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ABSTRACT Target tracking is an important area of research in computer vision where stable target’s
tracking has been well solved. But in real world, it is difficult to ensure that the camera or lens could be
fixed and the target could maintain its shape in whole video sequence. And as a result, in these unstable
cases, robust tracking algorithms have to deal with the problem of target shape-deforming. Once the scenes
video sequence contains shape-deformed target, tracking become a real challenging problem. Most previous
tracking algorithms based on craft features only used HOG or/and CN features. This paper proposed an
algorithm named as Correlation Filtering with Motion Detection (CFMD). This algorithm takes into account
the camera shake and target motion information of the video sequence. After removing the effects of lens
shake and camera movement, this algorithm can predict the motion information of the target, thereby
effectively improving the tracking accuracy and robustness. In CFMD, the target position is determined by
the weighted outputs of motion detection and correlation filter tracker. We evaluated our CMFD algorithm
on the OTB-100 and VOT-2018 dataset compared with other target tracking algorithms, including Kernel
Correlation Filter (KCF), Scale Adaptive with Multiple Features tracker (SAMF), Discriminative Scale
Space Tracker (DSST), and Sum of Template and Pixel-wise LEarners (Staple), Learning Spatial-Temporal
Regularized Correlation Filters for Visual Tracking(STRCF), Multi-Cue Correlation Filters for Robust
Visual Tracking(MCCT). The experimental results showed that our algorithm owns the property of robust
tracking of shape-deformed targets in video sequences containing lens shaking or camera moving and it
achieves the state-of-the-art precision and tracking effects.

INDEX TERMS Robust target tracking, shape-deformed target, correlation filter, motion detection.

I. INTRODUCTION
Target tracking, which estimates the position of a target object
in a video sequence, remains an important area of research
in computer vision and is widely used in many fields, such
as machine perception, video compression, human–computer
interaction, etc. Existing trackingmethods are mainly divided
into two types. The first is training-based and the other is
direct tracking. For training-based tracking, they gather lots
of samples to training a model, e.g. Convolutional Neural
Network (CNN) or other such things. This kind of solution
needs high computing cost even that it often needs graphic
process unit (GPU) to implement. But direct tracking is much
lighter in view of computing complexity, and it is possible to
be implemented in embedded system with relative low power
consuming.

The associate editor coordinating the review of this manuscript and
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The direct tracking contains two strategies, one is the
generative model algorithm such as particle filter [1], [2],
Mean Shift [3] and Spatiogram method [4]. The algorithm
framework is based on the idea of estimation of the target [5].
Under the condition of knowing the target information, the
image of the current frame is evaluated to find the most likely
target area. They models the target features and try to find the
matched one in post-frame image(s) so as to track target in
current frame. The other strategy is the discriminant model
algorithm. Based on the idea of classification [6], the model
framework uses the classifier learning method to distinguish
background and target, such as TLD tracker [7], [8], L1APG
algorithm [9] and Correlation Filter(CF) tracker [10].

Target tracking performance is often affected by several
factors such as camera motion, lens shaking, scale change,
illumination variations, partial occlusions, background clut-
ter, and shape deformation. The CF (Correlation Filter)
tracker solved these problems to some extent and showed
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state-of-the-art performance. In the CF-based method, a cor-
relation filter is generated in consecutive frames. Then, filter-
ing is applied to obtain the response matrix in the next frame
and the location of maximum value in the response matrix
is the location of the target. The state-of-the-art correlation
filtering based algorithms’ features can be summarized as
follows:

The KCF (Kernel Correlation Filter) [11] tracker com-
bines the kernel method and HOG (Histogram of Oriented
Gradient) [29] feature in the CF tracker to achieve high-
precision tracking. On this basis, the CN (Color Name) [12]
tracker improves the tracking effect when the target shape
changes by multi-channel color features. The SAMF (Scale
Adaptive withMultiple Features tracker) [13] algorithm fuses
CN features with HOG features for tracking and calculates
the target scale by matching the features of seven scales.
Another scale adaptivemethod is proposed by theDSST (Dis-
criminative Scale Space Tracker) [14] algorithm. In addition
to establishing a filter to track the target position, it is found
that separate filters for translation and scale estimation sig-
nificantly improve the performance. Part-based tracker [15]
enhances the ability of the algorithm to resist partial occlusion
of the target by the Bayesian inference framework and a
structural constraint mask. The RAJSSC tracker (Joint Scale-
Spatial Correlation Tracking with Adaptive Rotation Esti-
mation) [16] solved the problem of target scale and rotation
change by combining scale-spatial correlation tracking with
adaptive rotation. The Staple (Sum of Template and Pixel-
wise Learners) [17] algorithm combines two image patch
representations that are sensitive to complementary factors
in order to learn a model that is inherently robust to both
color changes and deformations. The response adaptation
tracker [18] proposed a generic self-correction mechanism
for correlation filter based trackers and solved the prob-
lem of large area occlusion. The context-aware method [19]
enhances the adaptability of the CF tracker to complex
environments by learning the background around the tar-
get. Long-term correlation tracker [20] address the problem
of long-term visual tracking by using time temporal con-
text information. By introducing time regularization, STRCF
(Spatial-Temporal Regularized Correlation Filters) [21] can
successfully track targets with small occlusions, and at the
same time, it can tolerate large appearance changes. Because
the performance of a single tracker is not stable enough,
the fusion or combination of multiple trackers can effec-
tively improve the robustness of tracking. MCCT (Multi-Cue
Correlation Tracking) [22] proposes a multi-tracker fusion
method where the optimal expert is chosen for each frame
to determine the tracking result of current frame.

In recent years, tracking algorithms based on CNN features
or deep frames have received increasing attention. As the
best representative of tracking algorithms using CNN or
deep structure, the Siamese trackers formulate the visual
object tracking problem as to learn a general similarity
map by cross-correlation between the feature representations
from the target template and the search [23]. The CFNet

tracker [24] and DSiam tracker [25] update the track-
ing model with the help of a running average tem-
plate and a fast transformation module, respectively. The
SiamRNN tracker [26] introduces the region proposal net-
work(RPN) [26] after the Siamese network and performs joint
classification and regression for tracking. The ATOM [27]
algorithm uses a structure similar to siamNetwork as a dis-
criminative network of pictures, and uses RPN network to
regress the target position to improve tracking accuracy. The
analysis of the results of VOT2019 shows that the top tracking
algorithms use CNN features, most of which are based on
ATOM or siam network structure [28]. However, because
CNN feature extraction requires a large amount of computa-
tion and a large training data set, it is difficult to perform real-
time inference and tracking on embedded devices. Especially
in some sensitive or special field scenarios (such as desert,
snowfield, grassland and other scenarios without much prior
knowledge), it is difficult to obtain a large amount of train-
ing data, so it is difficult to deploy quickly. The algorithm
discussed in this paper is mainly deployed in embedded
terminals, so that it can be tracked in real time under the
premise that it has a certain scene applicable ability. Due
to the above reasons, our algorithm uses manual features
instead of CNN features, so the following discussions and
experiments only compare trackers based on manual features
and DCF structure.

Existing algorithms can solve the problem of small range
scale changes of the target during tracking. However, when
the shape change is large due to the target’s rapid movement,
these algorithms often miss the target. And if the camera
is moving fast or the lens are in large shaking, the existing
methods’ performance are reduced greatly. Figures 1(a–e)
illustrate the problem by examples. In Figure 1, the above
algorithms cannot accurately track the position of the target
when the target moves quickly and its shape deforms largely,
such as the flipping of a human body or the running of ants.

We combined moving target detection with correlation
filtering to optimize the Staple tracker and proposed a Cor-
relation Filter tracker with Motion Detection (CFMD). In our
proposed tracking method, the Staple algorithm is first used
to obtain a rough target position. Moreover, we detect the
moving target near this location and obtain the position of the
moving target. Finally, the coordinates of motion detection
are used to average the results of correlation filtering to
correct the output.

In our motion detection algorithm, frame differentiat-
ing [30], [31] is used to detect moving objects between two
frames; i.e.,the greater the difference between the two frames,
the greater the probability that the location of the moving
object will be. However, lens shaking or camera moving
will cause significant noise in frame differentiating, even the
target does not move at all in the scene. To overcome this
problem, we translate and zoom the current image several
times, and match it with the previous frame image to effec-
tively predict lens shaking. Then, the result of frame differen-
tiating is weighted to the average to obtain the position of the

89162 VOLUME 8, 2020



C. Liu et al.: Correlation Filter With Motion Detection

FIGURE 1. Failures cases of classic algorithms: (a) ground truth; (b) KCF;
(c) SAMF; (d) DSST; (e) Staple; (f) BACF; (g) ECO and (h) STRCF.

moving target. The superiority of our algorithm is illustrated
briefly in Figure 1, where all algorithms except for CFMD
cannot track target robustly.

