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ABSTRACT Medical image fusion can combine information from multi-modality images and express them
through a single image. How to design a fusion method to preserve more information becomes a hot topic.
In this paper, we propose a novel multi-modality medical image fusion method based on Synchronized-
Anisotropic Diffusion Equation (S-ADE). First, the modified S-ADE model which is more suitable for
Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is employed to decompose
two source images. We get the base layers and texture layers. Next, the ‘‘Maximum Absolute Value’’
rule is used for base layers fusion. On texture layers, the fusion decision map is calculated by New Sum
of Modified Anisotropic Laplacian (NSMAL) algorithm which is designed using common decomposition
coefficients by anisotropic diffusion. Furthermore, the consistency check is constructed on the decision map
to mitigate the staircase effect. After that, the fused image is obtained by a simple linear combination of
layers. Finally, the fused MR/CT image is obtained after image correction. Its aim is to eliminate redundant
texture information which is from MRI images in the contour part. The extensive experimental results
demonstrate that the proposed method preserves much information as well as guarantees image quality and
visual effects. It outperforms other state-of-the-art methods in terms of subjective and objective evaluations.

INDEX TERMS Anisotropic diffusion, medical image, multi-modality image fusion, synchronism.

I. INTRODUCTION
With the development of computer science technology, medi-
cal imaging plays a vital role in the clinical diagnosis. Among
them, Magnetic Resonance Imaging (MRI) images primar-
ily depict soft tissues, such as blood vessels [1]. Computed
Tomography (CT) images can clearly reflect the precise local-
ization of dense structures [2]. It is nearly impossible to get
them both from any single medical modality as they provide
information from different aspects with their own advantages.
Therefore, it is necessary to fuse MRI and CT images to meet
the requirements of more complex diagnosis, for example,
skull base tumor detecting. Medical image fusion has become
a widely used tool for creating high-quality images with
amounts of information in order to increase the capability
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of diagnosis of medical problems. It can combine multiple
images from single or various imagingmodalities into a fused
one. Also, the fusion process can reduce the randomness and
redundancy. At present, there are several main methods for
medical image fusion, such as spatial domain based, trans-
form domain based, neural network based, hybrid methods
and others. We review them briefly.

In spatial domain, the pixels of images can be calcu-
lated directly. There are many techniques used widely, such
as Principal Component Analysis (PCA), Averaging, Sim-
ple Maximum/Minimum method, Bovey Transform (BT),
Intensity Hue Saturation (IHS), High Pass Filter (HPF).
However, it may produce spatial distortion in the fused
images when only using spatial domain methods. The hybrid
methods [3]–[6] can improve the quality of the fusion results.

The source images can be decomposed to extract fea-
tures in addition to being processed directly. For example,
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FIGURE 1. An example about medical image fusion. (a) is the source
MR-T2 image. (b) is the corresponding CT image. Apparently, (c) is the
MR-T2/CT image, the fusion result. It contains both the soft tissue
information of (a) and the structural information from (b).

the methods based on Laplacian Pyramid (LP) with mul-
tiple features can improve the ability to present outline
and contrast of the images [7], [8]. The algorithms using
Guided filter (GFF) [9], [10] or Cross Bilateral Filter
(CBF) [11] have a good edge preserving property. The
multi-level local extrema (LE) schema [12] improves the
quality of the fused image. Besides, the methods via
multiscale analysis would have the ability to select the
frequencies in both space and time because the details
in images are usually in the high frequencies. Such as
DWT [13]–[15], Curvelet Transform (CVT) [16], [17], Non-
Subsampled Contourlet Transform (NSCT) [18]–[20], Non-
Subsampled Shearlet Transform (NSST) [21], [22] and
Daubechies complexWavelet Transform [23]. But multiscale
transformation methods cannot completely extract the effec-
tive information from the base layers of images, so the fusion
effect is not ideal in some aspects. Meanwhile, some new
image decomposition methods have been proposed for image
fusion, such as ones based on Sparse Representation (SR)
[24]–[27] and saliency detection [28]–[30].

