
Received April 19, 2020, accepted May 5, 2020, date of publication May 11, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993600

A Hardware Descriptive Approach
to Beetle Antennae Search
ZONGCHENG YUE 1, GANG LI2, XIANGYUAN JIANG 3, SHUAI LI 4, (Senior Member, IEEE),
JIAN CHENG 2, AND PENG REN 1, (Senior Member, IEEE)
1College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
3Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
4College of Engineering, Swansea University, Swansea SA1 8EN, U.K.

Corresponding author: Peng Ren (pengren@upc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Project U1906217, and in part by the
Innovative Research Team Program for Young Scholars at Universities in Shandong Province under Project 2020KJN010.

ABSTRACT Beetle antennae search (BAS) is a newly developed meta-heuristic algorithm which is
effectively used for optimizing objective functions of complex forms or even unknown forms. The common
practice for implementing meta-heuristic algorithms including the BAS largely relies on programming in a
high-level language and executing the code on a computer platform. However, the high-level implementation
of the BAS algorithm hinders it from being used in an embedding system, where real-time operations are
normally required. To address this limitation, we present an approach to implementing the BAS algorithm on
a field-programmable gate array (FPGA). Specifically, we program the BAS function in the Verilog hardware
description language (HDL), which provides a tractable vehicle for implementing the BAS algorithm at
the gate level on the FPGA chip. We simulate our Verilog HDL based BAS module with the Modelsim
platform. Simulation results validate the feasibility of our proposed Verilog HDL implementation of the
BAS. Additionally, we implement the BAS model on the Zynq XC7Z010 platform, with 132.5 µ s latency
for model implementation.

INDEX TERMS FPGA, beetle antennae search, Verilog HDL, optimization algorithm.

I. INTRODUCTION
A large number of meta-heuristic algorithms are designed
by simulating certain biological behaviors. Though most of
the biological behavioral functionalities are heuristic, they
exhibit great explorative power that derives insights into
effective paradigms for solving complex optimization prob-
lems. One biological organism may not clearly know all the
situations in a strange environment. However, the organism
is capable of using its explorative characteristics to find
the conditions that are most conducive to its own survival.
In light of this observation, meta-heuristic algorithms are
developed subject to the explorative intrinsics of organisms.
Such explorative properties enable the meta-heuristic algo-
rithms to be effective in optimizing objective functions of
complex or even unknown forms. In the research litera-
tures, a considerable number of meta-heuristic algorithms
including the gray wolf optimizier (GWO) [1], the genetic

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

algorithm (GA) [2] and the particle swarm optimization
(PSO) [3] are widely used in various practical optimization
problems. Additionally, the beetle antennae search (BAS) is
a newly developed meta-heuristic algorithm, which solves
optimization problems with simple structure and results in
solutions comparable to or superior to existing algorithms.
The BAS algorithm has been widely used in a large num-
ber of practical projects. Wu et al. [8] used BAS algo-
rithm to optimize obstacle avoidance systems of UAV and
robot separately. Xie et al. [11] [12], [13] applied BAS
to the design and optimization of ship collision avoid-
ance system and precise control of marine diesel engine.
In addition, BAS is applied to the design of power system
and the construction of stock investment model [9], [14],
[16], [17]. Mu et al. [18] used the BAS algorithm in 3D
path planning. Fan et al. [21] applied the algorithm to an
electro-hydraulic position servo control system. Moreover,
BAS plays an important role in algorithm optimization.
Lei et al. [10] designed an improved pollen algorithm with
better performance in some areas based on BAS. Qi et al. [22]

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 89059

https://orcid.org/0000-0001-8889-1220
https://orcid.org/0000-0001-6667-3767
https://orcid.org/0000-0001-8316-5289
https://orcid.org/0000-0003-1289-2758
https://orcid.org/0000-0003-3949-985X
https://orcid.org/0000-0002-1515-4243


Z. Yue et al.: Hardware Descriptive Approach

used BAS for parameter optimization of Qubit neural tree
networks. Lin et al. [15] further optimized the problems of
BAS in high-dimensional problems. Wang et al. [19] made
the BAS algorithm play an important role in the optimization
of radar waveforms. Different from themethodological inves-
tigations regarding BAS, in this paper, we make an extensive
implementational study of the BAS algorithm.

The implementations of meta-heuristic algorithms (e.g.,
the BAS) largely rely on programming in a high-level lan-
guage and executing the code on a computer platform. How-
ever, the high-level implementation of the BAS algorithm
hinders it from being used in an embedding system, where
real-time operations are normally required. To address this
limitation, we investigate how to implement the BAS at a gate
circuit level. Specifically, we describe how to use the Verilog
hardware description language (HDL) to program the BAS
on a field-programmable gate array (FPGA) chip.

An FPGA is a reconfigurable and reprogrammable chip
that is able to implement algorithms and processing pro-
cedures at a gate circuit level. An FPGA is of small size,
but with high computation speed. For these reasons, FPGA
based embedded systems are widely used in not only huge
manufacturing equipments but also mobile devices. FPGA
has obvious advantages in several aspects compared with
the traditional hardware structure. The first is high speed
with parallelism [34]. FPGA allows multiple module circuits
to operate in parallel, greatly increasing operation speed.
The second is dynamic partial reconfiguration [35], [36].
FPGA allows developers to reconfigure bit-level hardware
architecture. It is a competitive feature especially for tasks
that require high-precision control and require less storage
resources. The third is low latency. The latency of FPGAs
is generally at the magnitude of nanoseconds, in contrast to
microseconds required for GPUs.

In order to explore the possibility of operating the BAS
at a circuit level rather than programming it in a high-
level language, we investigate the scheme of implement-
ing the BAS on an FPGA. In the literature, how to imple-
ment traditional meta-heuristic algorithms on FPGAs has
been investigated. To the best of our knowledge, we are the
first to implement the BAS model on an FPGA platform.
In comparison, genetic algorithms (GAs) are also widely
involved for FPGA implementations to solve optimization
problems [26], [32]. In terms of optimization procedures,
GAs mainly use chromosomal inheritance to select appro-
priate offspring, and perform mutation and elimination in
the offspring to compute optimal values. The BAS algorithm
uses the antennae to sense odor strength for optimization.
In terms of programming implementations, GAs directly use
binary coding, which is easy to implement on FPGA plat-
forms. In contrast, the FPGA-based BAS model we imple-
ment is optimized in a continuous space, which is more
sophisticated to explore. Instead of using the binary encoding
scheme that is adopted by GAs but would induce accuracy
decease if used in BAS, we use eight-bit fixed-point numbers
for encoding. Therefore, in our work, we present an FPGA

implementational approach to the BAS which is different
from that of GA. Specifically, the main contributions of our
work are summarized as follows:

1) We are the first first to present an approach that imple-
ments the BAS algorithm on FPGA.