In fact, themajor contributions of our CFMDalgorithm can
be listed as follows:

1. Predicting and eliminating lens shaking and cam-
era motion by matching previous and current frames,
together with target moving detection.

2. Combining a motion detection algorithm with correla-
tion filter tracking. Motion detection is used to adjust
the results of the tracking algorithm and obtain a robust
tracking effect.

3. The proposed algorithm can deal with more difficult
tracking tasks than existing ones, especially when the
target deforms greatly with fast motion, the lens shakes
severely or the camera moves rapidly.

II. THE STAPLE TRACKER
Staple [17] is a tracker that combines complementary cues
in a ridge regression framework. An independent model is
designed based on color statistics and it is combined with
the traditional CF method using hog features. This algorithm
is insensitive to illumination changes and adaptable to target
deformation. Our proposed algorithm absorbs the merits of
Staple.

A. CORRELATION FILTER RESPONSE
The CF tracker is designed to learn a discriminative filter that
can transform the input feature map into a response matrix
in order to infer the position of the target. The location of the
highest point in the response matrix is the target location. The
response matrix is generated as follows:

ftmpl(x; h) =
∑

u
h[u]Tφx[u], (1)

where ftmpl(x; h) is the template correlation filter response,
x is the patch in the input image, h is the parameter matrix
of the filter, and u is a pixel location in x. After intercepting
a patch x based on the target location of the previous frame,
x first generates a multichannel feature map φx[u] through
FHOG (Fast Histogram of Oriented Gradient) [32] feature
extraction. After that the parameter matrix h is used to convo-
lute with the feature map so as to obtain the response matrix
ftmpl . At this point, a value in ftmpl is the probability of that
point as the target center. In a traditional correlation filter
tracker, the location of maximum filter response is the target
position. In a Staple tracker, ftmpl is used to combine color
feature response to determine the target location.

B. COLOR STATISTICS RESPONSE
The Staple tracker is proposed as a response model based on
the color histogram response, which can be obtained through
the following formula:

fhist (x;β) = g(ψx;β),

g(ψ;β) = βT (
1
|H |

∑
u∈H

ψ[u]), (2)

where fhist (x;β) is the color histogram response, β is the
histogram weight vector, and ψx is the histogram feature
pixels of x. For Formula (2), H represents the image, u is a
pixel in the image, and |H | is the vector value. We adopt a
linear function of the (vector-valued) average feature pixel.
The value in fhist represents the probability of the point as
a target location, which is predicted by the color statistical
model [17].

C. OVERALL RESPONSE AND PARAMETER LEARNING
Two kinds of response matrix, ftmpl and fhist , are obtained
through the aboveways. The algorithm in staple integrates the
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two kinds of response matrices in a weighted averagemanner.
The formula is as follows:

f (x) = γtmpl ftmpl(x)+ γhist fhist (x), (3)

where x is a patch-in input image at current frame, f (x) is
the overall response. ftmpl and fhist , respectively, represent
the template correlation filter response matrix and color
histogram response matrix. γtmpl is the weight of ftmpl(x)
and γhist is the weight of fhist . In the algorithm, γtmpl is set
to 0.7 and γhist is set to 0.3. The position of the maximum
value in f (x) is the target position of the current frame.

III. MOTION DETECTION AND THE CFMD TRACKER
Staple tracker can work well for target tracking in smooth
motion. But in cases that target deforms greatly with fast
motion, the lens shakes severely or the camera moves rapidly,
it can not achieve desired performance. We proposed an
algorithm named Correlation Filter with Motion Detection
algorithm (CFMD) to deals with these challenges. CFMD
tracker combines one extension of correlation filter, i.e. the
Staple tracker, and motion detection strategy together so that
the motion detection precisely corrects the output of the
Staple to resist large changes in shape. In this section, we first
introduce ourmotion detection strategy and then describes the
details of our entire CMFD tracking steps.

A. MOTION DETECTION FOR LENS SHAKING PREDICTION
Ideally, after subtracting the previous and current frames, the
location where the pixels change is the location of the moving
target. However, in real scenes, videomaymeet camera vibra-
tion and lens zoom, which alters the shooting background
fast. Therefore, we have to detect motion or scene’s change
to predict the lens shake.

