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ABSTRACT In this paper, the most effective stimulation durations in the visual, somatosensory, and
motor cortices are investigated. To evoke hemodynamic responses (HRs) for the purpose of brain-computer
interface (BCI) with functional near-infrared spectroscopy (fNIRS), the best and the minimal durations
for three tasks (visual, tapping, and poking) are presented. The examined tasks include the checkerboard,
right-hand-index-finger poking, and the right-hand-index-finger tapping tasks in association with the visual,
somatosensory, and motor cortices. Upon stimulations, the peak value, time to peak, and the full width at
half maximum of the HRs are examined. Six different stimuli durations (i.e., 1, 3, 5, 7, 10 and 15 sec) were
tested. Tenmale subjects participated in the experiment. Three types of stimulations having the same duration
were presented to the subjects randomly. The stimulation durations that showed the maximum peak values
in the checkerboard, poking, and tapping tasks were 7, 5, and 10 sec, respectively. The peak value increased
with the increase of stimulation duration. But beyond a certain period of time, the peak value did not increase
anymore and sometimes it decreased when the stimulation period is too long. It is noted that 1-sec stimulation
(for all three tasks) can generate a noticeable peak value. Instead, the initial dip upon poking occurred only
with 1-sec poking (i.e., initial dip did not occur in all other poking periods). Conclusively, this work reveals
the possibility of a BCI command generation within 1 sec.

INDEX TERMS Brain-computer interface (BCI), stimulation duration, functional near-infrared spec-
troscopy (fNIRS), hemodynamic response, initial dip, poking, checkerboard, tapping.

I. INTRODUCTION
Brain-computer interface (BCI) characterizes a communi-
cation medium between the brain and peripheral devices,
constructed to achieve external activities with only brain
signals [1]. The new era of BCI has developed various ways
to detect particular neural signals in the human brain and to
decipher those signals as commands that can be used to con-
trol the associated external devices. This research has been
an area of focus for researchers since 2000, prompting the
inventions of several prototype systems. BCI is intended for
patients, but it can be used for healthy people like pilots and
drivers for specific purposes. Therefore, the objective of this
study is to find out the best and minimal stimulation durations
that can produce the maximal and sufficient activations in the
hemodynamic response (HR) for BCI. Also, there is a need

The associate editor coordinating the review of this manuscript and

approving it for publication was Norbert Herencsar .

to find out an appropriate stimulation duration, which can
produce an initial dip (i.e, the early decrease of 1HbO with
the start of a brain task is referred to as the initial dip [2])
that can be used accordingly. In this study, we aim to suggest
the most suitable stimulation durations for three brain regions
(motor, sensory, and visual cortices) for fNIRS-based BCI.

Many methodologies exist in acquiring brain signals;
from the direct collection of neural firing from neurons to
a decoding method of motor signals using a nerve sen-
sor. Among these, noninvasive approaches include elec-
troencephalography (EEG) [3]–[5], functional near-infrared
spectroscopy (fNIRS) [6]–[12], functional magnetic res-
onance imaging (fMRI) [13], and magnetoencephalogra-
phy (MEG) [14], [15]. fNIRS is a newly emerging tech-
nique that utilizes near-infrared light within the 650 nm
∼ 1,000 nm range (i.e., in this range, the absorption by
water is negligible) to gauge the varieties of regional cere-
bral blood flows (rCBFs) in the brain [16], [17]. The two
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chromophores absorbing near-infrared lights in the blood are
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) [18].
Upon neuronal activities, the changes of HbO and HbR (i.e.,
1HbO and 1HbR) in the vessels and venules occur [19],
which is known as the HR that mirrors the acquaintance of
more oxygen to the brain [6], [20].

fNIRS has a great potential to be utilized as a
neuro-imaging device, and its applications will propagate
significantly in the areas of social and psychological neu-
rodevelopment [21], discernment and perception [22], mental
disorder [23], BCI areas [24]–[27] and decoding of neuronal
signals using advanced techniques [28]–[30]. Also, in con-
trast with entrenched imaging techniques, for example, fMRI,
EEG, and positron emission tomography (PET), fNIRS offers
preferences (for example, versatility, minimal effort, and
lower vulnerability to motion artefacts) over other modalities.
Good temporal resolution is necessary in BCI systems to
generate a quick command. Also, having a good spatial
resolution helps a precise identification of brain sources. But,
achieving both goals requires more cost. fNIRS is known to
have good temporal resolution butmoderate spatial resolution
than fMRI. However, research is in progress to improve its
spatial and temporal resolution by utilizing bundled-optode
setups and decreasing the onset delay with initial dip detec-
tion for BCI applications [31]–[34]. In comparison to EEG,
fNIRS signals are more brain-region-specific than EEG, and
the number of commands can be increased when a hybrid
approach is pursued. Moreover, fNIRS has shown better per-
formance over EEG in ‘‘active’’ BCI than reactive BCI, which
makes it more suitable in diverse BCI applications. For more
subtleties regarding fNIRS, readers can refer to [35], [36].

During the past decade, fNIRS studies have utilized various
types of stimulation. In those studies, diverse brain cortices
have been used for the acquisition of HR signals. The studies
performed on the prefrontal cortex have utilized tasks like
mental arithmetic, mental counting, and puzzle solving [37].
Studies focusing on the sensory cortex have applied ther-
mal stimulations [38], [39], electrical stimulation [40], [41],
painful pressure [42], and poking [43]. Similarly, so were
the finger tapping for the motor cortex and checkerboard
stimulation for the visual cortex [44]–[46].

There exist fMRI studies discussing the relationship
between stimulation durations and the blood-oxygen-level-
dependent (BOLD) signals [47]: The studies [48]–[50] on
the primary visual cortex reported that the BOLD signal is
non-linear for stimuli less than 3∼4 sec, and beyond these
durations, it becomes linear from the sense that the profile
follows some specific relation. Similarly, the study conducted
on the primary auditory cortex [51] reported a difference
in the trend of BOLD signals for stimuli under 6 sec and
those for over 6 sec. A recent study by Lewis et al. [52] has
addressed the dependence of HR timing in the subcortical-
cortical regions of the visual pathway in humans. This study
reported that by varying the stimulation duration, the HR
response varies in both subcortical and cortical areas. Also,
it was found that the HR is somewhat faster and is narrower

in the subcortical areas as compared to the cortical areas.
These responses were investigated for stimuli of short time
(0.17∼4 sec). The authors concluded that the subcortical
and cortical areas of human brain exhibit very distinct HR
temporal characteristics.

