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ABSTRACT The bird mating optimizer is a new metaheuristic algorithm that was originally proposed to
solve continuous optimization problems with a very promising performance. However, the algorithm has
not yet been applied for solving combinatorial optimization problems. Thus, the formulation may not be
able to generate a discrete feasible solution. Many continuous algorithms used random-key representation to
represent the discrete solution using real numbers or a discrete variant of the algorithm is used to deal with
the discrete solution of the problem. However, there is no evidence which methodology is better for solving
combinatorial optimization problems. Therefore, this work proposes two variants of bird mating optimizer
(random-key bird mating optimizer and the discrete bird mating optimizer), to identify which one is more
efficient in solving combinatorial optimization problems. In the first one, we use a random-key encoding
scheme, whilst, in the later one, we use crossover (multi-parent) and mutation operators to combine the
components of the selected parents to generate new broods. The performance of these algorithms is tested
on the travelling salesman problem and berth allocation problem, and are compared with the results of two
well-known optimization algorithms: Genetic Algorithm and Particle Swarm Optimization. Experimental
results show that the discrete bird mating optimizer is more efficient than the others on all tested benchmark
instances. Indeed, it is able to attain the best-known results in some of the BAP benchmark instances. These
indicate the applicability and the effectiveness of the proposed discrete bird mating optimizer in solving
combinatorial optimization problems.

INDEX TERMS Heuristics, bird mating optimizer, berth allocation problem, travelling salesman problem,
random-key, combinatorial optimization, metaheuristics.

I. INTRODUCTION
Combinatorial optimization problems arise in various aspects
of computer science and other areas such as artificial intel-
ligence, operational research and electronic commerce. The
combinatorial optimization problem can be defined as the
need to find an optimal arrangement, grouping, or ordering
for a given set of discrete variables [1], [2]. Examples of
such problems include scheduling public transportation, trav-
elling salesman problems, university educational timetabling,
and berth allocation problems [3]. Several optimization
techniques have been proposed for solving combinatorial
optimization problems efficiently [1], [4]–[7], [74], [75].

The associate editor coordinating the review of this manuscript and

approving it for publication was Fuhui Zhou .

These techniques can be classified as either exact methods
or approximate methods. Exact methods such as dynamic
programming [8], [9], branch and cut [10] and branch and
price [11] are guaranteed to find an optimal solution in a
finite time and systematically search the solution space [12].
However, due to the complexity of many combinatorial
problems and many are known to be non-deterministic
polynomial-time (NP)-hard problems, the time needed to
solve them grows exponentially as the problem size grows
linearly [13]. Therefore, many researchers have focused on
approximate methods to address combinatorial optimization
problems [13]–[15].

The use of approximate algorithms does not guarantee
that the optimal solution will be found, but empirically they
have often been shown to find a nearly optimal solution
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within a reasonable amount of time [13]. Approximate
algorithms are classified into two families: heuristics and
metaheuristics. Heuristics, such as construction algorithms,
are problem dependent, that is, they are designed to be
applicable to a particular problem domain [16], [17].
Heuristic algorithms can be costly to implement and
may not be suitable for a large variety of optimization
problems [2], [17]. In contrast, metaheuristics are more
general methodologies that can work effectively across
different optimization problems. Ametaheuristic algorithm is
a high-level heuristic methodology that provides a high-level
control strategy in order to improve exploration of the search
space [18]. Examples of these algorithms include simulated
annealing [19], [20], great deluge [21], tabu search [22],
genetic algorithm (GA) [23]–[26], harmony search [27],
scatter search [28], ant colony optimization [29], [30] and
particle swarm optimization [31], [32].

Recently, a nature-inspiredmetaheuristic population-based
algorithm, called the bird mating optimizer (BMO) has been
proposed [14]. The BMO is inspired by the mating strategies
of bird species during mating season in which male birds tend
to mate with female birds in order to breed a new brood.
The strength of the BMO lies in its ability to provide a
good balance between exploration and exploitation [14]. The
BMO overcomes the drawback of losing population diversity
and getting trapped in local optima that is inherent in other
methodologies by employing five updating strategies to move
through the search space [14]. Furthermore, the BMO is
able to exploit the best regions by utilizing a local search
at each iteration. Therefore, BMO has more capability than
the GA to effectively explore and exploit the search space
and find the global solution. The algorithm has demonstrated
effective performance across range of optimization prob-
lems [33]–[40]. In addition, it showed a competitive result
comparing to other evolutionary algorithm such as classical
evolutionary programming, fast evolutionary programming,
classical evolutionary strategies, fast evolutionary strategies,
genetic algorithm, particle swarm optimization, and group
search optimizer [14].

However, BMO was originally proposed to address
continuous optimization problems and, therefore, the appli-
cation of BMO to combinatorial optimization problems
has not yet been investigated. The original BMO uses
mathematical formulations that combine the information of
the selected solutions to generate a new one. Thus, standard
BMO equations may not be able to generate a discrete
feasible solution because the positions are discrete values
in combinatorial optimization problems. Many continuous
algorithms in the literature that have been applied to
solve combinatorial problems use one of the two following
methods. The first method is to apply a continuous algorithm
using random-key representation to represent the discrete
solution using real numbers, which can deal with the
continuous algorithms [41]–[44]. The second method is to
construct a discrete variant of the algorithm to deal with
the discrete nature of the problem [15], [43], [45], [46].