The transform domain based fusion framework requires
the process of image reconstruction, the inverse transforma-
tion. Relatively, the end-to-end image processing model is
more concise. The methods using Convolutional Neural Net-
works (CNNs) [2], [31]–[34] to extract features become the
research trend gradually. But its interpretability in medicine
still needs improvement. There are still limitations of the
complicated design of fusion rules for different layers [35].
Whereas the generative adversarial network-based methods
can be generalized to fuse images with different modalities
and avoid causing functional information blurring or texture
detail loss [36], [37]. Besides, some researchers deal with
image fusion problem as an optimization model [38]–[41],
and use optimization algorithms to combine weighted sub
frequency images adaptively. However, these methods have
limitations, for example, the need for multiple iterations to
find the optimal solution. Approximately, the image fusion
process is shown in Fig. 1.

But the white boundary in (b) is not completely preserved.
Besides, the tissue information in the center of (a) is blurred
after the fusion. To overcome these shortcomings, a novel
image fusion method for MRI and CT images is proposed in
this paper. The framework is realized using ADE basedmodel

and the features in spatial domain. Compared with the basic
scale-space filters above, the anisotropic diffusion is sensitive
to texture, and performs well in preserving edge information.
It can separate images into base layers and texture layers
better [42], [43]. At the same time, the fusion rule for texture
layers is designed using the common coefficients obtained
by image decomposition. Therefore, the process of image
decomposition and fusion has consistency in identifying tex-
tures which is beneficial to retaining more textural details.
For base layers, we choose the ‘‘Maximum Absolute Value’’
rule. The contributions of this paper are four-fold:

1) We propose a preprocessing step for generating a ‘‘com-
mon image’’ in order to control the synchronism of the
decomposition process of the two source images.

2) The fusion rule designed for texture layers is constructed
using common coefficients obtained by decomposing the
‘‘common image’’.

3) We establish consistency check on the decision map to
mitigate the step effects from anisotropic diffusion.

4) We modify the settings and selections of parameters in
the proposed algorithm.

The rest of this paper is organized as follows. A survey
of related works and motivation are given in Section II.
In Section III, the proposed image fusion model is described
in detail. The experimental results and analysis are displayed
in Section IV. At last, Section V concludes this paper.

II. RELATED WORKS AND MOTIVATION
A. ANISOTROPIC DIFFUSION
The anisotropic diffusion [44] treats images as thermal fields,
and each pixel as a heat flow. If the pixel (x, y) is significantly
different from others in the neighborhood, it may be retained
as boundary instead of being diffused. That is, the filter
can smooth a uniform region of a given image. Meanwhile,
we use a Partial Differential Equation (PDE) to process non-
uniform regions, that is, boundaries [45], which is similar
to the bilateral filter. The anisotropic diffusion equation is
described as:

I t = div(c(x, y, t)∇I t−1)
= c(x, y, t)1I t−1 +∇c · ∇I t−1

I0 = I

(1)

where the divergence operator is indicated with div, ∇ and
1 represent the Gradient operator and Laplacian operator
(divergence of gradient), respectively. c(x, y, t) indicates the
rate of diffusion, and t means iteration number. A lower
resolution image I t can be obtained after the anisotropic
diffusion function is executed on image I t−1. The solution
to Eq. (1) is

I tx,y = I t−1x,y + λ
[
ct−1Nx,y · ∇̄N I

t−1
x,y + c

t−1
Sx,y · ∇̄S I

t−1
x,y

+ct−1Ex,y · ∇̄E I
t−1
x,y + c

t−1
Wx,y · ∇̄W I

t−1
x,y

]
(2)

where λ ∈ [0, 1/4]. I tx,y calculated from the previous one
means the pixel (x, y) in image at t scale. The subscripts N ,
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S, E and W are abbreviation for North South East and West.
The symbol ∇̄ means nearest-neighbor differences:

∇̄N Ix,y ≡ Ix−1,y − Ix,y
∇̄S Ix,y ≡ Ix+1,y − Ix,y
∇̄E Ix,y ≡ Ix,y+1 − Ix,y
∇̄W Ix,y ≡ Ix,y−1 − Ix,y (3)

In Eq. (2), ct−1Nx,y c
t−1
Sx,y c

t−1
Ex,y and c

t−1
Wx,y indicate the diffusion

function c(x, y, t) in the corresponding directions, respec-
tively. They are defined as:

ct−1Nx,y = g
(∥∥∥(∇I )t−1x+(1/2),y

∥∥∥) = g
(∣∣∣∇̄N I t−1x,y

∣∣∣)
ct−1Sx,y = g

(∥∥∥(∇I )t−1x−(1/2),y

∥∥∥) = g
(∣∣∣∇̄S I t−1x,y

∣∣∣)
ct−1Ex,y = g

(∥∥∥(∇I )t−1x,y+(1/2)

∥∥∥) = g
(∣∣∣∇̄E I t−1x,y

∣∣∣)
ct−1Wx,y = g

(∥∥∥(∇I )t−1x,y−(1/2)

∥∥∥) = g
(∣∣∣∇̄W I t−1x,y

∣∣∣) (4)

where c(x, y, t)= g (‖∇I (x, y, t)‖) . The function g(·) will be
discussed in Section III in detail.