In the field of fNIRS, a variety of studies have tried to
vary the stimulus types and check their effects on the HR
signals. One of the latest studies has discussed the effects
of modulating noise stimuli on the HR [53], in which noises
were modulated in four different intensity levels. The study
revealed that the fNIRS response is highly dependent on
the sound intensity, that is, the higher the sound intensity
is, the higher the concentration change follows. Another
study [54] reported the effect of checkerboard sizes and the
variability due to cap positions in the HRs: The authors
checked the effect of changing the visual angles of checker
squares in the checkerboard task, in which 1, 2, 5, 9, and
18 degree-checker-squares were used. The results claimed
that 1-degree stimulus showed the greatest activation. For the
same region of brain, another study [46] evaluated the effects
of reversing checkerboard, on/off checkerboard, and static
checkerboard. In their study, a pattern reversal stimulation
showed the greatest activation among three tasks. Also, on the
prefrontal cortex, a study [55] was conducted to check the
effect of a varying anagram task. In [56], the occipital and
temporal responses to the repetition of stimuli in infants
have also been studied. However, no fNIRS result has been
reported on the effects of stimulation duration to the HR
signals in different brain cortices. Also, even though diverse
stimulation durations have been used in the past, but yet no
standardized stimulation duration has been proposed, which
demonstrates comparative results among various stimulation
durations.

In this study, we take indicative steps towards standardizing
the stimulation durations for individual cortices for the pur-
pose of acquiring fNIRS data to be used for BCI. Depending
on the neuro-characteristics in different cortices, different
stimulation intervals are suggested. Three different tasks are
performed by subjects and for all these tasks different tem-
poral characteristics (i.e., full wave at half maximum, peak
value, and time to peak) are analyzed. Simultaneous acquisi-
tions of fNIRS data from the three brain regions are done,
while random stimuli are presented to the subject. Finally,
on the basis of these results, we compare the responses from
different brain areas by varying stimulation durations and
suggest the most favorable stimulation sizes that can well
serve for the purpose.

II. METHODS
A. PARTICIPANTS
Ten male subjects (mean age: 27.2 ± 4.5 years) partici-
pated in this study. The needed number of subjects was
calculated statistically using the online power calculator at
http://biomath.info/power/prt.htm [57], after setting the val-
ues of the statistical level of significance (α) and the statistical
power (1−β) to 5% and 80%, respectively. All subjects were
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FIGURE 1. Experimental paradigm.

healthy, right handed, and had normal or corrected-to-normal
sight. No history of neurological or visual impairment was
reported from all participants. Prior to the experiment, every-
one was given a complete description of the experimental
procedure and written consent was obtained from all the
participants. The study was conducted in compliance with
the recent proclamation of Helsinki [58] after the permis-
sion by the Institutional Review Board of Pusan National
University.

B. STIMULUS DESIGN
Three different tasks were performed in experiments: They
are the right-hand index finger tapping (just tapping), right-
hand index finger poking (just poking), and checkerboard
tasks. To check the influence of the lengths of stimuli on the
HRs, six different stimulation durations (1, 3, 5, 7, 10, and
15 sec) were tested. During the experiment, the subjects were
advised to perform the task appearing on the screen.

In the checkerboard task, the subjects were instructed to
focus on the 19-inch screen placed one meter away from the
subject. In the tapping task, the subjects were instructed to
tap their finger as fast as they could, and in the poking task,
the subjects were poked on the backside of the right-hand
index finger at random positions with a frequency of 2 Hz.
These tasks were easy to be performed by the healthy indi-
viduals, which is the reason for selecting them as tasks in the
study.

C. EXPERIMENTAL PARADIGM
The tasks during the experiment were assigned randomly, i.e.,
the subjects were unaware of what task would appear next.
Six trials for each task were conducted, making a total of
eighteen random trials. For all three tasks, the left motor, the
left sensory, and the entire visual cortices were examined.
The participants sat on a comfortable chair and were told
not to make any body/head movement as much as possible
throughout the experiment not to include motion artifacts.
The experiments were carried out in a dark room and the room
was kept as quiet as possible to reduce the effect of exter-
nal noises. The experimental paradigm depicting the inter-
stimulus interval and the pre- and post-rest periods is shown
in Fig. 1. The inter-stimulation interval was kept twenty sec-
onds for all stimulation durations whereas the pre- and post-
rest periods were set to 60 sec and 30 sec, respectively.

FIGURE 2. Emitter-detector configuration: (a) Sensorimotor cortex,
(b) visual cortex.

FIGURE 3. Vector phase diagram using dual threshold circles depicting
the HR region (green) and the initial dip region (orange) [60].

FIGURE 4. The hemodynamic responses anticipated from six different
stimulation durations: Computed using three gamma functions [60].

A black screen was displayed during the period of rest.
Visual displays were given for all three tasks on the computer
screen placed in front of the subjects. Throughout the exper-
iment, the subjects were advised to keep their eyes open.
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FIGURE 5. Comparison of the averaged HbOs over the activated channels and 10 subjects (top: the averaged
values, bottom: standard deviations): (a) Checkerboard, (b) poking, and (c) tapping.

D. OPTODE CONFIGURATION
In this study, four detectors and sixteen emitters were posi-
tioned over the target brain regions. The emitter-detector
configurations for two brain regions (sensorimotor and visual
cortices) are shown in Fig. 2. In this figure, black, red, blue,
and green colors are used to denote detectors A, B, C, and
D, respectively. The colored lines and channel numbers are
in association with the colored detectors. The numbers in the
square boxes indicate the emitter numbers.

For the left sensorimotor cortex, the optodes were con-
figured near the C3 location of the brain, whereas for the
visual cortex the optodes were placed to examine O1 and
O2 areas. These reference points are from the International
10-20 System for electrode placement.

E. DATA ACQUISITION
The signals from the brain were sampled at a sampling fre-
quency of 15.625 Hz for all three tasks (tapping, poking,

and checkerboard) from the left sensorimotor cortex and the
primary visual cortex simultaneously. A frequency domain
fNIRS system (ISS Imagent, ISS Inc.) was used for the
acquisition of fNIRS data.

Raw intensity data were obtained using the ISS Ima-
gent data acquisition and analysis software (ISS-Boxy).
Two different wavelengths (690 nm and 830 nm) were uti-
lized by the system to measure the concentration changes
of oxy-hemoglobin and deoxy-hemoglobin. The modified
Beer-Lambert law was used to convert the raw intensity data
into1HbO and1HbR [59]. For 690 nm, the extinction coef-
ficients were 0.95 mM−1cm−1 and 4.93 mM−1cm−1 for 1
HbO and1HbR, respectively, and for 830 nm the values were
2.135 mM−1cm−1 and 1.791 mM−1cm−1, respectively [60].