However, there is no investigation in the literature on which
method is better for solving combinatorial problems. The
question is how can BMO be applied to solve combinatorial
optimization problems and which method is better? To
answer these questions, this work proposes two variants of
BMO to address combinatorial optimization problems: the
random-key bird mating optimizer (RKBMO) and discrete
bird mating optimizer (DBMO). We also investigate the
effectiveness of each method to identify the most promising
one. Two well-known combinatorial optimization problems
are chosen to test the proposed methods: The Travelling
Salesman problem (TSP) (Reinelt 1991 instances) [47] and
the Berth Allocation Problem (BAP) (Cordeau et al. 2005
instances) [48] Note this research study is different from [49],
in which only RKBMO was applied and only a set of BAP
instances were used and they are different from those the
set of BAP used in this work. In addition, no analysis
study was provided. Here we utilise two problem domains
(TSP and BAP) and conduct deeper analysis.

The remainder of the paper is organized as follows:
the basic BMO is presented in Section II. The problem
descriptions are presented in Section III. The proposed
RKBMO is presented in Section IV, followed by the proposed
DBMO in Section V. In Section VI, the application of
the proposed DBMO on the BAP and TSP is presented.
Section VII summarizes and discusses the computational
results. Finally, a conclusion and details of future work are
presented in Section VIII.

II. THE BIRD MATING OPTIMIZER
The BMO is a population-based stochastic search technique
that was proposed by [14] to address continuous optimization
problems. The behavior of this algorithm is based on
simulating the mating strategies of bird species during
mating season. In this algorithm, the mating process of
birds involves the use of three main operators to produce
a new generation: two-parent mating, multi-parent mating,
and mutation. Two-parent mating is where the two parents
mate with each other to breed only one new brood, whereas
multi-parent mating is when a parent mates with at least two
other parents to breed one new brood. Mutation, on the other
hand, is a mechanism where the female parent produces a
new brood without the help of a male by modifying its own
genes [14].

In the BMO, the population is represented by the bird
society, and each bird represents a feasible solution to the
problem at hand. There are fivemating types that can generate
a new population:

1) Monogamy: most birds are monogamous, where amale
mate with one female only.

2) Polygyny: the male tries to mate with several females.
3) Polyandry: the female tries to mate with several males.
4) Parthenogenesis: the female can produce a new brood

without the help of a male.
5) Promiscuity: two birds’ mate for one time only with no

stable relationship (one-time visit).
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Thus, a bird society is divided into males and females.
The females are those birds that have the most promising
genes in the society. The females are divided into two
groups: parthenogenetic and polyandrous, while the males
are divided into three groups: monogamous, polygynous and
promiscuous [14].

Generally, in the original BMO, the assumption that each
bird in the society can change its own strategy to another
when a new generation is updated [14]. At each generation,
the birds that have the highest fitness values are designated
as parthenogenetic and polyandrous, while those that have
worse fitness values are designated as promiscuous. The
remaining birds in the society are considered as monogamous
or polygynous birds. A more detailed explanation of each
group is given below.

Parthenogenesis is the mating type in which the female
bird can produce a brood without mating with a male.
In this method, each female tries to produce her brood by
modifying and changing her genes with a predefined rate.
Each female bird in the parthenogenetic group produces a
brood as presented in equation (1) [14]:

for i = 1 : n

if r1 > mcfp
xbrood (i) = x(i)+ µ× (r2 − r3)× x(i);

else

xbrood (i) = x(i)

end

end (1)

where x (i) denotes the ith bird, xbrood is the resultant brood,
n is the problem dimension (number of genes), mcf p is
the mutation control factor of parthenogenesis, r1 denotes
a random number between 0 and 1, and µ is the step size.
Monogamy is a two-parent mating type in which a male
tends to mate with only one female. Every male evaluates
the quality of the females by using a probabilistic approach
to select one of them to be its mate. Female birds with
good genes have a higher probability of being selected.
Equation 2 illustrates the process of producing a new brood
from two selected parents [13]:

Exi = Ex + w× Er .× (Ex i − Ex)

c = a random integer number between 1 and n

if r1 > mcf

xbrood (c) = l(c)− r2 × (l(c)− u(c));

end (2)

where w is a time-varying weight to adjust the selected
female, Er is a 1 × d vector in which every element is a
distributed random number between 0 and 1 and this random
vector influences the corresponding element of (⇀x

i
−

⇀x ), n
is the problem dimension, mfc denotes the mutation control
factor which is distributed between 0 and 1, and u and l are the
upper bounds and lower bounds of the elements, respectively.