2) We build a twin model on the FPGA chip by assigning
different seeds to generate two pseudo-random num-
bers for the algorithm.

3) We implement the program by using a fixed-point
arithmetic scheme, which ensures the accuracy of the
algorithm and saves computing resources.

To the best of our knowledge, we are the first to implement the
BAS model on an FPGA platform. Specifically, we develop
a twin model of LFSR along with a fixed-point arithmetic
scheme, resulting a unique implementation approach to the
BAS on the FPGA platform Zynq XC7Z010. Furthermore,
we apply the unique implementation approach to optimizing
the booth function [33], which is a widely used benchmark
for testing evolutionary algorithms. Our BAS implementation
approach has 132.5 µ s latency, which turns out to be much
more efficient than executions of high-level language BAS
code on a computer platform.

The structure of this paper is arranged as follows: Section II
introduces the biological principle of the BAS and describes
how the algorithm simulates the biological trajectory of the
beetle. Section III presents execution flow of the BAS algo-
rithm by pseudo codo. Section IV describes the principles and
processes of fixed-point number [27] operations. Section V
introduces the implementation of BAS by usingVerilogHDL,
and presents the main Verilog HDL source code for imple-
mentation. Section VI presents the RTL [5] circuit diagram
of each module and analyzes data processing procedure in
the module, and the correspondence between the hardware
structure and the algorithm. Section VII gives experimental
results and experimental evaluation. Section VIII concludes
the paper.

II. THE BEETLE ANTENNAE SEARCH (BAS) ALGORITHM
The beetle antennae search (BAS) algorithm [4] is developed
in terms of simulating a beetle’s behavioral trajectory for
foraging food. In a strange environment, the beetle uses the
two antennae on its head to conduct a series of flying and
landing behaviors for the foraging. In the initial stage of the
foraging, the beetle does not know where the food source
is, and its two antennae are oriented randomly. It guesses
the direction of the food through the odorants received by
the antennae. The beetle judges which antenna receives the
stronger odor, and accordingly uses its orientation as the
estimated direction of the food source. Then the beetle flies
along the estimated direction for a certain distance and lands
with the two antennae oriented randomly [24]. One cycle
of the beetle antennae search consists of a directional flying
procedure and a randomly directional landing procedure. The
cycle is repeated until the final food source is located. Such
repetitive procedures are illustrated in Figure 1. In Figure 1,

89060 VOLUME 8, 2020



Z. Yue et al.: Hardware Descriptive Approach

FIGURE 1. Repetitive procedures of the beetle antennae search for the
food source.

one round for foraging until the food is found consists of
a finite number of cycles. t-1 and t represent two sequen-
tial cycles in one round of foraging. Tm represents the the
maximum number of cycles and it practically prevents the
programs from endless execution.

In the optimization framework simulating the beetle anten-
nae search, an objective function describes the relationship
between the odor of food and the position of an beetle.
We denote objective function by f [xxx(t)], where xxx(t) denotes
the position of an beetle at the t-th time cycle. Specifically,
the value of f [xxx(t)] implies the strength of the odor received
by a beetle antenna located at xxx(t). The BAS aims at finding
the optimal x̂xx that minimizes the objective function f . The
BAS algorithm is formulated in terms of repeating the cycle
of directional flying and randomly directional landing until
the optimal value of f (x̂xx) is obtained.
In order to make a consistent formulation, the randomly

directional landing procedure is described ahead of the direc-
tional flying procedure. The detailed BAS formulation is
presented as follows.

A. RANDOM ANTENNA ORIENTATIONS
The BAS algorithm commences by randomly generating a
normalized directional vector that characterizes the orienta-
tions of the beetle antennae. Let ddd(t) be a normalized direc-
tional vector at t-th cycle, and it is generated as follows:

ddd(t) =
rrr(t)
‖rrr(t)‖

, (1)

where rrr(t) is a random vector which can be generated by
programming in a high-level programming language.

The equation (1) is used for characterizing the orientation
of an antenna randomly placed by the beetle.

B. ANTENNA POSITIONS WITH RESPECT TO RANDOMLY
ORIENTED LANDING
Let xxx(t) denote the position of beetle when it lands at the t-th
time cycle. Let xxxr (t) and xxx l(t) denote the position of the right
and left antennae of a beetle at the t-th time cycle, respec-
tively. Let ρ(t) denote the sensing distance at the t-th time
cycle, which keeps deceasing in the flying and landing cycles.
The positions of the right and left antenna are computed as
follows:

xxxr (t) = xxx(t)+ ρ(t)ddd(t),

xxx l(t) = xxx(t)− ρ(t)ddd(t). (2)

Initially, the value of ρ(t) is set to be large enough for the
purpose of avoiding the local minima.

Based on (1), the equation (2) characterizes that the two
antennae of the beetle are oriented randomly. The right
antenna follows the positive direction along ddd(t) and the left
follows the negative direction along ddd(t).

C. BEETLE POSITION SUBJECT TO DIRECTIONAL FLYING
According to the biological nature of a beetle, it chooses the
antenna orientation with stronger odor as the flying direction.
In the light of this observation, the flying direction is com-
puted as follows:

ddd f (t) = ddd(t)sign(f [xxxr (t)]− f [xxx l(t)]). (3)

In (3), the bigger value between f [xxxr (t)] and f [xxx l(t)] is used
to determine flying direction.

The beetle then flies long the direction ddd f (t) and lands at a
new position:

xxx(t + 1) = xxx(t)+ ddd f (t)ξ (t), (4)

where ξ (t) denotes the flight distance of the beetle at t-th
cycle. Initially, the value of ξ (t) is set to be large enough for
the purpose of avoiding local minima.

D. BEETLE POSITION DETERMINATION
The BAS algorithm makes a comparison between the state
{xxx(t+1), f [xxx(t+1)]} at the new position and the current state
{x̂xx, f (x̂xx)}. The process of the comparison is given as follows:

{f (x̂xx), x̂xx} =

{
{f [xxx(t + 1)],xxx(t + 1)} f [xxx(t + 1)] < f (x̂xx);
{f (x̂xx), x̂xx} f [xxx(t + 1)] > f (x̂xx).