B. SUM OF MODIFIED LAPLACIAN (SML)
The traditional SML algorithm is able to reflect the edge
information of an image as well as the sharpness. But it only
calculates the Laplacian value of each pixel in horizontal and
vertical directions. SML is defined as:

ML(x, y) = |2I (x, y)− I (x − step, y)− I (x + step, y)|

+ |2I (x, y)− I (x, y− step)− I (x, y+ step)|

(5)

SML(x, y) =
N∑

i=−N

N∑
j=−N

ML(x + i, y+ j) (6)

where step denotes a variable spacing between pixels. The
accumulation window about calculating the value of ML is
set to (2N + 1)× (2N + 1).

C. MOTIVATION OF THIS WORK
In image fusion, how much details are retained in the fused
image largely determines the image quality, which will
have an impact on clinical diagnostics. The combination
of anisotropic diffusion and SML can separate details from
the source image more accurately. It is not difficult to find
that the anisotropic decomposition model and SML algo-
rithm use similar ideas in the image calculation process.
That is, the North South East and West are equivalent to
vertical and horizontal in direction. But the selection of only
two directions reduces the accuracy and it cannot make use
of the strong correlation among adjacent pixels. Therefore,
we desire to expand the selections and use more adjacent
pixels for calculation. Besides, we need to use parameters to
associate the decomposition process with the fusion method
in order to improve the consistency in identifying textures of
the overall framework. The acquisition of parameters depends
on the process of image decomposition. Meanwhile, we hope

FIGURE 2. The relation between the prior works and proposed model.

that these parameters are obtained through calculating
two source images, which makes the whole model more
adaptive.

As mentioned above, inspired by some recent advances in
anisotropic diffusion method [45], [46] and the importance
in synchronized decomposition, the S-ADE image decom-
position method (presented in Section III-A) is introduced
to decompose medical images. The NSMAL algorithm (pro-
posed in Section III-B.2) is designed to fuse texture layers
of medical images. The relation between the prior works and
proposed methods is shown in Fig. 2.

III. PROPOSED METHOD
In this section, we describe the proposed model for MRI/CT
medical image fusion. Here, we assume that the source MRI
and CT images are well registered. There is no need to
consider about the problems about the registration. First,
we generate a ‘‘common image’’ based on two source images.
We can get the common decomposition coefficients (direc-
tion parameters) by decomposing the ‘‘common image’’.
After image decomposition via S-ADE, the base layer and
texture layer of each image are obtained. Then fuse the base
layers using ‘‘Maximum Absolute Value’’ method. The tex-
ture layers are fused by NSMAL algorithm. At last, the fusion
result can be obtained through the image reconstruction. The
framework of the proposed model is presented in Fig. 3.

A. IMAGE DECOMPOSITION USING S-ADE
1) E-ADE
As mentioned in the motivation, the traditional ADE model
can be expanded. In detail, the four nearest points around the
pixel (x, y) are in the N , S, E and W directions in image.
The second nearest points are in the Northwest (NW ) North-
east (NE) Southwest (SW ) and Southeast (SE) directions.
So there are eight points contributing to calculate the energy
of the pixel (x, y). The Eqs. (3) and (4) can be extended to the
following:

∇̄NW Ix,y ≡ Ix−1,y−1 − Ix,y
∇̄NE Ix,y ≡ Ix−1,y+1 − Ix,y
∇̄SW Ix,y ≡ Ix+1,y−1 − Ix,y
∇̄SE Ix,y ≡ Ix+1,y+1 − Ix,y (7)
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FIGURE 3. The framework of the proposed MRI/CT image fusion model.

ct−1NWx,y = g
(∥∥∥(∇I )t−1x+(1/2),y−(1/2)

∥∥∥) = g
(∣∣∣∇̄NW I t−1x,y

∣∣∣)
ct−1NEx,y = g

(∥∥∥(∇I )t−1x+(1/2),y+(1/2)