From the first part of Equation (2), each male bird seeks
to produce a good-quality brood by finding a worthy female
with which to mix his genes in order to produce new genes.
Then, the male bird tries to improve his produced brood
by mutating one of the brood’s genes with the probability
of 1− mcf .
Polygamy is a multi-parent mating process in which a

male bird tries to produce a brood by mating with two or
more females. The benefit of this multi-mating process is to
produce a brood with better genes. In nature, a polygynous
bird mating with several females produces a number of
broods, but in the BMO, only one brood results from this
mating process, where the brood’s genes are a combination
of the male’s and multiple females’ genes. After selecting
the females by using a selection mechanism, each male
bird mates with his selected females. The resultant brood is
produced by the following process [13]:

Exi = Ex + w×
∑n1

j=1
Erj. × (Ex ij − Ex)

C = a random number between 1 and n

if r1 > mcf

xbrood (c) = l(c)− r2 × (l(c)− u(c));

end (3)

where ni is the number of selected female birds and x ij denotes
the jth selected bird.
Promiscuity is a two-parent mating approach between

two birds where they only mate once. This type of mating
does not lead to a long relationship between the birds. This
mating process indicates a chaotic social structure in which
the male bird will never see the brood or the nest, and
generally will not see the female for further mating activity.
In promiscuity, the birds use a chaotic sequence method
during the generations. However, each promiscuous bird
behaves in the same way as a monogamous bird. In other
words, in the BMO, promiscuous birds produce a new brood
according to Equation (2).

Polyandry is a multi-parent mating system where a female
bird seeks to mate with more than two males. The female
performs a selection mechanism to select the males. Then,
each female bird mates with her selected male birds. In the
BMO, polyandrous birds produce a new brood according to
Equation (3).

The procedure of the BMO is as follows [14]:
Step 1 (Parameter Initialization): initialize the following

BMO parameters:
1) Society size (SS): this refers to the number of birds in

the society or the number of solutions in the population
of the BMO;

2) The percentage of each group in the society: that is,
the percentage of monogamous, polygynous, promis-
cuous, polyandrous, and parthenogenetic birds;

3) The number of mates (nm) for the polygynous and
polyandrous birds: this refers to the number of mates
that will participate in the multi-parent mating system
practiced by the polygynous and polyandrous birds;
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4) Mutation control factor (mcf): this is the probability
of mutating the generated brood after each mating
process;

5) Maximum number of generations (NG): this refers to
the termination condition of the BMO or the number of
iterations.

Step 2 (Society Initialization): randomly initialize a set of
feasible solutions and add them to the society. Each solution
is considered as a bird and is specified by a vector, with the
length of n.
Step 3 (Society Evaluation): calculate the quality of each

bird using an evaluation function.
Step 4 (Ranking): rank the birds in the society based on

their quality.
Step 5 (Classification): divide the society into five

groups of birds: parthenogenetic, polyandrous, monoga-
mous, polygynous and promiscuous. The parthenogenetic
and polyandrous groups are considered as female and the
remaining groups are considered as male. Birds with top n1
qualities are designated as parthenogenetic and the next n2,
n3, n4 and n5 are designated as polyandrous, monogamous,
polygynous and promiscuous, respectively. The percentage
of each group is defined in the parameter initialization step,
as recommended by [14].
Step 6 (Breeding): each bird produces a new brood using

its own pattern.
Step 7 (Replacement): if the quality of the brood is better

than the quality of the birds in the society, then the brood
replaces the bird, otherwise, the bird remains in the society
and the brood is abandoned.
Step 8 (Termination Condition): repeat steps 4 to 7 until a

predetermined number of generations (NG) is performed.
Step 9 (Report the Best): select the best-quality bird in the

society as the best solution.

III. PROBLEM DESCRIPTION
In this study, the performance of the proposed DBMO is eval-
uated over two benchmark problems: The Travelling Sales-
man Problem (TSP) and Berth Allocation Problem (BAP).
The following subsections describe these problems.

A. TRAVELLING SALESMAN PROBLEM
The TSP is a well-known combinatorial optimization prob-
lem that classified as a NP-hard problem, which means
that it may take an infeasible computational time to solve
it [50]–[52]. The TSP can be described as a search for the
shortest path that visits each city once and only once, and
finally return to the start city [53].

B. BERTH ALLOCATION PROBLEM
The BAP is a highly constrained combinatorial optimization
problem which is hard to solve to optimality [48], [54]. The
BAP can be classified into two types based on berth type
and vessel arrival time. The berth type is considered as
discrete if the quay is divided into a set of sections (berths)

or continuous if not partitioned. The vessel arrival time is
considered as dynamic if vessels can arrive at any time during
the container operations with planning arrival time or static
if all the vessels have to arrive in the harbor before the
berth planning step begins. In this study, we focus on the
discrete and dynamic version of the BAP [43]. This BAP
deals with allocating vessels to berths in the harbor at the
planned arrival time. More formally, the goal is to assign a
berth for each vessel and a service time at the selected berth.
The following assumptions are considered in the BAP [46]:

1) Each berth can serve only one vessel at a time;
2) Any vessel can be assigned to any berth with a given

handling time taking into account that the handling time
of a vessel can differ from one berth to another;

3) All vessels arrive at their berths before or after the
berths’ opening hours with a known arrival time;

4) When a vessel is moored in a berth, it remains there
until all servicing activities have been completed.