(5)

Each obtained f [xxx(t+1)] is compared with the current f (x̂xx)
after each cycle. If the f [xxx(t + 1)] is smaller, f [xxx(t + 1)] and
xxx(t + 1) replace f (x̂xx) and x̂xx, respectively, otherwise f (x̂xx) and
x̂xx keep the original values and f [xxx(t + 1)] and xxx(t + 1) are
ignored.

E. CONVERGENCE FACTOR UPDATES
The convergence factors are updated as follows:

ρ(t + 1) = 0.95ρ(t)+ 0.01, (6)

ξ (t + 1) = 0.95ξ (t). (7)

VOLUME 8, 2020 89061



Z. Yue et al.: Hardware Descriptive Approach

The equation (6) simulates that the sensing distance of the
beetle decreases as the beetle approaches the food source. The
equation (7) simulates that the flying distance of the beetle
decreases as the beetle approaches the food source.

III. ALGORITHMIC DESCRIPTION OF BAS
Algorithm 1 describes how the beetle antennae search (BAS)
executes in terms of pseudo code.

Algorithm 1 Beetle Antennae Search
Input: The objective function f (·), the initial

convergence factors ξ (0) and ρ(0), the random
vector rrr(t), the maximum number of cycles Tm

Output: The optimal x̂xx that minimizes f (·)
1 while t < Tm do
2 Generate the normalized directional vector ddd(t)

according to (1);
3 Compute the locations of the two randomly oriented

antennae according to (2);
4 Compute the flying direction according to (3);
5 Update the time step index t = t + 1;
6 Compute the landing location of the beetle

according to (4);
7 if f [xxx(t + 1)] < f (x̂xx) then
8 f [x̂xx] = f [xxx(t + 1)], x̂xx = xxx(t + 1);

9 Update sensing distance ρ(t + 1) and flight distance
ξ (t + 1) according to (6) and (7), respectively;

10 return x̂xx and f (x̂xx).

IV. FIXED-POINT ARITHMETIC
The BAS is normally implemented in high-level program-
ming languages such as Matlab. High-level programming
languages tend tomanipulate decimals easily. However, high-
level implementation of BAS requires computational over-
heads and cannot guarantee real-time operations. When BAS
is implemented in an embedded system, it is very likely
that the computational resources are limited but the compu-
tational efficacy is highly demanded. In this scenario, how
to implement BAS in a low (hardware) level language is
worth investigating. To this end, we investigate how to imple-
ment BAS in Verilog hardware description language (HDL).
The Verilog HDL code renders register transfer level(RTL)
implementation of BAS based on a field-programmable gate
array(FPGA) chip. Specially, Verilog HDL builds gate-level
circuits, which are all binarily coded. On the other hand,
the implementation of the BAS algorithm requires operating
continuous variables in a continuous space. There are two
ways to characterize continuous decimals in FPGA oper-
ational processes, i.e., fixed-point operations and floating-
point operations [23], [29].

Floating-point operations are more accurate than fixed-
point operations [28]. However, the floating-point operations
consume huge FPGA hardware resources [6]. On the other

hand, the fixed-point operations consume fewer hardware
resources with a guarantee of acceptably accurate results.
According to the advantages of fixed-point operations, we use
fixed-point arithmetic in our work. We give an example of
5.555 times 4.444 to explain the algorithmic principle of
fixed-point operations.

Firstly, two numbers 5.555 and 4.444 are multiplied by two
to the eight:

5.555 ∗ 28 = 1422.08 (8)

4.444 ∗ 28 = 1137.664 . (9)

The two computed values are rounded, resulting in the
decimal values 1422 and 1137, separately.Wewrite them into
the Verilog HDL decimal forms, i.e., 20′d1422 and 20′d1137,
separately. Accordingly, we also write them into the Verilog
HDL hexadecimal forms, i.e., 20′h5_8E and 20′h4_71, sepa-
rately. The form of a Verilog HDL number consists of three
parts, which are data width, decimal indication and value
of the data. Take the number 20′d1422 as an example. ‘20’
denotes the data width in a binary form, and it allows the
maximum value of the data to be 220. ‘′d’ indicates that the
number belongs to the decimal system. ‘1422’ denotes the
value of the data, and it is represented in the decimal form.
Similarly, in 20′h4_71, ‘′h’ indicates that the number belongs
to the hexadecimal system. ‘_’ is a virtual symbol that denotes
the fixed decimal point. It does not change the value of the
data but virtually marks the location of the decimal point in
our work.

The decimal point position of the fixed point number is
fixed. One key technology of fixed-point arithmetic is to
determine the fixed position, which is set by the designer
of the decimal point. We obtain an intermediate value by
multiplying a number by a specific integer power of two. For
binary numbers, this operation is equivalent to shifting the
decimal point to right by a specific integer. We then use the
intermediate value to do other operations to obtain an inter-
mediate result. After that, the intermediate result is divided by
an integer power of two to obtain the final result. For binary
numbers, this is equivalent to shifting the entire number
bits to right by a specific integer. During data bits shift to
right, extra data bits are rounded with respect to the fixed
data width. Large data width renders a big shift of the decimal
point and accordingly accurate data representation. However,
too many data bits lead to a large amount of computational
consumption. In the light of the observation, we use eight
fractional part bits in our work to compromise the accuracy
and the bit width of the data.

After (8) and (9), we shift the entire number bits to right
by eight. Each hexadecimal number is represented by a four-
bit binary number. We shift the decimal point to left by two
bits in the hexadecimal number to keep the value of the data
constant by using the symbol ‘_’. This is equivalent to that
the decimal point is shifted to left by eight bits in the binary
number. We thus put the symbol ‘_’ there. Compared with

89062 VOLUME 8, 2020



Z. Yue et al.: Hardware Descriptive Approach

the decimal before rounding, the errors of the two numbers
are 0.0056% and 0.058%, separately.

Secondly, the two intermediate quantities are multiplied as
follows:

20′h5_8E ∗ 20′h4_71 = 20′h18_ABAE; (10)

where ∗ denotes the operation of multiplication. The result in
(10) is an intermediate one in the overall computation.

Thirdly, we divide the intermediate result by 256 (i.e., 28).
In the binary operation, the original number is shifted to right
by eight bits.

20′h18_ABAE�> 8 = 20′h18_AB; (11)

The symbol ‘�>’ denotes the right shift operation.
Fourthly, the obtained value is converted into a decimal

system number as follows:

20′h18_AB = 24.171. (12)

Fifthly, in order to make a comparison between the Verilog
HDL computation and the actual result, we compute the
actual value as follows:

5.555 ∗ 4.444 = 24.68642. (13)

According to the results of (12) and (13), we compute
the error in the fixed-point arithmetic. The computational
formula is as follows:

24.68642− 24.171
24.68642

≈ 0.0208. (14)

The error is about 2%. The error is caused by the operations
that the fixed-point number has an approximation and round-
ing. In fact, the operations cause a small error for a number
with long width. We reduce the error by setting a higher bit
width.