F. PREPROCESSING
After the acquisition of data (1HbO& 1HbR), they were
pre-processed to eliminate the contamination of physiolog-
ical noises. A 4th-order Butterworth filter was applied with
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FIGURE 6. Comparison of the averaged HbRs over the activated channels and 10 subjects (top: the averaged
values, bottom: standard deviations): (a) Checkerboard, (b) poking, and (c) tapping.

a low-pass cutoff frequency at 0.15 Hz to remove cardiac,
respiratory and low-frequency drift signals [61]–[63]. The
frequency of a high-pass filter was selected according to the
longest possible time period of a trial. For each of the six
different stimuli duration, the cutoff frequency was different
because of the difference in the time period of a trial. For
15 sec task, the trial period was 35 sec, so the cutoff frequency
was set to 0.028 Hz (1/35 sec= 0.028 Hz). Similarly, the cut-
off frequencies were set to 0.047 (i.e., 1/21, where the trial
period is 21 sec), 0.043, 0.04, 0.037, and 0.33 Hz for 1, 3, 5,
7, and 10 sec stimulations, respectively [60].

The detection of neuronal activation, in this study,
is done using the desired hemodynamic response func-
tion (dHRF) [64]. Three gamma functions were utilized
to generate the dHRF [60]. To detect the initial dip,
dual threshold-based vector phase analysis is used in
this study [60]. Four vector components (1HbO, 1HbR,
total hemoglobin (1HbT), and cerebral oxygen exchange
(1COE)) are used as indices to make the vector phase
diagram. Fig. 3 shows the visual interpretation of the dual

threshold circles on the vector phase diagram. Shaded areas
of Phases 7 and 8 are the conventional HR phases, whereas
the shaded area in Phases 3, 4, and 5 is the initial dip region.

G. STATISTICAL ANALYSIS
For statistical analysis, t-values, p-values and 1HbO
response of all trials are utilized to find the most active
channels. In the present study, tcrt was chosen differently for
each of the stimuli, according to the degree of freedom for that
respective trial period, and the statistical significance level
was set to 0.05 for one-tailed t-test. The built-in function
robustfit by MATLAB R©was used to calculate the t values.
A channel was considered to be active if i) p-value< 0.05 and
ii) t-value > tcrt.

III. RESULTS
A. HEMODYNAMIC RESPONCE
It would be ideal if HR is the same for each trial in different
brain regions and its characteristics are linear. Assuming the
linearity, the concept of dHRF is used to identify the initiation
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FIGURE 7. Comparison of the hemodynamic responses for three tasks: (a) 1 sec
(shortest), (b) 15 sec (longest).

of the real HRs for both short and long stimulation durations
in each target area. Fig. 4 depicts the dHRFs that were gener-
ated by a three gamma function and stimulation durations in
this study. Fig. 5 and Fig. 6 show the averages of 1HbO and
1HbR, respectively, evoked by different stimulation dura-
tions for all three tasks. The activations in individual brain
areas are clearly seen from either short or long stimulation
durations.

For individual subjects, the variance is quite high for
shorter stimulation intervals, but the average responses across
the subjects are quite distinguishable. It is observed that
most HRs achieve their peak between 5 sec and 17 sec after
the start of stimulation. The maximum value of 1HbO is
observed to occur either during the stimulation or after the
end of the stimulation. Fig. 7 compares the responses of
the shortest stimulation (1 sec) and the longest stimulation
(15 sec). Fig. 8 shows an example of the phase plot (i.e.,
the trajectories of 1HbO and 1HbR) of Sub. 1 drawn in the
vector phase diagram (Fig. 3), which can visualize the initial
dip phase and the HR phase.

B. COMPAPRISON OF STIMULATION DURATIONS
While comparing the averaged HRs, statistical significant
differences (i.e., p-value < 0.0033, after Bonferroni correc-
tion) were found among the mean HRs for all the stimulation
durations.While comparing the results qualitatively across all
the brain areas under observation, somewhat interesting trend
in the magnitude of the HR for the average results over all the
subjects was observed. For the tapping task, the peak values
increased as stimulation intervals increased up to 10 sec, but
the peak amplitude of 15 sec stimulation was much lower
as compared to others. For the poking task, the magnitudes
of the HR responses kept on increasing for the stimulation
intervals from 1 sec to 5 sec and then started decreasing

for stimulation intervals more than 5 sec. Similarly, for the
checkerboard task, the average results showed an increase
in the magnitudes of signals for stimulation intervals up to
7 sec, and then decreased in 10 sec and 15 sec stimulation
durations. Fig. 9 shows the comparison of HR responses for
1 sec stimulus duration of Subject 1.

A sufficient amount of activation has been seen from
most subjects for all three tasks. To check the intra-subject
repeatability, 1 sec stimulation duration was checked twice
on the subjects. The experiments for this purpose were
conducted on different days. Fig. 10 shows the repeata-
bility for 1 sec stimulation duration in all 10 subjects.
Table 1 summarizes the repeatability of all channels and all
three tasks. Table 2 summarizes the most suitable stimulation
durations for various purposes according to the respective
tasks.

C. COMPARISON OF TEMPORAL CHARACTERSTICS
Three different temporal characteristics (full width at half
maximum (FWHM), time to peak, and peak amplitude) were
examined for all the stimulation intervals of all three tasks.
One tailed t-test was applied on the obtained temporal char-
acteristics. There was no significant difference between two
adjacent durations (i.e., 1 and 3 sec or 3 and 5 sec). However,
a significant difference (p-value < 0.05) was observed when
comparing the 1 sec (or 3 sec) stimulation duration with a
long stimulation duration (i.e., 10 or 15 sec).

Table 3 shows the average values of three temporal fea-
tures (i.e., FWHM, peak value, time to peak). These three
features were selected as they well describe the character-
istics of a time-domain signal. However, other time-domain
features like slope, mean, etc. can be investigated too.
Fig. 11 depicts the overall comparison of the temporal charac-
teristics for1HbO responses for the shortest, longest, and the
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FIGURE 8. Comparison of the trajectories of six different task durations
(top: 1 sec, bottom: 15 sec) followed by 10 sec rest: (a) Checkerboard,
(b) poking, and (c) tapping, for Subject 1.

intermediate stimulation durations along with their standard
deviations. It is observed that the HR for shorter stimulation
is narrower and occurs faster as compared with the longer
stimulation duration in all the areas under observation. For
a stimulation lasting for 1sec, the mean 1HbO response
peaked at almost 5.4 sec for checkerboard task, at 5.3 sec for
tapping task and 6 sec for poking task. Across all the brain
regions under observation, the HRs had a significantly shorter
time-to-peak for tapping task as compared to the poking and
checkerboard tasks.