In order to detect motion, we take two images, i.e. the
previous frame Ip and the current frame Ic, in our algorithm.
For better implementation, we take lens shaking parameters
θ = [α, β, ε] as the result of motion detection, which can be
determined by finding the best match between two frames:

θ = argmin{
1

(h− 2α)(w− 2β)

∑h−α

i=α

∑w−β

j=β
|Z (Ic, ε)i,j

−Ipi+α,j+β |}, (4)

where h and w are the height and width of the scaled image
at any frame, θ = {α, β, ε} are the lens shaking parameters,
α, β, ε represent the vertical translation, horizontal transla-
tion, and the scaling ration respectively. In fact θ contains
displacements and scaling of the current frame image relative
to the previous frame, which role as the most important three
parameter to describe motions in video sequence. Z (Ic, ε)
means the scaling transformation and spatial translation func-
tion of the current image Ic with parameter setting ε. For bet-
ter computing cost, we advise that the parameters should have
ε ∈ [0.8, 1.25], α ∈ [−20, 20], β ∈ [−20, 20]. Experiments
on different videos show that the value of ε usually ranges
from 0.84 to 1.23, and that of α from−13 to 13. β goes from
minus 12 to 13. This shows that for most videos, the target

scale between frames is small, and the target displacement
between frames is generally within 15 units. And of course,
these parameters’ range can be set case by case. Its real
value can be found using evolutionary computing methods
by solving optimal problem with Equation (4) as the cost
function.

The process of lens shaking prediction is to find the most
suitable parameter θ = {α, β, ε}, which minimizes the
distance between two adjacent frames after translating and
scaling the images.

Based on the determined θ , we differentiate the images of
two adjacent frames. We can use Equation (5) to calculate the
difference map:

D =
∣∣Z (Ic, ε)i,j − Ipi+α,j+β ∣∣ (5)

whereD is the difference map after applying the lens shaking
parameters. Figure 2 shows the effect of the algorithm.

FIGURE 2. Frame differencing: (a) current frame; (b) previous frame;
(c) direct difference map; and (d) difference map with lens shaking
prediction.

Figure 2(a) is the current frame image and Figure 2(b) is
the previous frame image. Figure 2(c) is the difference map
of direct difference between Figures 2(a) and 2(b). As we can
see, it is difficult to find the target in Figure 2(c) due to the
lens movement. However, after the correction of parameter,
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the difference map between the front and back frames is
shown in Figure 2(d). Obviously, the moving object in the
video sequence has a larger value in the difference map
in Figure 2(d). Finally, we restore the size of the difference
graph to the size of the input image.

B. TARGET CENTER’S LOCATING VIA WEIGHTED POSITION
Through the above methods, we obtain the difference map
with lens shaking correction. Figure 3(a) shows the original
image and location of the target. Figure 3(b) is the difference
map corresponding to Figure 3(a) and Figure 3(c) is the dis-
play of Figure 3(b) in three-dimensional perspective. As can
be seen from Figure 3(c), besides where the target is located
there are also higher motion responses in other places. This
is because there may be other moving objects in the field of
vision that cause interference. To effectively distinguish the
target from the jammer, the output of the Staple tracker is
used to indicate the approximate location of the target. On the
difference map, we intercept a search window twice the size
of the target near the position indicated by the Staple tracker
and find the moving target in it. As shown in Figure 3(d), the
yellow window is the output of the Staple and the red window
is the search window for motion detection.

FIGURE 3. Difference map with lens shaking prediction: (a) the target;
(b) difference map; (c) differential map of three-dimensional view; and
(d) search window.

In the search window of the difference map, the larger the
value, the more likely it is to be the target center. Therefore,
we obtain the coordinates of moving objects by statistics with
weight. Assuming that the target coordinate of the Staple
output is [xcf , ycf ] and the target size is [sizex , sizey], the
calculation is as follows:

xmd =
xcf+sizex∑
i=xcf−sizex

ycf+sizey∑
j=ycf−sizey

i× D(i, j)
Dsum

ymd =
xcf+sizex∑
i=xcf−sizex

ycf+sizey∑
j=ycf−sizey

j× D(i, j)
Dsum

(6)

where xmd is the coordinate x of motion detection and ymd
is the coordinate y. Dij is the value at coordinate [i,j] in the
differential map. Dsum is the sum of the value in the search
window and is defined as follows:

Dsum =
xcf+sizex∑
i=xcf−sizex

ycf+sizey∑
j=ycf−sizey

D(i, j), (7)

Finally, we combine the output of Staple [xcf , ycf ] with the
output of motion detection [xmd , ymd ]:{

xfinal = ρ × xcf + (1− ρ)× xmd
yfinal = ρ × ycf + (1− ρ)× ymd

(8)

where ρ is the weight coefficient. Through experiments on
multiple video sequences in different data sets, we found that
the algorithm maintained good performance in various track-
ing scenarios when the parameter was about 0.5. [xfinal, yfinal]
are the final output of our algorithm and represent the coor-
dinates of the target being tracked in the current frame?

