wang: New High Capacity Reversible Data Hiding Using the Second-Order Difference Shifting

TABLE 3. Average CT comparison with [28].

the embedded image quality of [28] may be higher than
that of the proposed algorithm for some gray-scale images
with size 512× 512. To further evaluate the superior perfor-
mance of the proposed algorithm, we continue to compare
its computational cost with that of [28]. In the experiments,
we test the computation time (CT) of the proposed and [28]
with different payload on various image sizes. To ensure
the effectiveness of the test, 100 gray-scale images were
randomly selected from Cambridge image database, which
were converted to the images with size 512 × 512, 1024 ×
1024 and 2048 × 2048 respectively. And the embedding
payloads used in these experiments were 0.2, 0.3 and 0.6 bit
per pixel (bpp) respectively. The results of the average CT
on the 100 images are listed in Table 3. It shows that: (1)
the CT of both algorithms increases with the increase of
the embedding payload, for the EC increases as embedding
payload increases, for example, when embedding payload
are 0.2, 0.3 and 0.6 bpp respectively for the image with
size 1024 × 1024, the CT of proposed algorithm are 1.001,
1.397 and 2.595 seconds respectively, and the CT of [28]
are 3.188, 3.608 and 4.676 seconds respectively. And (2) the
CTs of the proposed algorithm are much smaller than those
of [28], for example, for the image with size 1024 × 1024,
the CTs of the proposed algorithm are decreased by about
68.6%, 61.3% and 31.2% compared with those of [28]. Thus
the computational performance of our proposed method is far
better than that of [28].

VI. CONCLUSIONS
Based on the analysis of HS and DE technologies, a novel
second-order HS algorithm is proposed in this paper. With
the two first-order differences of two pairs of pixels in a
pixel block, we can get the second-order difference of the
four pixels. As the second-order difference histogram of the
image is steeper than the first-order difference histogram,
the proposed algorithm has good embedding performance.
When the EC is small, the steepness of the histogram has
little influence on the embedding performance of the image,

so the advantage of the second-order difference histogram
is not obvious. Experimental results show that the proposed
algorithm is superior to the state-of-the art algorithms, and it
is suitable for most data hiding applications.
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