IV. DISCUSSIONS
In this study, we have investigated the temporal variability
of HRs (i.e., 1HbO) in the sensorimotor and visual cortices
for three different tasks (i.e., right hand finger tapping, right

FIGURE 9. Repeatability of HbOs of 1 sec task after one week (Subject 1):
(a) Checkerboard, (b) poking, and (c) tapping.

hand finger poking, and checkerboard tasks) with respect
to six stimulation durations. The aim is to propose most
suitable stimulation periods upon the tasks for the purpose
of BCI. To the best of the authors’ knowledge, this is the first
study to assess the effects of stimulation duration on the HR
when fNIRS is used as an imaging tool. As results, the most
effective stimulation durations for three tasks are found, and
the smallest stimulation durations for detecting the initial dip
are suggested.

The obtained findings are summarized as follows:
i) The most interesting finding was observed in the poking

task. The initial dip was detected only from the 1 sec poking
duration, and it was not observed from any other poking
duration (i.e., no initial dip from 3, 5, 7, 10, and 15 sec).
Explanations for this are that, first, the HR occurs fast in
the poking task (sensory signal) and, second, the increase of
1HbO surpasses the decrease of 1HbO caused by neuronal
firing if the poking stimulation goes over 1 sec. In the current
experiments, the subjects were poked two times for a 1 sec
duration. Another explanation could be the insensitivity of
the poking stimulation or due to the numbness in the poked
area when poking was continued over 1 sec.

ii) It is observed that it takes at least 5 sec for 1 HbO to
reach its peak value (for all the stimulation durations) after the
onset of a stimulus [65]–[67], which means that the stimuli
given within 5 sec are accumulated before the response of the
first stimulus reaches its peak value. After attaining the peak
value for a long stimulation, 1HbO sustains its plateau level
for a certain period (depending on the stimulation duration)
before coming back to the baseline, which was then followed
by an undershoot in 1HbO.

iii) 1HbO starts to decrease as soon as the stimulation
ends, and it takes nearly 12 sec to settle down near to the
baseline [68]. Because of this, the inter-stimulation inter-
val needs to be set to more than 20 sec, so that the sub-
sequent stimulation is made after the previous one settled
down.

iv) The response caused by a long stimuli duration (i.e.,
10 sec or 15 sec) takes comparatively longer time to return to
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TABLE 1. Repeatability of all channels according to tasks.

the baseline. Statistical significant differences were observed
in the comparisons of the temporal characteristics between
the HR of 1 sec and those of 7∼ 15 sec stimulation durations.

In contrast, no statistical significant difference was found
between 1 sec stimulation and 3 sec stimulation. This reveals
that 3 sec stimulation might not provide a better result than
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FIGURE 10. Comparison of HbOs for 1 sec task over 10 subjects: (a) Checkerboard, (b) poking, and (c) tapping.

TABLE 2. Stimulation durations suggested for three tasks.

1 sec stimulation, and 1 sec stimulation can well serve the
purpose of a quick command generation time.

v) The stimulation durations to detect the initial dip are
suggested in Table 2, while the full development of them in
checkerboard and tapping tasks takes 3 sec.

vi) The stimulation durations that have shown the high-
est peak are different in three brain cortices. The dura-
tions that spawned the maximum values are summarized
in Table 2 according to the cortices.

vii) From the experimental results, it is observed that the
peak values did not keep increasing with the increase of
stimulation durations (whereas the peak value in the dHRF
for a longer stimulation duration gets larger than that of a
short stimulation duration, because the dHRF is computed
by convolving the canonical hemodynamic response function
with the stimulation interval). It is seen that the HR achieves
its peak value at certain duration: The checkerboard, poking,
and tapping tasks achieved their maximum values from the
7 sec, 5 sec, and 10 sec stimulation durations, respectively.
After which, a longer stimulation showed a lower peak value.
Possible reasons for this are: After certain stimulus dura-
tion, the area of activation in the cortex becomes wider and
the strength of the signal becomes low resulting in a lower
average value. Another explanation could be, for stimulation

TABLE 3. Comparison of the temporal characteristics.

duration over 10 sec, the subjects become tired or bored (as
reported by many subjects), which could be the reason for the
low peak value of the 15 sec stimulation interval. However,
for 15 sec stimulus, the peak value stayed at its plateau for a
certain amount of time.

viii) For checking the stimulation durations having most
repeatable channels in Table 1, the mean value for each
task was calculated (i.e., checkerboard: 32.4, poking: 34.11,
tapping: 42.15). The channels that lie over the mean value
are marked in bold face. For the checkerboard task, the 1 sec
stimulation duration shows most channels having repeatabil-
ity over the mean value. For the poking task, 1 and 3 sec

VOLUME 8, 2020 89101



M. N. A. Khan et al.: Task-Specific Stimulation Duration

FIGURE 11. Temporal characteristics for the shortest (1 sec), intermediate
(7 sec) and longest (15 sec) stimulation durations. (a) FWHMs, (b) peak
amplitude, and (c) time to peak.

stimulation durations, and similarly for tapping task, 7 and
10 sec stimulation durations had most channels having
repeatability over their mean values, respectively. The results
suggest that these stimulation durations can result in the most
activated channels for the three tasks. While comparing the
results between fNIRS and fMRI, certain aspects need to
be considered from the effects of stimulation duration on
HRs. Most important factor is that the number of channels
in fNIRS is quite limited compared to fMRI, which depends
on the number of optodes in the fNIRS case [69].

In this study, the subjects were not prohibited from
the use of caffeine. The nearby noise was reduced, but
unfortunately was not completely controlled. Alongside these
factors, the boredom from sitting idle for longer durations in
a completely dark room and from the repetition of the task
could have contributed to the level of attention the subject was

paying to the experiment. Similarly, few subjects reported
that they were facing difficulty while keeping themselves
awake during the experiment. This issue can be addressed
in further studies by giving a ready queue 1 sec before the
start of stimulation so that the subject becomes attentive to
the task to be performed, as 1 sec stimulation duration is
instantaneous and the subject must be paying full attention.
Another limitation of this study is that all the participants
were healthy male individuals and all had right dominant
hand. While discussing the repeatability of the tasks, these
limitationsmight cater for some error in the results [70]. Also,
the current study focused on only popular three tasks found in
the literature, but more interesting tasks would be flickering
signals, mental tasks, touching tasks, etc. for reactive/active
BCIs. In future studies, more diverse tasks and brain areas
need to be explored.