C. CFMD ALGORITHM STEPS
In the proposed Correlation Filtering with Motion Detec-
tion (CFMD) algorithm, the Staple tracker is first used to
indicate a rough target position. Then, we adapt motion detec-
tion to predict lens shaking and generate a difference map
with lens shaking correction. Afterward, with the help of the
Staple algorithm, a window is set up in D and the location of
the moving target is obtained by statistics. Finally, the final
position of the target is calculated by the weighted average
of the Staple algorithm and our motion detection algorithm.
Figure 4 shows the algorithm process.

FIGURE 4. The algorithm process.

IV. EXPERIMENT
When the target shape change is large, existing algorithms
cannot track the target precisely in whole process. In other
words, these algorithms cannot accomplish robust track.
In this section we evaluate the proposed CFMD algorithm’s

VOLUME 8, 2020 89165



C. Liu et al.: Correlation Filter With Motion Detection

performance by real experiments. Video sequences contain-
ing large target shape changes or lens shaking were used
to test the problem. We compared the proposed method
(CFMD) with the state-of-the-art algorithms based on corre-
lation filtering, including KCF [11], SAMF [13], DSST [14],
Staple [17], STRCF [21], MCCT [22], BACF [34] and
ECO [35]. All trackers are run on the same workstation (Intel
Xeon CPU E5-2609 2.5GHz, 64GB RAM) using MATLAB.

A. EFFECT COMPARISON
We selected twelve video sequences (skiing, birds, ants, but-
terfly, traffic, road, car, BlurOwl, Board, Box, Dancer and
Gym) from the OTB-100 [33] and VOT dataset to carry out
our experiments. Among them, ‘‘skiing’’, ‘‘birds’’, ‘‘ants’’
and ‘‘butterfly’’ sequences contain target shape large change
and/or lens shaking, cameramotion. These four sequences are
used to evaluate algorithms’ performance in shape-deformed
target tracking. And the other two, Other videos don’t contain
shape’s changing. These two video sequences are used to test
the performance in stable videos.

We propose an indicator named PSD (Probability of Shak-
ing and Deformation) to represent the degree of shaking and
deformation of the video sequence.

S =
∑ ∣∣Cc

x − C
p
x
∣∣

Lpx
+

∣∣∣Cc
y − C

p
y

∣∣∣
Lpy

, (9)

D =
∑ ∣∣Lcx − Lpx ∣∣

Lpx
+

∣∣∣Lcy − Lpy ∣∣∣
Lpy

, (10)

PS =
S

Nframes − 1
, (11)

PD =
D

Nframes − 1
, (12)

PSD = PS · PD (13)

where Cc
x and Cc

y are the coordinates of ground truth (GT)
target in the current frame, Cp

x and Cp
y are the coordinates of

GT in the previous frame. Lcx and L
c
y are the length and width

of the GT in the current frame, Lpx and Lpy are the length and
width of the GT in the previous frame. Nframes is the number
of frames in the video sequence. S is the ratio of displacement
of the target center position between adjacent frames to the
target size. The displacement is the combined result of target
motion and camera shake. The introduction of the target size
normalizes the displacement. So S can reflect the shaking
and motion of the sequence, PS is its average. D is the
rate of change of the target size, it can be use to reflect the
deformation of the target. PSD is a comprehensive indicator
used to reflect target motion shaking and deformation, which
defined as the product of PS and PD. When the shaking and
deformation are relatively strong, value of PSD will be large.
The higher the value of PS is, the greater the motion of the

target in the video sequence has. Higher PD value indicates
greater deformation of the target. PSD is the poduct of PS
and PD, which means that only a video contains large motion

and great deformation, its PSD can arrive relative large level.
This suggests that PSD can be used to measure inter-frame
movement and shaking, and it can work as an indicator to
evaluate video sequences’ motion and deform As Table 1
shows, the shake and motion of these three videos (Birds,
BlurOwl, Ants3) are large. The video of birds has the most
distortion. Comprehensive, in the bird video, the target moves
and deforms the most. In fact, the bird flying speed is fast, and
the incitement of the wings also causes a large deformation.
The computing result in Table 1 shows the PSD is in line
with human intuitive feelings in most cases. By calculating
the PSD values, we choose the twelve videos from open
dataset as our experimental videos to valuate our algorithm’s
performance dealing with fast motion and great deform.