V. VERILOG HDL IMPLEMENTATION OF BAS
In this section, we introduce the approach to implementing
BAS by Verilog HDL. Specifically, Sections V-A, V-B, V-C
and V-E correspond to the Sections II-A, II-B, II-C and II-E,
respectively.

A. RANDOM DIRECTION GENERATION BY LINEAR
FEEDBACK SHIFT REGISTER (LFSR)
The randomization process includes the randomization of the
evolution direction and the randomness of the motion direc-
tion. It is a very important process for the BAS algorithm.

When the algorithm is implemented in high-level program-
ming languages, a random function embedded in the pro-
gramming language is called to generate a random number.
Although the Verilog HDL has a function that generates
random numbers, the function is just available for external
stimulus but not for circuit implementation. To implement
the entire algorithm of BAS on a single chip, it is necessary to
generate random numbers on the chip system. However, there
is no reported manner to generate a completely random num-
ber inside the FPGA.We use pseudo-random numbers instead

FIGURE 2. Structural model diagram of LFSR with three D flip-flops.

of random numbers. In order to make a clear presentation for
implementational facilitation, we use the standardized form
to represent Verilog HDL code.

We commence by giving the definition of the pseudo-
random number. The pseudo-random number is a sequence of
numbers generated by a given specific set of seeds according
to a specific algorithm or structure. In fact, the number is
generated by a specific algorithm. The result is completely
known. However, there are large numbers of pseudo-random
numbers, and the degree of randomness is completely suffi-
cient. In our work, we mainly use the linear feedback shift
register (LFSR) [25] to generate pseudo-random numbers.

The LFSR consists of D flip-flops and XOR gates. LFSR
generates 2N − 1 ‘random numbers’. As long as there are
more D flip-flops, more ‘random numbers’ are generated and
the numbers generated are more ‘random’.

Figure 2 illustrates a simplified structural model of LFSR,
where the D2, D1 and D0 denote different digits of the same
binary number. The CLK is a clock signal which activates the
LFSR model. The clock signal is generated by crystal oscil-
lations. The crystal is embedded in the FPGA. The symbol
‘⊕’ represents XOR operation, and its logical expression is
A⊕B = AB+ABwhere A represents for the bitwise inversion
of the binary form of A.
We use an example to explain the operating mechanism of

LFSR. Each binary number generated by LFSR is a state. The
initial state is set by the given seed according to the definition
of pseudo-number.We set the initial seed to be 111. The initial
state is D2 D1 D0 = 111(seed) where the seed is an initial
state of the entire LFSR system. The subsequent state is

D2 = D1 = 1,

D1 = D0 ⊕ D2 = 0,

D0 = D2 = 1, (15)

where D2 D1 D0 = 101 according to Figure 2.
LFSR repeats the above process. We obtain a state transi-

tion diagram as illustrated in Figure 3. Figure 3 is a schematic
diagram of the LFSR state transition, and it is generated by
the LFSR model. The LFSR model stores each bit of a N
bit number in a flip-flop. The input of each flip-flop is the
output of the previous flip-flop or the XOR of the other two
flip-flops’ outputs. When one-bit changes, the whole number
changes.

As shown in Figure 2 and Figure 3, we use three D flip-
flops. There are seven states in total for the three D flip-flops.

VOLUME 8, 2020 89063



Z. Yue et al.: Hardware Descriptive Approach

FIGURE 3. The states transition diagram.

In our work, we suppose that a beetle should move in a
two-dimensional environment. The beetle requires two ran-
dom numbers for providing two random directions for the
two-dimensional environment. However, the LFSR module
generates only one pseudo-random number. To address the
deficiency, we build a twin model to generate two pseudo-
random numbers. The twin model needs two seeds. In order
to avoid the two pseudo-random numbers generated exactly
the same, we give two different seeds to provide multiple data
combinations for the generated pseudo-random numbers.

The initial state of the twin model is given by two totally
different seeds, and the activation signal is given by the CLK
signal.

We use horizontal and vertical positions to represent the
two-dimensional environment. Let dir_x1 represent the hor-
izontal direction and dir_x2 represent the vertical direction
in the Verilog HDL statement. Based on the LFSR model,
we give two different seeds to generate dir_x1 and dir_x2.

B. UPDATING THE ANTENNA POSITIONS WITH FIXED
POINT VERILOG HDL IMPLEMENTATION
In BAS algorithm, the convergence is related to distance
decrease. Specifically, both the moving distance and the
sensing distance are supposed to converge in the BAS
algorithm [30]. The process of updating the factors is not
a simple subtraction but a decrease of moving distance and
sensing distance, which requires fractional operations.

Section II illustrates BAS algorithm in high-level program-
ming language. According to (2), (4), (6) and (7), the sensing
distance and the moving distance occur change from to cycle.
In each cycle, the two parameters are updated. In the updated
process, ρ(t) which denotes the sensing distance in (6) and
ξ (t) which denotes the moving distance in (7) inevitably have
a fractional part. However, Verilog HDL cannot perform frac-
tional operations directly. To address this limitation, we use
fixed point operation inVerilogHDL according to Section IV.
We develop a function f(x1, x2) based on Verilog HDL,

where x1 and x2 are inputs of the function. The Verilog
function f(x1, x2) characterizes an objective function f (xxx)
with a two-dimensional vector variable xxx, and x1 and x2
represent the two elements of xxx, separately. x1 and x2 are wire
type data whose bit width is set to be 16 bits. The output is the
function f(x1, x2) itself and it is reg type data whose bit is set
to be 24 bits. The wire and the reg are two data types defined

by Verilog HDL. The operation process of the BAS with the
fixed-point arithmetic method is in the following subsection.

The position coordinates of the current antennae are com-
puted according to the random direction. The position coor-
dinates of the current antennae are described in Verilog HDL
as follows:

xl_1 = x1+ (dir_x1 ∗ sense)�> 8;

xl_2 = x2+ (dir_x2 ∗ sense)�> 8; (16)

xr_1 = x1− (dir_x1 ∗ sense)�> 8;

xr_2 = x2− (dir_x2 ∗ sense)�> 8; (17)

where xl_1 denotes the horizontal position of the beetle left
antenna, xl_2 denotes the vertical position of the beetle right
antenna, and x1 and x2 represent the current horizontal and
vertical coordinates of the beetle, respectively.