In this study, it was observed that a suitable level of
sensitivity to stimulation duration is attainable from all the
brain areas. This makes fNIRS-based brain imaging a feasible
tool to study activations in both the sensorimotor and visual
cortices even for shorter stimulation durations like 1 sec.
The accomplishment with healthy subjects can enable an
extension of the work to study the dysfunction of the sensory,
visual or motor pathways using fNIRS making a ground for
the comparison. Further studies need to be conducted using
a dense optode arrangement to spatially specify the origin of
the signals.

This might make the signal quality much better to be used
for individual subject analysis. As future work, integration of
control techniques [71]–[73] in a BCI framework can improve
the neuro-feedback performance. In this work, the examined
stimulation durations of 1, 3, 5, 7, 10, and 15 sec were chosen
upon the authors’ experience and the amount of experiments
to be made. However, in a future study, more fine stimulation
durations (like 0.2 sec incremental intervals instead of 1, 3,
5, 7, and 10 durations) has to be checked to further refine the
shortest and best stimulation durations.

V. CONCLUSION
This paper made a big step towards standardizing the stim-
ulation duration for the purpose of functional near-infrared
spectroscopy (fNIRS)-based brain-computer interface (BCI).
The simultaneous monitoring of different brain cortices
for randomly occurring different tasks solved the glitches
encountered with the orthodox approaches for selection of
stimulation duration for healthy individuals. In the present
study, most effective stimulation durations were chosen from
the six durations tested on three brain areas; visual, sensory,
and motor cortices. The use of 7, 5 and 10 sec stimulation
durations for checkerboard, poking and tapping tasks, respec-
tively, are suggested for the purpose of fNIRS-based BCI.
Also, the phenomena of initial dip can be easily detected
using smaller stimulation durations. Therefore, if the goal is
to detect initial dips, 1 sec stimulation duration can be used
causing necessary amount of activation. On the other hand,
if the goal is to use the HR activation or the same stimulus
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duration for all the brain cortices, 1 second stimulation inter-
val can provide significant activation of the brain. Since there
is a long way to go for fNIRS to be used for clinical usages,
making a standardization committee in the fNIRS community
is suggested.

AUTHOR CONTRIBUTION
MNAK conducted experiments, carried out the data process-
ing, and wrote the first draft of the manuscript. MRB verified
the data analyses in the revision process. K-SH has suggested
the theoretical aspects of the study, corrected the manuscript,
and supervised all the process from the beginning. All the
authors have approved the final manuscript.

REFERENCES
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and

T. M. Vaughan, ‘‘Brain–computer interfaces for communication and con-
trol,’’ Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, 2002.

[2] A. Zafar and K.-S. Hong, ‘‘Detection and classification of three-class
initial dips from prefrontal cortex,’’ Biomed. Opt. Express, vol. 8, no. 1,
pp. 367–383, Jan. 2017.

[3] X. Xu, Y. Zhang, M. Tang, H. Gu, S. Yan, and J. Yang, ‘‘Emotion
recognition based on double tree complex wavelet transform and machine
learning in Internet of Things,’’ IEEE Access, vol. 7, pp. 154114–154120,
2019.

[4] H. Lee, J. Choi, S. Kim, S. C. Jun, and B.-G. Lee, ‘‘A compressive sensing-
based automatic sleep-stage classification systemwith radial basis function
neural network,’’ IEEE Access, vol. 7, pp. 186499–186509, 2019.

[5] T. Piotrowski, J. Nikadon, and D. Gutierrez, ‘‘MV-PURE spatial filters
with application to EEG/MEG source reconstruction,’’ IEEE Trans. Signal
Process., vol. 67, no. 3, pp. 553–567, Feb. 2019.

[6] K.-S. Hong and M. A. Yaqub, ‘‘Application of functional near-infrared
spectroscopy in the healthcare industry: A review,’’ J. Innov. Opt. Health
Sci., vol. 12, no. 6, Nov. 2019, Art. no. 1930012.

[7] N. Naseer and K.-S. Hong, ‘‘FNIRS-based brain-computer interfaces:
A review,’’ Frontiers Hum. Neurosci., vol. 9, Jan. 2015, Art. no. 172.

[8] A. Zafar and K.-S. Hong, ‘‘Reduction of onset delay in functional near-
infrared spectroscopy: Prediction of HbO/HbR signals,’’ Frontiers Neuro-
robot., vol. 14, Feb. 2020, Art. no. 10.

[9] T. K. K. Ho, J. Gwak, C. M. Park, and J.-I. Song, ‘‘Discrimination of
mental workload levels from multi-channel fNIRS using deep leaning-
based approaches,’’ IEEE Access, vol. 7, pp. 24392–24403, 2019.

[10] D. Liu, B. Wang, T. Pan, J. Li, Z. Qin, L. Zhang, Z. Zhou, and F. Gao,
‘‘Toward quantitative near infrared brain functional imaging: Lock-in pho-
ton counting instrumentation combined with tomographic reconstruction,’’
IEEE Access, vol. 7, pp. 86829–86842, 2019.

[11] L. Li, X. Pan, H. Yang, T. Zhang, and Z. Liu, ‘‘Supervised dictionary
learning with regularization for near-infrared spectroscopy classification,’’
IEEE Access, vol. 7, pp. 100923–100932, 2019.

[12] A.-K. Seghouane and D. Ferrari, ‘‘Robust hemodynamic response function
estimation from fNIRS signals,’’ IEEE Trans. Signal Process., vol. 67,
no. 7, pp. 1838–1848, Apr. 2019.

[13] C. Enzinger, S. Ropele, F. Fazekas, M. Loitfelder, F. Gorani, T. Seifert,
G. Reiter, C. Neuper, G. Pfurtscheller, and G. Müller-Putz, ‘‘Brain motor
system function in a patient with complete spinal cord injury following
extensive brain–computer interface training,’’ Express Brain Res., vol. 190,
pp. 215–223, Jul. 2008.

[14] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard,
J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer, ‘‘Think
to move: A neuromagnetic brain-computer interface (BCI) system for
chronic stroke,’’ Stroke, vol. 39, no. 3, pp. 910–917, Mar. 2008.

[15] S. H. Sardouie and M. B. Shamsollahi, ‘‘Selection of efficient features for
discrimination of hand movements fromMEG using a BCI competition IV
data set,’’ Frontiers Neurosci., vol. 6, Apr. 2012, Art. no. 42.

[16] A. Pellicer and M. D. C. Bravo, ‘‘Near-infrared spectroscopy:
A methodology-focused review,’’ Seminars Fetal Neonatal Med.,
vol. 16, no. 1, pp. 42–49, Feb. 2011.