The target tracking effects are shown in Figure 5, 6 and 7.
In these figures, black rectangle is for the GT and the
yellow one is our CFMD algorithm’s results. The green, blue,

FIGURE 5. Tracking effect: (a) skiing and (b) birds.
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FIGURE 6. Tracking effect: (a) skiing and (b) butterfly.

TABLE 1. PSD for each sequence.

light-blue, and purple rectangles represent other state-of-the-
arts correlation filtering algorithm’s output.

Figure 5 and Figure 6 show the tracking effect results in
shape-deformed tracking. In all of these four sequences, each
algorithm except for CMFD lost their targets. As shown,

FIGURE 7. Tracking effect: (a) traffic and (b) road.

CFMD is robust and it can track the target without losing it
in the entire video. In fact, when correlation filter misses the
template or meets mismatch, the motion detection in CFMD
will correct the target position so that the match can be well-
done and the correlation filtering algorithm updates the right
template in time. On the contrary, for the other algorithms
Once shape deformed largely and fast, the template of the
correlation filter tracking algorithm is hard to match properly
and as a result, tracking is often to be seen as failure.

As shown in Figures 7, in the stable videos ‘‘traffic’’ and
‘‘road’’, each algorithm performs well in sequence in case of
target shape maintaining well. The KCF meets target missing
in some images. And we have to figure out that most videos
in OTB-100 dataset are similar with these two ones. In this
case, CMFD algorithm achieves comparable effect with other
methods.

B. PERFORMANCE EVALUATION
We follow the evaluation protocol as in [13], [14], [17], where
the CLE (center location error) is used to judge the accuracy
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FIGURE 8. Precision curves and success curves.

of tracking. CLE is the distance between the output position
and the ground truth:

CLE =
√
(xfinal − xgt )2 + (yfinal − ygt )2. (14)

Then, we define a threshold Thwith a range of 0 to 50. At each
threshold, if CLE is less than Th, then it is determined to be
successful tracking, otherwise, it is judged to be a tracking
failure. In this way, all frames in a video are counted. The
number of successful tracking is defined as TP (true positive),
and the number of failures is set to FP (false positive). Preci-
sion can be defined as in Equation (15):

P =
TP

TP+ FP
. (15)

For these twelve sequences, we divide them into two groups,
i.e. the VOT cases and OTB cases, according to their source
dataset. We increase the threshold from 0 to 50 with step
size 1. For every threshold, we calculate the tracking preci-
sion and Success rate. The Success rate can be defined as

in Equation (16):

S =
At ∩ Agt
At ∪ Agt

. (16)

where At is the area of the tracker prediction box, and Agt is
the area of GT.

And then, we list the precision curve and success curve for
each experiment in Figure 8.

It can be seen from Figures 8(a–d) that CMFD’s precision
curve and success curve is higher than other algorithms.
And, our CFMD algorithm can obtain much better tracking
precision in the video sequences containing shape-deformed
targets. In fact, these video sequences contain lens shaking,
camera motion, or object shape changing, i.e. these four one
have deformed shape and it is a real challenge for KCF,
SAMF, DSST and Staple.

Table 2 records the results of different algorithms running
in 12 data sets. F1 takes into account the accuracy and recall
of the model. It can be seen as a harmonic average of model
accuracy and recall and reflect the pros and cons of the
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TABLE 2. F1-score, precision and success rate.

tracking algorithm. Its maximum value is 1, and its minimum
value is 0. Because most of these twelve video sequences
have severe shake or fast moving or rapidly deforming targets.
F1-scorce and accuracy of traditional correlation filtering
algorithms such as KCF are not high. This does not mean
these algorithms’ performance in general stable sequences.
The Precision reflects the fineness of the tracking algorithm.
The higher the value, the better the tracking effect of the
algorithm. The success rate reflects the ability of the tracking
algorithm to complete the task, and is used to evaluate the
performance of the algorithm when a certain error is allowed.
The larger the value, the better.