The objective of the BAP is to minimize the overall
waiting time of all the vessels that need to be serviced in
the harbor, which is calculated as an objective function as
follows [48]:∑

i∈N

∑
k∈K

(T ki − ai + P
k
i

∑
j∈N∪{d}

xkjj) (4)

where:
- ai: arrival time of vessel i
- K : set of berths, K = {1, 2, ....,K
- N : number of vessels that will arrive in the harbour,
- Pki : handling time of vessel i at berth k
- T ki : berthing time of vessel i at berth k
- xkij : decision variable, x

k
ij = 1 if vessel j is serviced at

berth k immediately after vessel i

IV. THE PROPOSED RANDOM-KEY BIRD
MATING OPTIMIZER
Random-key representation is a common technique that
transforms a position in a continuous space and converts
it onto a combinatorial space representation [41]. It uses
a vector of real numbers to represent a solution in which
each number is randomly generated in uniform [0, 1].
The combinatorial vector is composed of integers ordered
according to the sequence of the real numbers in the first
vector. This scheme is proposed by [41] and used in the
literature to address different combinatorial optimization
problems [44], [43], [55]. An example of this representation
is shown in Fig. 1.

FIGURE 1. Random-key encoding scheme.
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FIGURE 2. Random-key representation steps for TSP.

A. RKBMO FOR TSP
Fig. 2 illustrates the steps of encoding and decoding process
of generating a TSP solution using random keys. To encode
the solution for BMO, we generate m random numbers from
[0, 1]m for each bird in the society, where m is the size of
the TSP instance. Each gene in the bird has an integer index
(see Fig. 4). In the decoding process, we follow the steps as
presented in [44], [41]:

1) Sort the random keys in ascending order.
2) Set the indexes of the sorted numbers as the city index

array, i.e. the integer indexes correspond to the city
index. The sequence of the generated real numbers
represents the order of the genes in a bird. Thus, a bird
contains a set of genes (i.e. city index).

During the search process, some numbers might be outside
the feasible solution space. We handle this limitation by
doing the following: where the solution is infeasible, if the
generated number is less than 0 or bigger than 1, a new
random number between 0 and 1 is generated and replaces
with the infeasible one [44].

B. RKBMO FOR BAP
For BAP solution representation, the number of vessels is
considered as the number of genes in the bird (solution),
where every vessel represents a gene [43], [41]. In order
to assign vessel to a berth, we generate, for each vessel,
a random integer number in {1, 2, . . . ,m} and add a uniform
number from [0, 1]. In decoding, the integer part of any
random key represents the berth assignment for that vessel,
and the fraction parts represent a vessel sequence for each
berth.

Fig. 3 shows an example of how the BAP is represented
using a random-key scheme. The example consists of a BAP
instance with 10 vessels and three berths. In the encoding
step, a random integer number is generated from [1], [3] for
each vessel, and a uniform (0, 1) deviate is added to the
number. Again, the integer part of each number represents the
berth assignment for that vessel, which means that the same
integer part represents the set of vessels at the same berth,
and the fractional part represents the vessel sequence for the

FIGURE 3. Random-key representation steps for BAP.

berth. To decode the solution, we follow the steps as presented
in [55] and [56]:

1) The berth number of each vessel is obtained based on
the integer part of the random key (see Fig. 3).

2) The random keys are sorted for each berth in ascending
order to find the vessel sequences.

3) The index of each vessel is obtained to represent the
final solution of BAP.

Therefore, berth 1 will serve vessels {6, 1, 3, 9},
berth 2 will serve vessels {10, 8, 2} and berth 3 will serve
vessels {5, 4, 7}. Sorting the fractional values in ascending
order for berth 1 results in the vessel sequence {7, 9, 8}, and
for berth 2 the vessel sequence {2, 6, 5}, and for berth 3 the
vessel sequence {3, 1, 4}.

During the search process, some numbers might be outside
the feasible solution space.We handle this limitation by doing
the following: if the value of the gene is less than zero,
we randomly generate a random number, rnd between (0,
1) and add it to the first berth number (i.e. 1+rnd). If the value
of the gene is bigger than the number of berths, we randomly
generate a random number in (0, 1) and subtract this number
from the number of berths (i.e. 3 - rnd) [43].

V. THE PROPOSED DISCRETE BIRD MATING OPTIMIZER
In order to propose a discrete version of the BMO, it is
necessary to understand the main components of BMO
and how the algorithm works. BMO has three main
operators which it can use to produce a new solution.
These are [14]: self-recombination, two-parent recombina-
tion and multi-parent recombination. These operators are
implemented using the five mating strategies: monogamous,
promiscuous, polyandrous, polygynous and parthenogenetic,
as discussed in Section 2. In addition, the BMO applies
a mutation operator with probability after the following
strategies [14]: monogamous, promiscuous, polyandrous and
polygynous. Therefore, the mutation operator is one of the
main operators in the BMO that needs to be mapped onto a
discrete space.
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Before presenting the proposed discrete version of the
BMO, the following subsections describe these three discrete
operators in more detail.