[17] H. Santosa, M. Jiyoun Hong, S.-P. Kim, and K.-S. Hong, ‘‘Noise reduction
in functional near-infrared spectroscopy signals by independent compo-
nent analysis,’’ Rev. Sci. Instrum., vol. 84, no. 7, Jul. 2013, Art. no. 073106.

[18] M. Cope and D. T. Delpy, ‘‘System for long-term measurement of cere-
bral blood and tissue oxygenation on newborn infants by near infra-red
transillumination,’’ Med. Biol. Eng. Comput., vol. 26, no. 3, pp. 289–294,
May 1988.

[19] F. Montani, A. Oliynyk, and L. Fadiga, ‘‘Superlinear summation of infor-
mation in premotor neuron pairs,’’ Int. J. Neural Syst., vol. 27, no. 2,
Mar. 2017, Art. no. 1650009.

[20] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, ‘‘Near
infrared spectroscopy (NIRS): A new tool to study hemodynamic changes
during activation of brain function in human adults,’’ Neurosci. Lett.,
vol. 154, nos. 1–2, pp. 101–104, May 1993.

[21] H. Watanabe, Y. Shitara, Y. Aoki, T. Inoue, S. Tsuchida, N. Takahashi, and
G. Taga, ‘‘Hemoglobin phase of oxygenation and deoxygenation in early
brain development measured using fNIRS,’’ Proc. Nat. Acad. Sci. USA,
vol. 114, no. 9, pp. E1737–E1744, Feb. 2017.

[22] S. Cutini, S. B. Moro, and S. Bisconti, ‘‘Functional near infrared optical
imaging in cognitive neuroscience: An introductory review,’’ J. Near Infr.
Spectrosc., vol. 20, no. 1, pp. 75–92, Feb. 2012.

[23] U. Ghafoor, J.-H. Lee, K.-S. Hong, S.-S. Park, J. Kim, and H.-R. Yoo,
‘‘Effects of acupuncture therapy on MCI patients using functional near-
infrared spectroscopy,’’ Frontiers Aging Neurosci., vol. 11, Aug. 2019,
Art. no. 237.

[24] Z. Wang, D. Ming, Y. Zhou, L. Chen, B. Gu, W. Yi, S. Liu, M. Xu, H. Qi,
and F. He, ‘‘BCI monitor enhances electroencephalographic and cerebral
hemodynamic activations duringmotor training,’’ IEEETrans. Neural Syst.
Rehabil. Eng., vol. 27, no. 4, pp. 780–787, Apr. 2019.

[25] P. C. Petrantonakis and I. Kompatsiaris, ‘‘Single-trial NIRS data classifi-
cation for brain–computer interfaces using graph signal processing,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 9, pp. 1700–1709, Sep. 2018.

[26] Y. Zheng, D. Zhang, L. Wang, Y. Wang, H. Deng, S. Zhang,
D. Li, and D. Wang, ‘‘Resting-state-based spatial filtering for an
fNIRS-based motor imagery brain-computer interface,’’ IEEE Access,
vol. 7, pp. 120603–120615, 2019.

[27] M. A. Tanveer, M. J. Khan, M. J. Qureshi, N. Naseer, and K.-S. Hong,
‘‘Enhanced drowsiness detection using deep learning: An fNIRS study,’’
IEEE Access, vol. 7, pp. 137920–137929, 2019.

[28] T. Zhu, Y. Zhou, Z. Xia, J. Dong, and Q. Zhao, ‘‘Progressive filtering
approach for early human action recognition,’’ Int. J. Control, Autom. Syst.,
vol. 16, no. 5, pp. 2393–2404, Oct. 2018.

[29] J. Moon, H. Kim, and B. Lee, ‘‘View-point invariant 3D classification
for mobile robots using a convolutional neural network,’’ Int. J. Control,
Autom. Syst., vol. 16, no. 6, pp. 2888–2895, Dec. 2018.

[30] M. Yazdani, H. Salarieh, and M. S. Foumani, ‘‘Bio-inspired decentral-
ized architecture for walking of a 5-link biped robot with compliant
knee joints,’’ Int. J. Control, Autom. Syst., vol. 16, no. 6, pp. 2935–2947,
Dec. 2018.

[31] H.-D. Nguyen and K.-S. Hong, ‘‘Bundled-optode implementation for 3D
imaging in functional near-infrared spectroscopy,’’ Biomed. Opt. Express,
vol. 7, no. 9, p. 3491, Sep. 2016.

[32] U. Ghafoor, S. Kim, and K.-S. Hong, ‘‘Selectivity and longevity of
peripheral-nerve and machine interfaces: A review,’’ Frontiers Neuro-
robot., vol. 11, Oct. 2017, Art. no. 59.

[33] K.-S. Hong and N. Naseer, ‘‘Reduction of delay in detecting initial
dips from functional near-infrared spectroscopy signals using vector-
based phase analysis,’’ Int. J. Neural Syst., vol. 26, no. 3, May 2016,
Art. no. 1650012.

[34] K.-S. Hong and A. Zafar, ‘‘Existence of initial dip for BCI: An illusion or
reality,’’ Frontiers Neurorobot., vol. 12, Oct. 2018, Art. no. 69.

[35] D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, ‘‘Twenty years of
functional near-infrared spectroscopy: Introduction for the special issue,’’
NeuroImage, vol. 85, pp. 1–5, Jan. 2014.

[36] F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia,
U. Wolf, and M. Wolf, ‘‘A review on continuous wave functional near-
infrared spectroscopy and imaging instrumentation and methodology,’’
NeuroImage, vol. 85, pp. 6–27, Jan. 2014.

[37] J. Shin, J. Kwon, J. Choi, and C.-H. Im, ‘‘Ternary near-infrared spec-
troscopy brain-computer interface with increased information transfer
rate using prefrontal hemodynamic changes during mental arithmetic,
breath-holding, and idle state,’’ IEEE Access, vol. 6, pp. 19491–19498,
2018.

VOLUME 8, 2020 89103



M. N. A. Khan et al.: Task-Specific Stimulation Duration

[38] L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook,
‘‘Diffuse optical tomography of pain and tactile stimulation: Activation
in cortical sensory and emotional systems,’’ NeuroImage, vol. 41, no. 2,
pp. 252–259, Jun. 2008.

[39] L. Becerra,W.Harris,M.Grant, E. George, D. Boas, andD. Borsook, ‘‘Dif-
fuse optical tomography activation in the somatosensory cortex: Specific
activation by painful vs. non-painful thermal stimuli,’’ PLoS ONE, vol. 4,
no. 11, 2009, Art. no. e8016.