In Section II, the value of f (f is a scaler and it’s a value
that computed based on xxx(t)) implies the odor received by the
antenna located at xxx(t) which represents a vector in high-level
program language. In Verilog HDL, We decompose vectors
into scalars. For example, the value of f implies the odor
received by the antenna in (18), and the position of the beetle
becomes (x1, x2), where x1 and x2 are scalars. f_l denotes the
odor that the beetle left antenna receives. f_r denotes the odor
the beetle right antenna receives. f_l and f_r are computed in
terms of Verilog HDL as follows:

f_l = f(xl_1, xl_2);

f_r = f(xr_1, xr_2); (18)

where calculation for f is based on the position coordinates
of the current antennae. The beetle decides to go towards a
direction which is characterized the larger one between f_l
and f_r.

C. UPDATING THE BEETLE POSITION IN TERMS OF
VERILOG HDL IMPLEMENTATION
Let move denote the moving distance. The Verilog HDL
implementation of computing the current moving distance is
given in terms of Verilog HDL as follows:

move_x1 = (move ∗ dir_x1)�> 8;

move_x2 = (move ∗ dir_x2)�> 8; (19)

where move_x1 denotes the beetle moving distance along the
horizontal direction, and move_x2 denotes the beetle moving
distance along the vertical direction.

According to (16), (17), (18) and (19), the position updates
for the beetle are implemented in Verilog HDL as follows:

x1 = x1−move_x1 ∗ sign(f_l, f_r);

x2 = x2−move_x2 ∗ sign(f_l, f_r); (20)

where the sign denotes a symbolic function indicating that the
subsequent movement direction follows the larger one of the
two values f_l and f_r.

89064 VOLUME 8, 2020



Z. Yue et al.: Hardware Descriptive Approach

D. UPDATING THE BEST POSITION IN TERMS OF VERILOG
HDL IMPLEMENTATION
The first f on the left-hand of the statement (21) denotes the
value of f at (x1, x2), and the second f denotes the objective
function.

f = f(x1, x2); (21)

We obtain (x1, x2) based on the statement (20). We send
(x1, x2) to the objective function to obtain the corresponding
f. Then, we compare f and f_best which is the current optimal
value of the objective function. The process of comparison is
given in terms of Verilog HDL as follows:

if(f_best < f)

begin

x1_best = x;

x2_best = y;

f_best = f;

end (22)

where x1_best and x2_best denote the current optimal x1 and
x2, respectively.

When the value of f is larger than the value of f_best,
x1_best and x2_best are overwritten by the values of x1 and
x2, respectively, and f_best is overwritten by f . When the
value of f is smaller than the value of f_best, x1_best, x2_best
and f_best keep the original values without updates.

E. UPDATING THE CONVERGENCE FACTORS IN TERMS OF
VERILOG HDL IMPLEMENTATION
The convergence factors enable the BAS implemented in
Verilog HDL to avoid local minima. sense_c and move_c
denote initial value of the sensing distance and moving dis-
tance, respectively. They are given in terms of Verilog HDL
as follows:

sense_c = 0.95 ∗ 2∧8;

move_c = 0.95 ∗ 2∧8; (23)

Here the data is multiplied by two to the eight for the
purpose of fixed-point arithmetic operation in subsequent
step.

Let sense denote the sensing distance. We multiply the
initial value sense_c by the current value sense to shrink the
sensing distance. We multiply the initial value move_c by the
current value move to shrink the moving distance.

sense = (sense_c ∗ sense)�> 8;

move = (move_c ∗move)�> 8; (24)

where the convergence factors are shifted to right by eight
bits to obtain the sensing distance and moving distance of the
next cycle.

FIGURE 4. The RTL of the test function.

VI. CIRCUIT SYNTHESIS FOR BAS
In this section, the BAS algorithm implemented by Verilog
HDL is divided into five modules. Firstly, the objective func-
tion module which is described in Section VI-A is generated.
Secondly, the random number generator module and the twin
module in Section VI-B are built. Finally, these modules are
connected to each other such that the BAS system module is
constructed in Section VI-E.

In each module, the circuit is generated, and the circuit is
analyzed by describing how the modules work.

A. THE OBJECTIVE FUNCTION MODULE
The test function module circuit is generated as Figure 4.

The objective function is chosen as booth function [33],
which is a widely used benchmark for testing evolutionary
algorithms:

f (x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2. (25)

The circuit for the objective function is generated above all.
The circuit which has two input lines is designed. a and
b in Figure 4 are two input nodes of the input lines. The
coordinates of the beetle (x1, x2) are sent to the two nodes.
x1 sends to a and x2 sends to b.
The circuit computes the value of f based on (x1, x2). f

implies the odor the beetle receives. The moving direction of
the beetle is decided with respect to by f value.

B. THE RANDOM NUMBER GENERATOR MODULE
The random number generator module circuit is generated as
follows:

According to the Section V-A, a twin LFSR model is
built. The model is constructed by two single LFSR models
of which consists of D flip-flops and XOR gates. The two
models are given the same sensitive signal CLK according to
Figure 2. We add the load signal load to the twin model to
control the model startup. The reset signal rst_n is added to
the twin model. The reset signal is responsible for setting the
data to be zero to facilitate the debugging of the model. This
module is designed to generate two pseudo-random numbers.

C. THE ANTENNAE MODULES
The left and right antenna module circuits are generated as
follows:

The antenna modules consist of the left antenna register
transfer level(RTL) model and the right antenna RTL model.
They have similar struct according to Figure 6 and Figure 7.

VOLUME 8, 2020 89065



Z. Yue et al.: Hardware Descriptive Approach

FIGURE 5. The RTL of the random number generator module.

FIGURE 6. The RTL model of the beetle left antenna.

FIGURE 7. The RTL model of the beetle right antenna.

The only difference between them is the direction operation
based on (16) and (17).

The left antenna RTL model and the right antenna RTL
model obtain the coordinates (xl_1, xl_2) and (xr_1, xr_2),
respectively. The coordinates are send to the objective func-
tion described in Section VI-A to compute the odor the two
antennae received f_l and f_r. The modules are designed to
obtain f_l and f_r.

D. THE BEETLE POSITION MODULE
The coordinate values in this module are updated, and
f value is computed based on the coordinate values.

TABLE 1. Resource utilization of the BAS model on Zynq XC7Z010.