A. SELF-RECOMBINATION IN DBMO
In the original BMO, the self-recombination operator gen-
erates a new solution by modifying the genes of a selected
solution [14]. One of the most popular operators that can sub-
stitute the basic self-recombination is the basic version of the
hill-climbing (HC) algorithm. The HC algorithm starts with
an initial solution and improves it by iteratively generating
a neighbor solution. The current solution is replaced by the
neighbor solution if the quality of the neighbor solution is
better than the current one. The HC algorithm stops when
the termination criterion is met [13], [57]. Hence, the basic
HC algorithm (see Algorithm 1) is similar to parthenogenetic
improvement behavior, where the HC algorithm generates
a new solution by making some changes to the genes of
the current solution. However, parthenogenetic improvement
requires a probability rate to decide either to perform the
parthenogenetic improvement or to skip the procedure.

Algorithm 1 Pseudocode of the Modified HC Algorithm
Input: x as the starting solution, mcfp.
Improve = true.
Generate random number r between 0 and 1
If r < mcfp then

Repeat
Generate (N (x)). //generate a candidate neighbor//
if x ′ better than x then //x ′ is the generated
solution//

x = x ′.
improve = true.

else
improve = false.

end
Until improve = true.

Else x = x.
Output: final solution found x.

B. TWO-PARENT RECOMBINATION IN DBMO
In the original BMO, the two-parent recombination operator
generates a new solution by mixing and recombining the
genes of two parents [14]. This reproduction strategy
is similar to the standard crossover operator where two
parents produce a new child by combining their genes.
In other population-based approaches, several crossover
methods have been developed for solving combinatorial
problems. For example, partially matched crossover [58],
cycle crossover [58] and order crossover (OX) [58], [59].
Experimental results conducted by [60] revealed that OX
performs better than others. Therefore, OX is used as a
two-parent recombination operator in the DBMO. More
details about the steps of OX are reported in [60].

C. MULTI-PARENT RECOMBINATION IN DBMO
Themulti-parent recombination operator in the original BMO
generates a new solution by combining the genes of more
than two parents [14]. In order to convert the multi-parent
recombination operator from a continuous space onto a dis-
crete space, we need a multi-parent recombination operator
that can deal with combinatorial problems. Two methods
have been proposed in the literature to tackle this issue:
multi-parent partially mapped crossover (MPPMX) [61]
and adjacency-based crossover [62]. The experimental
results presented in [62] demonstrated that adjacency-based
crossover is not efficient in producing a good-quality
solution for more than two-parent crossovers [62]. Therefore,
the MPPMX was chosen in this work to substitute the
multi-parent recombination operator in the original BMO.
The MPPMX was proposed in order to extend the basic
two-parent partially mapped crossover (PMX) into a multi-
parent crossover for better performance [61]. There are four
main steps inMPPMX to construct a new offspring: substring
selection, substring exchange,mapping list determination and
offspring legalization [61]. The details of these steps are given
in [61].

D. MUTATION OPERATOR IN DBMO
In the original BMO, the mutation operator is applied
with probability after the following strategies: monogamous,
promiscuous, polyandrous and polygynous [14] have been
performed. The mutation operator is applied using an
equation that can deal with continuous problems only (see
Section 2). Therefore, an insertion operator is introduced in
the DBMO to substitute the continuous mutation operator in
the original BMO. In the insertion operator, an element is
randomly selected to be removed and is added to another
randomly selected position. Note that the same mutation
probability (mcf) of the original BMO is applied in the
DBMO.

E. THE DBMO FREMWORK
The following steps explain the DBMOprocedure, whichwas
adapted from the basic BMO procedures [14]:
Step 1 (Parameter Initialization): DBMO uses the same

parameters as the basic BMO (see Section II).
Step 2 (Society Initialization): randomly initialize a set

of feasible solutions and add them to the society. The
initialization strategy is related to the problem domain.
Step 3 (Society Evaluation): calculate the quality of each

bird using the objective function of the problem.
Step 4 (Ranking): rank the birds in the society based on

their quality.
Step 5 (Classification): classify the birds in the society

into five groups based on their quality into: parthenogenetic,
polyandrous, monogamous, polygynous, or promiscuous
birds. The classification process is the same as in the original
BMO (see step 5 in Section II).
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Step 6 (Breeding): each bird produces a new brood using
its own pattern, see Fig. 4.

FIGURE 4. Overview of step 6 in DBM.

Step 7 (Replacement): If the quality of the brood is better
than the quality of the bird, the brood replaces the bird.
Otherwise, the bird remains in the society, and the brood is
removed.
Step 8 (Termination Condition): repeat steps 4 to 7 repeated

until a predetermined number of generations (NG) is
performed.
Step 9 (Report the Best): select the bird with the best

quality in the society as the best solution.
The pseudocode of theDBMO is illustrated inAlgorithm 2.

VI. DBMO FOR TSP AND BAP
In this section, we present the solution representation for both
BAP and TSP using the DBMO.

A. DBMO FOR THE TSP
In this study, the solution is represented using the simple
popular representation for the TSP, i.e. a one-dimensional
array with the length of N , where N is the number of cities as
in [43,68]. Each gene in the solution represents a city number.
Fig. 5 shows an example of the solution representation for the
instance of 10 cities. A solution with length M = 10, where
{1, 2, 3, . . . 10} represents the indexes of the cities, and {4, 1,
8, . . . 7} represents the visiting order for the cities in the tour
path.

FIGURE 5. Example of solution representation for TSP.