[40] M. A. Yaqub, S.-W. Woo, and K.-S. Hong, ‘‘Effects of HD-tDCS on
resting-state functional connectivity in the prefrontal cortex: An fNIRS
study,’’ Complexity, vol. 2018, Nov. 2018, Art. no. 1613402.

[41] M. A. Yücel, C. M. Aasted, M. P. Petkov, D. Borsook, D. A. Boas,
and L. Becerra, ‘‘Specificity of hemodynamic brain responses to painful
stimuli: A functional near-infrared spectroscopy study,’’ Sci. Rep., vol. 5,
no. 1, Aug. 2015, Art. no. 9469.

[42] N. Üceyler, J. Zeller, S. Kewenig, S. Kittel-Schneider, A. J. Fallgatter,
and C. Sommer, ‘‘Increased cortical activation upon painful stimulation
in fibromyalgia syndrome,’’ BMC Neurol., vol. 15, no. 1, Dec. 2015,
Art. no. 210.

[43] X.-S. Hu, K.-S. Hong, and S. S. Ge, ‘‘Recognition of stimulus-evoked
neuronal optical response by identifying chaos levels of near-infrared
spectroscopy time series,’’ Neurosci. Lett., vol. 504, no. 2, pp. 115–120,
Oct. 2011.

[44] P. Wobst, R. Wenzel, M. Kohl, H. Obrig, and A. Villringer, ‘‘Linear aspects
of changes in deoxygenated hemoglobin concentration and cytochrome
oxidase oxidation during brain activation,’’ NeuroImage, vol. 13, no. 3,
pp. 520–530, Mar. 2001.

[45] L. M. Ward, R. T. Aitchison, M. Tawse, A. J. Simmers, and U. Shahani,
‘‘Reduced haemodynamic response in the ageing visual cortex measured
by absolute fNIRS,’’ PLoS ONE, vol. 10, no. 4, 2015, Art. no. e0125012.

[46] S.Wijeakumar, U. Shahani, W. A. Simpson, and D. L.McCulloch, ‘‘Local-
ization of hemodynamic responses to simple visual stimulation: An fNIRS
study,’’ Investigative Opthalmol. Vis. Sci., vol. 53, no. 4, pp. 2266–2273,
Apr. 2012.

[47] G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger, ‘‘Linear
systems analysis of functional magnetic resonance imaging in human V1,’’
J. Neurosci., vol. 16, no. 13, pp. 4207–4221, Jul. 1996.

[48] A. L. Vazquez and D. C. Noll, ‘‘Nonlinear aspects of the BOLD
response in functional MRI,’’ NeuroImage, vol. 7, no. 2, pp. 108–118,
Feb. 1998.

[49] H.-L. Liu and J.-H. Gao, ‘‘An investigation of the impulse functions for
the nonlinear BOLD response in functional MRI,’’ Magn. Reson. Imag.,
vol. 18, no. 8, pp. 931–938, Oct. 2000.

[50] D. A. Soltysik, K. K. Peck, K. D. White, B. Crosson, and R. W. Briggs,
‘‘Comparison of hemodynamic response nonlinearity across primary cor-
tical areas,’’ NeuroImage, vol. 22, no. 3, pp. 1117–1127, Jul. 2004.

[51] M. D. Robson, J. L. Dorosz, and J. C. Gore, ‘‘Measurements of the
temporal fMRI response of the human auditory cortex to trains of tones,’’
NeuroImage, vol. 7, no. 3, pp. 185–198, Apr. 1998.

[52] L. D. Lewis, K. Setsompop, B. R. Rosen, and J. R. Polimeni, ‘‘Stimulus-
dependent hemodynamic response timing across the human subcortical-
cortical visual pathway identified through high spatiotemporal resolution
7T fMRI,’’ NeuroImage, vol. 181, pp. 279–291, Nov. 2018.

[53] S. Weder, X. Zhou, M. Shoushtarian, H. Innes-Brown, and C. McKay,
‘‘Cortical processing related to intensity of a modulated noise stimulus—
A functional near-infrared study,’’ J. Assoc. Res. Otolaryngol., vol. 19,
no. 3, pp. 273–286, Jun. 2018.

[54] N. H. Kashou and B. M. Giacherio, ‘‘Stimulus and optode placement
effects on functional near-infrared spectroscopy of visual cortex,’’ Neu-
rophotonics, vol. 3, no. 2, Jun. 2016, Art. no. 025005.

[55] F. Tian, B. Chance, and H. Liu, ‘‘Investigation of the prefrontal cortex in
response to duration-variable anagram tasks using functional near-infrared
spectroscopy,’’ J. Biomed. Opt., vol. 14, no. 5, 2009, Art. no. 054016.

[56] L. L. Emberson, G. Cannon, H. Palmeri, J. E. Richards, and R. N. Aslin,
‘‘Using fNIRS to examine occipital and temporal responses to stimulus
repetition in young infants: Evidence of selective frontal cortex involve-
ment,’’ Develop. Cognit. Neurosci., vol. 23, pp. 26–38, Feb. 2017.

[57] L. Sullivan. Power and Sample Size Determination. Boston University
of Public Health. Accessed: Feb. 2020. [Online]. Available:
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Power/BS704_
Power_print.html

[58] B. Christie, ‘‘Doctors revise declaration of Helsinki,’’ Brit. Med. J.,
vol. 321, no. 7266, Oct. 2000, Art. no. 913.

[59] D. T. Delpy, M. Cope, P. V. D. Zee, S. Arridge, S. Wray, and J. Wyatt,
‘‘Estimation of optical pathlength through tissue from direct time of flight
measurement,’’ Phys. Med. Biol., vol. 33, no. 12, Dec. 1988, Art. no. 1433.

[60] A. Zafar and K.-S. Hong, ‘‘Neuronal activation detection using vector
phase analysis with dual threshold circles: A functional near-infrared
spectroscopy study,’’ Int. J. Neural Syst., vol. 28, no. 10, Dec. 2018,
Art. no. 1850031.

[61] T. Fekete, D. Rubin, J. M. Carlson, and L. R. Mujica-Parodi, ‘‘The NIRS
analysis package: Noise reduction and statistical inference,’’ PLoS ONE,
vol. 6, no. 9, 2011, Art. no. e24322.

[62] J. M. Kainerstorfer, A. Sassaroli, K. T. Tgavalekos, and S. Fantini,
‘‘Cerebral autoregulation in the microvasculature measured with near-
infrared spectroscopy,’’ J. Cerebral Blood FlowMetabolism, vol. 35, no. 6,
pp. 959–966, Jun. 2015.

[63] M. J. Khan and K.-S. Hong, ‘‘Hybrid EEG–fNIRS-based eight-command
decoding for BCI: Application to quadcopter control,’’ Frontiers Neuro-
robot., vol. 11, Feb. 2017, Art. no. 6.