As table 2 shows, in these three indicators, our algorithm
is ahead of other algorithms. Mainly because our algorithm
performs well in fast-moving sequences, and for those gen-
eral sequences we keep no lower than the level of other
algorithms. The success key factor is the motion detection
module.

If the video keeps stable and target shape maintains well in
frames, e.g. the ‘‘traffic’’ and the ‘‘road’’ sequences, CFMD’s
precision performance is proved to be comparable with other
state-of-the-art algorithms. An interesting fact is that the
KCF’s precision is much lower than other. This is due to that
in the video sequence ‘‘road,’’ the field-of-view is stable but
KCF causes target lost inmany frameswheremore details can
be found in Figure 7(b). ECO and STRCF also perform well
in experiments on other sequences, but they have lost targets
in several videos with deformation and target movement. This
leads to their result are not good enough.

Experiments show that our algorithm does not work
worse than other classic algorithms on stable sequences.
In sequences with lens shake and camera movement, our
algorithm performs significantly better than other algorithms.
Because our algorithm makes effective quantitative estimates
of lens shake and camera movement, we can subtract errors
from these external variables during the tracing process.
Thereby improving the tracking accuracy.

V. CONCLUSION
Correlation filtering and its modifier can work well on sta-
ble video but cannot handle with the challenges from lens

shaking, camera moving and deformed target shape. The
proposed CFMD introduces motion detection to deal with
these problems. The CFMD algorithm guides the moving
target detection through the output of a correlation filtering
algorithm (Staple tracker) and the outputs of the motion
detection and the correlation filtering method are weighted
by average to obtain reliable tracking results. The algorithm
owns robust tracking performance and can locate target in
video sequences that contain large changes in the target shape.
We selected some targeted videos from the OTB-100 and
VOT-2018 datasets. CFMD shows best performance in those
videos containing lens shaking, camera moving and shape-
deformed target. Even in stable videos, CFMDcan also obtain
comparable results with other popular algorithms. Thismeans
CFMD can suit more challenge in robust target tracking than
other correlation filtering methods.

In fact, our algorithm has a motion detection module that
solves the lens shake parameters from the video sequence
and then combines the images to obtain the target’s motion
information. This is equivalent to adding a feature of the
motion dimension. When the target is obviously moving,
we can combine this feature with the traditional HOG and
CN features for tracking. Experimental results show that this
method has a great effect on lens shaking and fast moving
situation. In particular, the motion detection module can
be separated from our algorithms and combined with other
excellent algorithms as an additional part of motion feature
tracking. Adding this module to other algorithms can effec-
tively improve the tracking effect and accuracy.

Because we use the motion detection module to analyze
the motion of the target, the position information of the target
can be obtained. Once the target is not moving, or the target
is blocked by other objects, our algorithm may not be able
to guarantee the tracking accuracy. During the experiment,
we found that when the target was blocked, the accuracy and
success rate of our algorithm decreased. You may need to
add a bypass to the tracing framework to deal with occlusion.
At present, there is no framework or algorithm with a good
performance for tracking the blocked target, which is the
direction we will study in the next step.

REFERENCES
[1] K. Nummiaro, E. Koller-Meier, and L. VanGool, ‘‘An adaptive color-based

particle filter,’’ Image Vis. Comput., vol. 21, no. 1, pp. 99–110, Jan. 2003.
[2] T. Li, S. Sun, T. P. Sattar, and J. M. Corchado, ‘‘Fight sample degeneracy

and impoverishment in particle filters: A review of intelligent approaches,’’
Expert Syst. Appl., vol. 41, no. 8, pp. 3944–3954, Jun. 2014.

[3] A. Yilmaz, ‘‘Object tracking by asymmetric kernel mean shift with auto-
matic scale and orientation selection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2007, pp. 1–6.

[4] C. O. Conaire, N. E. O’Connor, and A. F. Smeaton, ‘‘An improved spa-
tiogram similarity measure for robust object localisation,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2007, p. I-1069.

[5] Y. Wu, B. Jiang, and N. Lu, ‘‘A descriptor system approach for estimation
of incipient faults with application to high-speed railway traction devices,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 10, pp. 2108–2118,
Oct. 2019.

[6] F. Luo, L. Zhang, X. Zhou, T. Guo, Y. Cheng, and T. Yin, ‘‘Sparse-adaptive
hypergraph discriminant analysis for hyperspectral image classification,’’
IEEE Geosci. Remote Sens. Lett., pp. 1–5, 2019.