In this work, the TSP solution is generated in a random
manner. First, we generate an array that contains the total
number of cities. Next, we generate an empty array, randomly
pick a number from the first array, and add it to the empty
array. The selected number is then removed from the first
array. This process is repeated until all the cities are added
into the empty array.

B. DBMO FOR THE BAP
In the BAP, the solution is presented using a string of integer
numbers as in [64]. The length of the solution is the number

Algorithm 2 Pseudocode of the DBMO Algorithm
Determine the society size (SS), maximum number of
generation (), number of mates (nm) and mutation control
factor (mcf).
Generate SS feasible birds.
for t = 1 to genmax do

Rank the birds in ascending order based on their quality.
Classify the society into five groups: parthenogenetic
polyandrous, monogamous, polygynous and
promiscuous. //the classification is based on the quality
of each bird.
for i = 1 to SS do

case parthenogenetic:
Produce new brood using modified HC
(Algorithm 4.3)

case polyandrous:
Select nm birds from the male group.
Produce new brood using MPPMX.
If r < mcf then // r is a random number
between 0 and 1//

Mutate the new brood using Insertion
operator.

end
case monogamous:

Select one mate bird from female group.
Produce new brood using OX.
If r < mcf then

Mutate the new brood using Insertion
Operator

end
case polygynous:

Select nm birds from female group.
Produce new brood using MPPMX.
If r < mcf then

Mutate the new brood using Insertion
operator.

end
case promiscuous:

Select one mate bird from female group.
Produce new brood using OX.
If r < mcf then

Mutate the new brood using Insertion
operator.

end
end

end
Perform replacement stage: replace the new generated
broods with their parents if they have better quality.
//update the society for the next generation

end
Return the best bird

of vessels n plus the number of berths (m) minus one. That is,
the integer numbers contain m segments separated by ‘zeros’.
Each segment represents a service sequence for a number
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of particular vessels at the assigned berth. Fig. 6 shows an
example of the solution representation of an instance of the
BAP that contains 13 vessels and three berths. The solution
has a length of 15 and contains two zeros to separate the
berths. For example, vessels 4, 3, 1 and 8 will be serviced
at berth 1 in that order.

FIGURE 6. Example of solution representation for TSP.

The solution is generated in three steps (as in [32]). First,
we create an array with the number of vessels n and zeros
m-1. Next, an empty solution array is created and then the
elements of the first array are randomly selected and moved
to the solution array. Finally, the vessel sequence for each
berth is sorted in ascending order based on vessel arrival time.
The pseudocode of theDBMO initialization steps for the BAP
solution is given in Algorithm 3.

Algorithm 3 Initialize the BAP Solution
Input: set of N vessels and M zeros; // M zeros refers to the
number of berths
Let V = set of N vessels + (M -1) zeros;
S = [ ] // S is a BAP solution
While V is not empty do

Select a vessel from V at random;
Add the selected element into S;
Remove the vessel from V;

End while
For each berth in S do

Sort the sequence of the vessels in ascending order based
on their arrival time

End
Output: TSP solution S.

VII. COMPUTATIONAL RESULT
In this section, we discuss the results of an evaluation of the
effectiveness of the proposed BMO variants RKBMO and
DBMO and identify which of the two variants performs best.
We also compare the performance of the proposed algorithms
with that of the basic GA and PSO [65], [66]. The GA is
chosen for this comparison because the proposed RKBMO
and DBMO are evolutionary based and the GA is the standard
algorithm for evolutionary algorithms [67], [68], while PSO
has been widely improved and used to address many com-
binatorial optimization problems [24], [43], [46], [69], [70].
The GA has been implemented using roulette wheel selection
with order crossover [71]. All algorithms (RKBMO, DBMO,
GA and PSO) are tested on two combinatorial optimization
problems: TSP and BAP. A statistical analysis is also
conducted to verify the obtained results. First, however,

the parameter settings and the experimental design for both
the RKBMO and DBMO are presented.

A. PARAMETER SETTINGS AND EXPERIMENTAL DESIGN
The proposed algorithms were implemented using Java
NetBeans IDE version 8.1 on a personal computer (Intel
Pentium (R) Core i5 CPU at 3.40 GHz with 4 GB RAM),
running a Windows 10 operating system (64-bit). The
parameter settings of both the original BMO and DBMO
for TSP and BAP are presented in Table 1. To ensure a
fair comparison of the tested algorithms, we used the same
parameter settings for both the basic BMO and DBMO. The
values of SS and NG were obtained based on preliminary
experiments as follows: 200 and 4000 for the TSP and
100 and 2000 for the BAP, see Tables A1 and A2 in
Appendix A. The remaining parameters were fixed in line
with [14] (see Table 1). Likewise, for the GA and PSO, for a
fair comparison, the maximum number of generations and the
population size were set as the same as those for the RKBMO
and DBMO.

TABLE 1. Parameter settings for basic BMO and DBMO.