[64] K.-S. Hong and H.-D. Nguyen, ‘‘State-space models of impulse hemody-
namic responses over motor, somatosensory, and visual cortices,’’ Biomed.
Opt. Express, vol. 5, no. 6, pp. 1778–1798, Jun. 2014.

[65] W. N. J. M. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs,
B. Oeseburg, M. Ferrari, and A. Villringer, ‘‘Simultaneous near-infrared
spectroscopy monitoring of left and right occipital areas reveals contra-
lateral hemodynamic changes upon hemi-field paradigm,’’ Vis. Res.,
vol. 41, no. 1, pp. 97–102, Jan. 2001.

[66] M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, ‘‘Abso-
lute quantification of oxygenated hemoglobin within the visual cortex with
functional near infrared spectroscopy (fNIRS),’’ Investigative Opthalmol.
Vis. Sci., vol. 51, no. 9, pp. 4856–4860, Sep. 2010.

[67] S.Wijeakumar, U. Shahani, D. L.McCulloch, andW.A. Simpson, ‘‘Neural
and vascular responses to fused binocular stimuli: A VEP and fNIRS
study,’’ Investigative Opthalmol. Vis. Sci., vol. 53, no. 9, pp. 5881–5889,
Aug. 2012.

[68] R.Wenzel, P.Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl,
H. Obrig, U. Dirnagl, and A. Villringer, ‘‘Saccadic suppression induces
focal hypooxygenation in the occipital cortex,’’ J. Cerebral Blood Flow
Metabolism, vol. 20, no. 7, pp. 1103–1110, Jul. 2000.

[69] F. Tian, G. Alexandrakis, and H. Liu, ‘‘Optimization of probe geometry for
diffuse optical brain imaging based on measurement density and distribu-
tion,’’ Appl. Opt., vol. 48, no. 13, pp. 2496–2504, May 2009.

[70] D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy,
A. W. Darzi, and G.-Z. Yang, ‘‘Assessment of the cerebral cortex dur-
ing motor task behaviours in adults: A systematic review of functional
near infrared spectroscopy (fNIRS) studies,’’ NeuroImage, vol. 54, no. 4,
pp. 2922–2936, Feb. 2011.

[71] Q. C. Nguyen, M. Piao, and K.-S. Hong, ‘‘Multivariable adaptive control
of the rewinding process of a roll-to-roll system governed by hyperbolic
partial differential equations,’’ Int. J. Control, Autom. Syst., vol. 16, no. 5,
pp. 2177–2186, Oct. 2018.

[72] K.-S. Hong and P.-T. Pham, ‘‘Control of axially moving systems:
A review,’’ Int. J. Control, Autom. Syst., vol. 17, no. 12, pp. 2983–3008,
Dec. 2019.

[73] Z. Hu, Y. Wang, G. Cui, and D. Zhang, ‘‘Enhance transparency of force
feedback interaction series mechanism by SMC strategy,’’ Int. J. Control,
Autom. Syst., vol. 17, no. 7, pp. 1738–1750, Jul. 2019.

M. N. AFZAL KHAN received the B.S. degree
in mechatronics engineering from Air Univer-
sity, Islamabad, Pakistan, in 2017. He is currently
pursuing the Ph.D. degree with the School of
Mechanical Engineering, Pusan National Univer-
sity, Busan, South Korea. His research interests
include brain–computer interface, machine learn-
ing, brain-controlled robotics, and fNIRS-based
brain imaging.

89104 VOLUME 8, 2020



M. N. A. Khan et al.: Task-Specific Stimulation Duration

M. RAHEEL BHUTTA received the B.Eng. degree
in computer engineering from the COMSATS
Institute of Information Technology, Islamabad,
Pakistan, in 2003, and the M.Eng. degree in
VLSI system design fromGriffith University, Aus-
tralia, in 2005, and the Ph.D. degree from the
Department of Cogno-Mechatronics Engineering,
Pusan National University, South Korea, in 2017.
He is currently an Assistant Professor with the
Department of Computer Science and Engineer-

ing, Sejong University, Seoul, South Korea. He is currently working on
a lie detection system using neuronal and physiological signals, funded
by the National Research Foundation of Korea. His research interests
include embedded system design, classification and pattern recognition,
artificial intelligence, machine learning, multimodal neuroimaging, and
brain–computer interfaces.

KEUM-SHIK HONG (Fellow, IEEE) received the
B.S. degree in mechanical design and produc-
tion engineering from Seoul National University,
in 1979, the M.S. degree in mechanical engineer-
ing from Columbia University, NewYork, in 1987,
the M.S. degree in applied mathematics from
the University of Illinois at Urbana-Champaign
(UIUC), and the Ph.D. in mechanical engineering
from UIUC, in 1991. He joined the School of
Mechanical Engineering, Pusan National Univer-

sity (PNU), in 1993. His Integrated Dynamics and Control Engineering
Laboratory was designated a National Research Laboratory by the Ministry
of Science and Technology of Korea, in 2003. In 2009, under the aus-
pices of the World Class University Program of the Ministry of Education,
Science and Technology (MEST) of Korea, he established the Department
of Cogno-Mechatronics Engineering, PNU. His current research interests
include brain–computer interface, nonlinear systems theory, adaptive con-
trol, distributed parameter systems, autonomous vehicles, and innovative
control applications in brain engineering. He was a past President of the
Institute of Control, Robotics and Systems (ICROS), South Korea, and
the President of Asian Control Association. Dr. Hong is a Fellow of the
Korean Academy of Science and Technology, an ICROS Fellow, a member
of the National Academy of Engineering of Korea, and many other societies.
He has received many awards including the Best Paper Award from the
KFSTS of Korea in 1999, the F. Harashima Mechatronics Award in 2003,
the IJCAS Scientific Activity Award in 2004, the Automatica Certificate
of Outstanding Service in 2006, the Presidential Award of Korea in 2007,
the ICROS Achievement Award in 2009, the IJCAS Contribution Award
in 2010, the Premier Professor Award in 2011, the JMSTContribution Award
in 2011, the IJCAS Contribution Award in 2011, the IEEE Academic Award
of ICROS in 2016, etc. He was the Organizing Chair of the ICROS-SICE
International Joint Conference 2009, Fukuoka, Japan. He served as an Asso-
ciate Editor of Automatica from 2000 to 2006, as an Editor-in-Chief of the
Journal of Mechanical Science and Technology from 2008 to 2011, and
is serving as an Editor-in-Chief of the International Journal of Control,
Automation, and Systems.

VOLUME 8, 2020 89105