FIGURE 8. The RTL of the beetle position module.

The coordinate value of the previous position of the beetle
is input, and the coordinate of the next position are computed
as the output according to the coordinate value of the previous
position.

The position coordinate of the beetle is updated. The posi-
tion coordinate of the beetle is the input of the objective func-
tion to compute f. After f is obtained, the last f is compared.
The larger f computed based on (x1, x2) becomes the new
optimal result, otherwise, it is discarded. The above process
is repeated until the results converge. The result obtained after
convergence is reached as the final f. This module is designed
to update the position of the beetle (x1, x2), and the final f .

E. THE OVERALL STRUCTURE OF THE BAS MODULE
Figure 9 illustrates the overall structure of the BAS module.
The logic part which is composed of 4 modules performs
computing tasks. In fact, the logic part is implemented as
combinatorial logic. The twin LFSR module generates the
random number for the antenna modules. The antenna mod-
ules uses random numbers to generate corresponding sense
coordinates and sends them to the target function module.
The target function module generates a function value, and
passes this value to the beetle position module. The beetle
position module updates the beetle coordinate according to
the function value, and sends this coordinate to the target
function module again. The target function module generates
the final function value and sends it back to the beetle position
module. The beetle position module sends the the finally
generated function value to BRAM, and compares it with
the current optimal value to decide whether to update the
optimal value. The logic part repeats the process until reach
the maximum iterations.

VII. EVALUATION AND EXPERIMENTS
We build the FPGA-based BAS model to find the optimal
value of our objective function. The result shows that the
model finds the optimal value by costing 132.5us. We give
our resource consumption in Table 1.

89066 VOLUME 8, 2020



Z. Yue et al.: Hardware Descriptive Approach

FIGURE 9. The beetle dataflow model.

A. RESULTS VERIFICATION
On the basis of the code being implemented, we use the
ModelSim simulation to verify the correctness of the resulted
values. We program the testbench to give the FPGA-based
BAS algorithm an initial stimulus. The simulation results are
given in Figure 10. Figure 10(a) illustrates the entire system
data optimization process. The horizontal axis represents the
number of iterations. The function value refers to the left-
most vertical axis, and the coordinate refers to the rightmost
vertical axis. According to Figure 10, the coordinate value
does not decrease all the time. The x1 and x2 increase and
decrease alternately. The function value corresponding to the
coordinate value continuously decreases, because this is the
decisive condition for the system to find the optimal value.

We observe that the difference in the starting position
affects the number of iterations in the optimization process
during the experiment. To further verify this phenomenon,
we randomly set several different starting positions for com-
parative experiments. The experimental results are given
in Figures 10(b), 10(c) and 10(d).

Figure 10(b) illustrates that the starting position is set
to (195, 177), and the number of iterations is reduced by
about ten comparedwith Figure 10(a). Similarly, Figure 10(d)
indicates that the starting position is set to (20, 3), and the
number of iterations is reduced by about forty compared with
Figure 10(a). We observe that a reasonable choice of starting
position is beneficial to the optimization computation time.
We select the first experimental result as the final experi-
mental result for presentation. How to choose a reasonable
starting position will continue to be studied in our future
work.

B. HARDWARE IMPLEMENTATION
The overall hardware structure is implemented as described in
Section VI. The CPU writes configuration parameters to the
BRAM on the PL through the AXI GPIO. The configuration

parameters include rst_n signal, load signal and seed stim-
ulus. The CPU sends an interruption signal to the PL after
the configuration parameters writing is completed. The PL
refers the configuration parameters from the BRAM to the
LFSR module. The LFSR module generates a set of random
numbers for the BAS model. Each time when the BAS model
produces a set of optimization results including coordinate
values and their corresponding function values, it is rewritten
to the BRAM. The CPU reads the optimized model from the
BRAMwhen the maximum number of cycles is reached. The
optimized data is finally read from BRAM, and the results are
completely consistent with the simulation results.

We evaluate the BAS model by implementing it on
Zynq XC7Z010 FPGAs, which contains a Cortex-A9 device,
866MHz dual-core ARM-based CPU and 1GB DDR mem-
ory. The overall system is developed using Verilog HDL
and implemented with Vivado 2019.1, which performs syn-
thesis and implementation. Our FPGA-based BAS model is
executed at 100 MHz clock frequency. A reasonable clock
frequency is conducive to the whole design. In fact, most of
the Verilog code described in the Section V is implemented as
combinatorial logic which causes huge power consumption
at high frequencies. However, even with a huge amount of
combinatorial logic, the FPGA-based BAS algorithm still
consumes acceptable power. The BAS model is greatly con-
cise. For example, at the working frequency of 100MHz,
the power consumed is 1.64W, and at the working frequency
of 150MHz, the power consumed is 1.729W. As our study is
the first preliminary work for the BAS FPGA implementa-
tion, we use the default frequency, which affords acceptable
efficiency.

C. RESOURCE UTILIZATION
Table. 1 presents the resource utilization of BAS model run-
ning on the Zynq XC7Z010 device at 100 MHz. A small
amount of logical resources on the chip are required for

VOLUME 8, 2020 89067



Z. Yue et al.: Hardware Descriptive Approach

FIGURE 10. Data optimization for 4 different starting positions. (a) Starting position:(254, 254), iterations:121. (b) Starting position:(195, 177),
iterations:109. (c) Starting position:(101, 95), iterations:92. (d) Starting position:(20, 3), iterations:78.

implementing the BAS model. This benefits from the simple
structure of the BAS model.

D. DEGREE OF PARALLELISM
We duplicate multiple arithmetic circuits and compute them
in parallel. The multiple arithmetic circuits are characterized
(initialized) via different data seeds and this renders faster
optimization convergence. The architecture of the BASmodel
is simple, and its operation time is short. The time benefitting
from the system-level parallel computation of the BASmodel
is small but at the cost of increased resource consumption.
Additionally, the twin LFSR module continuously generates
random numbers. These numbers are not independent of one
another and cannot be generated in parallel. Therefore, we do
not conduct system-level parallel computation but parallelly
update the convergence factor at the module level.

VIII. CONCLUSIONS
In this paper, a novel FPGA-based prototype has been devel-
oped for the BAS algorithm that mainly uses the two antennae
of the beetle to simulate the foraging process of the beetle.
Specifically, we have designed arithmetic circuits for every
part of the beetle. We have built the twin LFSR model to
enable the prototype work in two-dimensional environment
on the chip. We have used the fixed-point arithmetic to over-
come difficulties in data discontinuity on FPGA platform,

and made a trade-off between computing resources and data
accuracy.