All algorithms (GA, PSO, RKBMO and DBMO) were
executed over 30 independent runs with different random
seeds for all instances of the problem domains. The reason for
executing the proposed algorithms on 30 runs was to obtain
a good indication of algorithm consistency, and to enable
a robust statistical analysis of algorithm performance [13].
In the subsequent tables, the results for each instance are
presented as average (Avg.), average time (Avg Time),
standard deviation (Std), and percentage deviation (Gap%)
with respect to the quality of solution produced by the
compared algorithms. The best results are highlighted in bold
and the Gap is calculated as follows:

BCA− BKS
BKS

(5)

where BCA show the best obtained from the compared
algorithms and BKS is stand for best known solution in the
literature.
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TABLE 2. Comparison results for GA, PSO, RKBMO and DBMO on TSP (with respect to solution quality (Gap and Avg), and average time when the
best-quality solution is obtained).

B. RESULTS FOR THE TSP DATASET
The experimental results of the GA, PSO, RKBMO and
DBMO on the TSP dataset are presented in Table 2. From
this table, it can be seen that the DBMO outperformed
the GA, PSO and RKBMO across all instances (20 out
of 20 instances) in terms of the gap and the average of the
obtained results. The average of all the percentage deviations
of the GA, PSO, RKBMO and DBMO are 90.1, 52.22,
300.8 and 3.44, respectively, which means that the solutions
obtained from the DBMO over 30 runs are relatively close to
the best-known solutions. (The best-known solutions along
with the TSP dataset can be found at https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/). Fur-
thermore, the average of all the standard deviations of
GA, PSO, RKBMO and DBMO are 3197.37, 2253.17,
15263.5 and 236.6, respectively, which indicates that the
DBMO is more stable and consistent than the GA, PSO and
RKBMO.

In addition, the computational time of the DBMO was
much better than that of the GA, PSO and RKBMO
in most instances (13, 20 and 20 out of 20 instances,
respectively), but it was sometimes more expensive than the
GA especially for large-size instances. The reason for the
high computational time of the DBMO in some instances is
that it uses multi-parent partially mapped crossover and local
search, which improves the solution quality at the expense
of increased computation time. However, the computational
time of the DBMO increased in only seven out of 20 instances
and the overall performance of DBMO was superior to that
of the GA, PSO and RKBMO. Similar to the results for the
reported for the BAP, these results indicate the positive impact
of the improvement operators of the DBMO on performance.

In order to verify whether the DBMO is significantly
different fromGA, PSO and RKBMO, a multiple comparison
test was performed using Friedman and Quade statistical
tests at a significance level of 0.05 [72]. (Note that a
non-parametric test was performed based on normality tests
and indicated that the data was not normally distributed.) The
Friedman test is performed first, and if significant differences
are found (the P-value of Friedman or Iman-Davenport
statistic is less than the critical level 0.05), the Friedman and
Quade tests are conducted to calculate the average rank of the
compared algorithms to estimate the best performing one (the
lower the better).

Then, we perform post-hoc procedures to obtain the
adjusted p-values for each comparison between the control
algorithm (the first ranking one) and the rest. (more details are
reported in [72]). The p-value computed through Friedman
and Quade tests (0.0000 and 0.0000) and the Iman-Davenport
(0.000) are less than the critical level 0.05, therefore,
we performed post-hoc procedures to detect the significant
difference between all tested methods using Holm and
Hochberg statistical tests.

TABLE 3. The average rank of the DBMO with GA, PSO and RKBMO
for TSP.

Table 3 shows the average ranking (the lower the better)
of Friedman and Quade statistical tests for the compared
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methods on TSP datasets. DBMO obtained the first rank
followed by PSO, GA and RKBMO, in the given order.
Therefore, DBMO will be the controlling method in Holm
and Hochberg statistical tests. The Holm and Hochberg
statistical test of Friedman and Quade tests [72] is conducted
to detect the significant differences for each comparison
between DBMO, GA, PSO and RKBMO. Table 4 shows
the adjusted p-values of Holm and Hochberg statistical
tests where DBMO is the controlling method. The table
demonstrate that DBMO outperforms all other methods with
critical level of 0.05 (adjusted p-values < 0.05) for all
instances.

TABLE 4. The average rank of the DBMO with GA, PSO and RKBMO
for TSP.

The distribution of the results obtained from the GA, PSO,
RKBMO and DBMO for four TSP instances (eil51, ch130,
ch150 and kroA200) after running the program 30 times is
presented in Figure A1 (see Appendix A). The graphs present
the maximum and minimum values. The boxes represent the
centre 50 percent of the data. The lower quartile of the boxes
shows the lower median of the data while upper quartile
presents the median of the upper part of the data. The line
across the boxes relates to the median of the data. This is
to show the distribution of the solutions obtained from the
GA, PSO, RKBMO and DBMO. The figure shows that the
distribution of the solutions is symmetric and distributed
around the median in most instances. Based on these graphs,
it can be seen that, for most instances, the DBMO is more
consistent than the GA, PSO and RKBMO.