VOLUME 8, 2020 89169



C. Liu et al.: Correlation Filter With Motion Detection

[7] Z. Kalal, K. Mikolajczyk, and J. Matas, ‘‘Face-TLD: Tracking-Learning-
Detection applied to faces,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2010, pp. 3789–3792.

[8] Z. Kalal, K. Mikolajczyk, and J. Matas, ‘‘Forward-backward error: Auto-
matic detection of tracking failures,’’ in Proc. 20th Int. Conf. Pattern
Recognit., Aug. 2010, pp. 2756–2759.

[9] C. Bao, Y. Wu, H. Ling, and H. Ji, ‘‘Real time robust l1 tracker using
accelerated proximal gradient approach,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 1830–1837.

[10] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘‘Exploiting the
circulant structure of tracking-by-detection with kernels,’’ in Proc. Eur.
Conf. Comput. Vis. Berlin, Germany: Springer, Oct. 2012, pp. 702–715.

[11] J. F. Henriques, R. Caseiro, P.Martins, and J. Batista, ‘‘High-speed tracking
with kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[12] M. Danelljan, F. S. Khan, M. Felsberg, and J. V. D.Weijer, ‘‘Adaptive color
attributes for real-time visual tracking,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 1090–1097.

[13] Y. Li and J. Zhu, ‘‘A scale adaptive kernel correlation filter tracker with
feature integration,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, Sep. 2014, pp. 254–265.

[14] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg, ‘‘Accurate
scale estimation for robust visual tracking,’’ in Proc. Brit. Mach. Vis. Conf.,
2014, pp. 1–11.

[15] T. Liu, G. Wang, and Q. Yang, ‘‘Real-time part-based visual tracking via
adaptive correlation filters,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4902–4912.

[16] M. Zhang, J. Xing, J. Gao, X. Shi, Q.Wang, andW.Hu, ‘‘Joint scale-spatial
correlation tracking with adaptive rotation estimation,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015, pp. 32–40.

[17] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr,
‘‘Staple: Complementary learners for real-time tracking,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1401–1409.

[18] A. Bibi, M. Mueller, and B. Ghanem, ‘‘Target response adaptation for
correlation filter tracking,’’ in Proc. Eur. Conf. Comput. Vis. Oct. 2016,
pp. 419–433. Cham, Switzerland: Springer,

[19] M. Mueller, N. Smith, and B. Ghanem, ‘‘Context-aware correlation filter
tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1396–1404.

[20] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, ‘‘Long-term correlation
tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5388–5396.

[21] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, ‘‘Learning
spatial-temporal regularized correlation filters for visual tracking,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4904–4913.

[22] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, ‘‘Multi-cue
correlation filters for robust visual tracking,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4844–4853.

[23] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, ‘‘SiamRPN++:
Evolution of siamese visual tracking with very deep networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4282–4291.

[24] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S. Torr,
‘‘End-to-End representation learning for correlation filter based tracking,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2805–2813.

[25] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang, ‘‘Learning
dynamic siamese network for visual object tracking,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 1763–1771.

[26] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, ‘‘High performance
visual tracking with siamese region proposal network,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8971–8980.

[27] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ATOM: Accurate
tracking by overlap maximization,’’ in Proc. IEEE/CVFConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4660–4669.

[28] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
‘‘Fully-convolutional siamese networks for object tracking,’’ in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, Oct. 2026,
pp. 850–865.

[29] N.Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2005, pp. 886–893.

[30] V. Markandey, A. Reid, and S. Wang, ‘‘Motion estimation for moving
target detection,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3,
pp. 866–874, Jul. 1996.

[31] S.-C. Huang, ‘‘An advanced motion detection algorithm with video quality
analysis for video surveillance systems,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 1, pp. 1–14, Jan. 2011.

[32] D. Forsyth, ‘‘Object detection with discriminatively trained part-based
models,’’ Computer, vol. 47, no. 2, pp. 6–7, Feb. 2014.

[33] Y. Wu, J. Lim, and M. H. Yang, ‘‘Object tracking benchmark,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848,
Sep. 2015.

[34] H. K. Galoogahi, A. Fagg, and S. Lucey, ‘‘Learning background-aware
correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1135–1143.

[35] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ECO: Efficient
convolution operators for tracking,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6638–6646.

89170 VOLUME 8, 2020