We have also designed corresponding arithmetic circuits
for the booth function. This prototype is implemented on the
Zynq XC7Z010 platform to optimize the booth function with
132.5 µ s latency, working at 100MHZ.

Our future work is summarized from the follow aspects.
In the literature, there are few hardware implementation algo-
rithms for high-dimensional optimization problems. In order
to further expand our approach, we plan to increase the
dimension of the environment or function and explore the
optimal performance of our method in a high-dimensional
environment in future work. In addition, we found that choos-
ing a reasonable initial position is beneficial to the function
optimization time during the experiment. We will continue to
pay attention to this part in future work.

REFERENCES

[1] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[2] P. Mazumder and E. M. Rudnick, Genetic Algorithms: For Vlsi Design,
Layout & Test Automation. Reading, MA, USA: Addison-Wesley, 1999.

[3] J. Kennedy and R. C. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
IEEE Int. Conf. Neural Netw., Piscataway, NJ, USA, Nov./Dec. 1995,
pp. 1942–1948.

[4] X. Jiang and S. Li, ‘‘BAS: Beetle antennae search algorithm for
optimization problems,’’ 2017, arXiv:1710.10724. [Online]. Available:
http://arxiv.org/abs/1710.10724

89068 VOLUME 8, 2020



Z. Yue et al.: Hardware Descriptive Approach

[5] T. Zhang, J. Wang, S. Guo, and Z. Chen, ‘‘A comprehensive FPGA reverse
engineering tool-chain: From bitstream to RTL code,’’ IEEE Access, vol. 7,
pp. 38379–38389, 2019.

[6] C. Lammie, A. Olsen, T. Carrick, and M. Rahimi Azghadi, ‘‘Low-power
and high-speed deep FPGA inference engines for weed classification at the
edge,’’ IEEE Access, vol. 7, pp. 51171–51184, 2019.

[7] S. Hou, Y. Guo, and S. Li, ‘‘A lightweight LFSR-based strong phys-
ical unclonable function design on FPGA,’’ IEEE Access, vol. 7,
pp. 64778–64787, 2019.

[8] Q. Wu, H. Lin, Y. Jin, Z. Chen, S. Li, and D. Chen, ‘‘A new fallback
beetle antennae search algorithm for path planning of mobile robots with
collision-free capability,’’ Soft Comput., vol. 24, no. 3, pp. 2369–2380,
May 2019.

[9] Z. Cao, L. Liu, B. Hu, and H. Xie, ‘‘Short-term load forecasting based on
variational modal decomposition and optimization model,’’ in Proc. IEEE
15th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2019, pp. 121–126.

[10] M. Lei, Q. Luo, Y. Zhou, C. Tang, and Y. Gao, ‘‘BFPA: Butterfly strategy
flower pollination algorithm,’’ in Proc. Intell. Comput. Theories Appl.
(ICIC), 2019, pp. 739–748.

[11] S. Xie, X. Chu, M. Zheng, and C. Liu, ‘‘Ship predictive collision avoidance
method based on an improved beetle antennae search algorithm,’’ Ocean
Eng., vol. 192, Nov. 2019, Art. no. 106542.

[12] S. Xie, V. Garofano, X. Chu, and R. R. Negenborn, ‘‘Model predictive ship
collision avoidance based on Q-learning beetle swarm antenna search and
neural networks,’’ Ocean Eng., vol. 193, Dec. 2019, Art. no. 106609.

[13] S. Xie, X. Chu, C. Liu, andM. Zheng, ‘‘Marine diesel engine speed control
based on adaptive state-compensate extended state observer-backstepping
method,’’ Proc. Inst. Mech. Eng., I, J. Syst. Control Eng., vol. 233, no. 5,
pp. 457–471, May 2019.

[14] S.-W. Fei and C.-X. He, ‘‘Prediction of dissolved gases content in
power transformer oil using BASA-based mixed kernel RVR model,’’ Int.
J. Green Energy, vol. 16, no. 8, pp. 652–656, Jun. 2019.

[15] M.-J. Lin and Q.-H. Li, ‘‘A hybrid optimization method of beetle antennae
search algorithm and particle swarm optimization,’’ in Proc. Int. Conf.
Elect., Control, Automat. Robot. (ECAR), 2018, pp. 396–401.

[16] Q. Li, Z. Wang, and A.Wei, ‘‘Research on optimal scheduling of wind-PV-
hydro-storage power complementary system based on BAS algorithm,’’
IOP Conf. Series, Mater. Sci. Eng., vol. 490, Apr. 2019, Art. no. 072059.

[17] T. Chen, Y. Zhu, and J. Teng, ‘‘Beetle swarm optimisation for solving
investment portfolio problems,’’ J. Eng., vol. 2018, no. 16, pp. 1600–1605,
Nov. 2018.

[18] Y. Mu, B. Li, D. An, and Y. Wei, ‘‘Three-dimensional route planning
based on the beetle swarm optimization algorithm,’’ IEEE Access, vol. 7,
pp. 117804–117813, 2019.

[19] Q. Wang, M. Li, L. Gao, K. Li, and H. Chen, ‘‘Nature-inspired waveform
optimisation for range spread target detection in cognitive radar,’’ J. Eng.,
vol. 2019, no. 20, pp. 6767–6771, Oct. 2019.

[20] Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A. H. Khan, and D. Chen, ‘‘Intelli-
gent beetle antennae search for UAV sensing and avoidance of obstacles,’’
Sensors, vol. 19, no. 8, p. 1758, Apr. 2019, doi: 10.3390/s19081758.

[21] Y. Fan, J. Shao, and G. Sun, ‘‘Optimized PID controller based on beetle
antennae search algorithm for electro-hydraulic position servo control sys-
tem,’’ Sensors, vol. 19, no. 12, p. 2727, Jun. 2019, doi: 10.3390/s19122727.

[22] F. Qi, Q. Wang, and L. Xu, ‘‘Disease classification model based on Qubit
neural tree networks,’’ in Proc. 9th Int. Conf. Inf. Technol. Med. Edu.
(ITME). Piscataway, NJ, USA: IEEE, Oct. 2018, pp. 154–158.

[23] J. Cheng and T. Liu, ‘‘A variational reconstructed discontinuous Galerkin
method for the steady-state compressible flows on unstructured grids,’’
J. Comput. Phys., vol. 380, pp. 65–87, Mar. 2019.

[24] H. Zhou, W. L. Ouyang, and J. Cheng, ‘‘Deep continuous conditional
random fields with asymmetric inter-object constraints for online multi-
object tracking,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 4,
pp. 1011–1022, Apr. 2019.