C. RESULTS FOR THE BAP DATASET
The results reported in Table 5 indicate that the DBMO,
across all instances, outperforms the GA, PSO and RKBMO
not only in terms of the best solution quality, but also with
respect to the average quality and the average of all standard
deviations of GA, PSO, RKBMO and DBMO is equal to
54.77, 36.20, 222.17 and 7.42. In addition, the DBMO finds
the best-known solution (Gap% = 0) in seven instances
(i03, i04, i05, i14, i15, i17 and i18) while the RKBMO
and GA didn’t find any best-known solution. (best-known
solution here is the optimal value in the literature and can
be found at [73]). This result demonstrates the effectiveness
of the improvement process of the DBMO, which uses
different discrete operators (two-parent, multi-parent and
local search) to modify and improve the solution of the
problem at hand. The RKBMO, on the other hand, uses
mathematical equations to search the space and improve the

solutions. The basic GA only uses two-parent crossover and
mutation operators. The GA took less computational time
than theDBMOand, basically because the use ofmulti-parent
crossover in DBMO algorithm consumes extra computational
time.

We performed a multiple comparison test between GA,
PSO, RKBMO, and DBMO using Friedman and Quade
statistical tests. Table 6 shows the average ranking (the
lower the better) computed by Friedman and Quade tests for
all compared methods. The table highlighted that DBMO
obtained the first rank out of four compared methods
followed by PSO, GA and RKBMO, respectively. The
p-value computed through Friedman and Quade tests are
less than 0.05 (0.0000 and 0.0000) and the Iman-Davenport
(<0.05) prove that there is a significant difference among
the methods. Therefore, post-hoc procedures (Holm and
Hochberg) are performed to detect the significant difference
between all tested methods. The adjusted p-values of Holm
and Hochberg statistical tests presented in Table 7 (where
DBMO is the controlling method) demonstrate that DBMO
outperforms all other methods with critical level of 0.05
(adjusted p-values < 0.05).
The box-whisker plot in Fig. A2 (see Appendix A) shows

the distribution of the results for 30 runs of the DBMO,
RKBMO and GA for four instances of the BAP (i01, i02,
i03 and i04). It can be seen from these graphs that the
distribution of the results for most of the instances in the case
of the DBMO is skewed to the lower end (i.e. i01, i03 i04).
However, there are some cases where the solution distribution
is symmetric; the solutions are distributed evenly around the
median (i.e., i02). While the distribution of the solutions
obtained by the GA, PSO and RKBMO in most instances is
symmetric, the distribution is split at the median. In addition,
in the case of the RKBMO one solution distribution is skewed
to the upper end (worst solution) (i01). These distributions
demonstrate that the DBMO is more consistent than the GA,
PSO and RKBMO.

To conclude, it is clear that in both problem domains
(TSP and BAP), the DBMO outperformed the GA, PSO
and RKBMO and matched the best-known results in some
instances. In addition, for both domains the standard
deviation was relatively small. Also, the percentage devia-
tion (Gap) showed that the DBMO results were very close
to the best-known solutions in both domains. This favorable
outcome reveals the benefit of using the discrete version
of the BMO rather than the original one with random-key
representation. The DBMO was able to achieve a significant
difference in performance compared to the RKBMO for
all instances of both the TSP and BAP. This is due to
the improvement procedures in the DBMO: two parent
recombination using OX and multi-parent recombination
using MPPMX which gives a possibility to combine the
components of many solutions and generate new one.
Another feature of DBMO is the use of Hill Climbing
heuristic for self-recombination which improves the ability
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TABLE 5. Comparison results for 30 runs of GA, PSO, RKBMO and DBMO on BAP (with respect to solution quality (Gap and Avg), and average time when
the best-quality solution is obtained).

TABLE 6. The average rank of the DBMO with GA, PSO and RKBMO for
BAP.

TABLE 7. The adjusted p-values computed by Friedman test for DBMO
against GA, PSO and RKBMO for BAP.

of the DBMO for exploiting the most promising regions of
the search space. In contrast to the RKBMO, which uses
mathematical equations through random-key representation
of the solution to move in the search space and improve the
solution, the DBMO uses discrete operators that can directly
deal with the solution and improve it. The superior results
produced by the DBMO clearly answer the question of which
variant of the BMO that should be used for combinatorial

optimization. problems as well as the best operators and
configuration for applying it to such problems.

VIII. CONCLUSION
In this work, we proposed two variants of the BMO for solv-
ing combinatorial optimization problems: the random-key
bird mating optimizer (RKBMO) and discrete bird mating
optimizer (DBMO). The RKBMO used random-key repre-
sentation to construct a direct mapping relationship between
the algorithm and the problem at hand. In contrast, theDBMO
used three main operators to generate new solution: the
hill-climbing algorithm, two-parent order crossover, and
multi-parent order crossover. To evaluate the proposed
methods, we tested them on the travelling salesman problem
and berth allocation problem using the same parameter
settings. In addition, a comparative study was conducted with
two widely studied optimization algorithms in the literature:
GA and PSO. The computational results demonstrated that
the DBMO was able to outperform the RKBMO across all
instances in both problem domains as well as GA and PSO.
Furthermore, the DBMO matched the best-known results in
some instances. In conclusion, we proved that the DBMO
can be used to solve combinatorial optimization problems and
achieve satisfactory results.
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In future work, it might be beneficial to investigate the
effectiveness of combining the three main DBMO operators
(two-parent crossover, multi-parent crossover, and local
search) in a pool in order to select one of them randomly
and employ it to improve the whole population. In addition,
changing the selected operator to another one could be done
according to the search status. This may improve the DBMO
to allow it to effectively tackle any problem with minimal
modification.
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