[25] J. Lu, D. Liu, H. Li, C. Zhang, and X. Zou, ‘‘A fully integrated HF RFID
tag chip with LFSR-based light-weight tripling mutual authentication pro-
tocol,’’ IEEE Access, vol. 7, pp. 73285–73294, 2019.

[26] M. A. Vega-Rodriguez, R. Gutierrez-Gil, J. M. Avila-Roman,
J. M. Sanchez-Perez, and J. A. Gomez-Pulido, ‘‘Genetic algorithms
using parallelism and FPGAs: The TSP as case study,’’ in Proc. Int. Conf.
Parallel Process. Workshops (ICPPW), 2005, pp. 573–579.

[27] B. Chen, J. Wang, H. Zhao, N. Zheng, and J. C. Principe, ‘‘Convergence
of a fixed-point algorithm under maximum correntropy criterion,’’ IEEE
Signal Process. Lett., vol. 22, no. 10, pp. 1723–1727, Oct. 2015.

[28] T. Li and W. X. Zheng, ‘‘New stability criterion for fixed-point state-space
digital filters with generalized overflow arithmetic,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 443–447, Jul. 2012.

[29] L. Harnefors, ‘‘Implementation of resonant controllers and filters in
fixed-point arithmetic,’’ IEEE Trans. Ind. Electron., vol. 56, no. 4,
pp. 1273–1281, Apr. 2009.

[30] Q. Wu, Z. Ma, G. Xu, S. Li, and D. Chen, ‘‘A novel neural network
classifier using beetle antennae search algorithm for pattern classification,’’
IEEE Access, vol. 7, pp. 64686–64696, 2019.

[31] P. Cortés-Antonio, J. Rangel-GonzÃİlez, and L. A. Villa-Vargas, ‘‘Design
and implementation of differential evolution algorithm on FPGA for
double-precision floating-point representation,’’ Acta Polytechnica Hun-
garica, vol. 11, no. 4, pp. 139–153, 2014.

[32] V. A. Qureshi, S. Hanmandlu, and B. Papachary, ‘‘FPGA based design and
implementation of genetic algorithm using Verilog,’’ in Proc. IJERA Nat.
Conf. Develop., Adv. Trends Eng. Sci., 2015, pp. 42–46.

[33] M. Jamil and X. S. Yang, ‘‘A literature survey of benchmark functions for
global optimisation problems,’’ Int. J. Math. Model. Numer. Optim., vol. 4,
no. 2, pp. 150–194, 2013.

[34] R. Wiśniewski, G. Bazydło, and P.Szcześniak, ‘‘SVM algorithm oriented
for implementation in a low-cost Xilinx FPGA,’’ Integr., VLSI J., vol. 64,
pp. 150–194, Jan. 2019.

[35] R. Wisniewski, ‘‘Dynamic partial reconfiguration of concurrent control
systems specified by Petri nets and implemented in Xilinx FPGA devices,’’
IEEE Access, vol. 6, pp. 32376–32391, 2018.

[36] R. Wiśniewski, Prototyping of Concurrent Control Systems Implemented
in FPGA Devices. Zielona Gora, Poland: Springer, 2017.

ZONGCHENG YUE received the B.Eng. degree
from Nangchang Hangkong University,
Nanchang, China. He is currently pursuing the
M.Eng. degree in electronics and communica-
tion engineering with the China University of
Petroleum, Qingdao, China. His current research
interests include machine learning and embedded
systems.

GANG LI received the B.E. degree in informa-
tion engineering from Northwestern Polytechnical
University, Xi’an, China, in 2013. He is currently
pursuing the Ph.D. degree with the National Lab-
oratory of Pattern recognition, Chinese Academy
of Sciences. His research interests include image
understanding, deep learning, and embedded
systems.

XIANGYUAN JIANG received the B.E. degree
in biomedical engineering from Shandong Uni-
versity, China, in 2006, and the Ph.D. degree
in control science and control engineering from
Shandong University, in 2012. He was a Lecturer
with the China University of Petroleum. He was
a Research Fellow with the Department of Com-
puting, The Hong Kong Polytechnic University,
HongKong. He is currently an Associate Professor
with the Institute of Marine Science and Technol-

ogy, Shandong University. His current research interests include the adaptive
control of source seeking, distributed estimation, and control.

VOLUME 8, 2020 89069

http://dx.doi.org/10.3390/s19081758
http://dx.doi.org/10.3390/s19122727


Z. Yue et al.: Hardware Descriptive Approach

SHUAI LI (Senior Member, IEEE) received the
B.E. degree in precision mechanical engineering
from the Hefei University of Technology, Hefei,
China, in 2005, the M.E. degree in automatic con-
trol engineering from the University of Science
and Technology of China, Hefei, in 2008, and
the Ph.D. degree in electrical and computer engi-
neering from the Stevens Institute of Technology,
Hoboken, NJ, USA, in 2014. He is currently an
Associate Professor (Reader) with Swansea Uni-

versity, Wales, U.K., leading the Robotic Laboratory, conducting research
on robot manipulation and impedance control, multi-robot coordination,
distributed control, intelligent optimization and control, and legged robots.
Dr. Li is the Founding Editor-in-Chief of the International Journal of
Robotics and Control and the General Co-Chair of 2018 International Con-
ference on Advanced Robotics and Intelligent Control.

JIAN CHENG received the B.S. and M.S.
degrees from Wuhan University, Wuhan, China,
in 1998 and 2001, respectively, and the Ph.D.
degree from the Institute of Automation, Chinese
Academy of Sciences, Beijing, China, in 2004.
From 2004 to 2006, he was Postdoctoral Fel-
low with the Nokia Research Center, Beijing. He
has been with the National Laboratory of Pat-
tern Recognition, Beijing, since 2006. His current
research interests include machine learning meth-

ods and their applications for image processing, and social network analysis.

PENG REN (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees in electronic engi-
neering from the Harbin Institute of Technology,
Harbin, China, and the Ph.D. degree in computer
science from the University of York, York, U.K.
He is currently a Professor with the College of
Oceanography and Space Informatics, China Uni-
versity of Petroleum,Qingdao, China. His research
interests include remote sensing and machine
learning. Dr. Ren was a recipient of the K.M. Scott

Prize from the University of York, in 2011 and the Eduardo Caianiello Best
Student Paper Award at the 18th International Conference on Image Analysis
and Processing, in 2015, as one Coauthor.

89070 VOLUME 8, 2020