∥∥∥) = g
(∣∣∣∇̄NE I t−1x,y

∣∣∣)
ct−1SWx,y = g

(∥∥∥(∇I )t−1x−(1/2),y−(1/2)

∥∥∥) = g
(∣∣∣∇̄SW I t−1x,y

∣∣∣)
ct−1SEx,y = g

(∥∥∥(∇I )t−1x−(1/2),y+(1/2)

∥∥∥) = g
(∣∣∣∇̄SE I t−1x,y

∣∣∣) (8)

2) SYNCHRONICITY ESTABLISHMENT
The ADE image decomposition model can be adaptively per-
formed according to the properties of the image itself. So the
decomposition bases of different images are different in pro-
cess. But image fusion is to combine salient features of multi-
modality images together, and express it through a single
image.We hope that the source images are decomposed under
the same condition to meet the fusion consistency. In our
opinion, the solution is to generate a ‘‘common image’’, based
on which the decomposition coefficients of different source
images are obtained. The preprocessing method should be
simple and effective. There are three solutions to the problem:
PCA algorithm, average filter and stitching two images. One
experiment result about the preprocessing is shown in Fig. 4.

From the figure, it is obvious that the texture information
marked by red box in MRI image displayed in Fig. 4(a) is
important. Hence, we need to preserve in the fused images.
However, the details are partially lost in the fused images
obtained using PCA algorithm and average filter. By contrast,
the fused image using image stitching preserves more textural
information. Extensive experiments are conducted to com-
pare the performance of the three strategies, and the exper-
imental results demonstrate that stitching method performs
better than the other two ones. The stitching method is simple
but keeping the original information. Furthermore, we need

to generate a ‘‘common image’’ after each iteration diffusion
process, which is tedious and time-consuming when using
algorithm or filter. But it needs to generate only one initial
‘‘common image’’ using the stitching method. The diffusion
iterations are executed based on it.

3) DIFFUSION COEFFICIENT FUNCTION
It needs to determine the diffusion coefficient function g(·)
mentioned in Section II-A after obtaining the required ‘‘com-
mon image’’. g(·) is a monotonically decreasing function with
g(0) = 1. There are many selections meeting the require-
ments. According to the suggestions in [44], we summarize
as follows:

g(∇I ,K , α) =
1

1+ ( ‖∇I‖K )
1+α (9)

where α > 0. The function privileges wide regions over
the smaller ones. The constant K is called edge threshold,
which is important to the function. If K is too large, the base
layer information from CT image will be lost. On the con-
trary, the smooth diffusion on the MRI image stops earlier,
resulting in insufficient texture information of the image after
decomposition. In order to retain useful information of MRI
and CT images effectively, we need to discuss the choices of
K and α. Besides, as a non-linear iterative filter, the number
of iterations of the S-ADE algorithm determines the degree
of separation between texture layer and basic layer. Specif-
ically, the details will be retained from MRI image enough
if the number of iterations is large. By contrast, more basic
information of CT image will be preserved. The choices of
parameters for the diffusion function are shown in Section IV.

4) IMAGE DECOMPOSITION
The image I tx,y is decomposed by the S-ADE model for
obtaining base layer:

BtI = S − ADE(I tx,y) (10)

where BtI is the t-level base layer and S − ADE(I
t
x,y) means

that the proposed model decompose the t-level image. The
texture layer can be obtained by the subtraction:

TI = I − BtI (11)

In summary, the image decomposition method based on
S-ADEmodel can be summarized as Algorithm 1. The ‘‘com-
mon image’’ is generated in Step 1. From Step 2 to 6, we get
the ‘‘common base layer’’ BtI . After Step 7, the ‘‘conmmon
texture layer’’ TI can be obtained. At last, we get the output
layers through Step 8 and 9.

Two groups of results about decomposition on MR-T2 and
CT images are shown in Fig. 5. From (e) and (f), it is clear
that the textural details separated from MRI images are more
than the ones from CT images, and the base layer information
in (c) and (d) is well preserved. The results indicate that
the proposed image decomposition method is sensitive to the
texture information. That the base layer and texture layer are
well separated can improve the fusion effect.
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FIGURE 4. The ‘‘common image’’ results and fusion effect from different methods. (a) shows the source images: MR-T2 image (left) and CT image
(right). (b) indicates the ‘‘common image’’ by two methods: average filter (left) and PCA algorithm (right). (c) presents the fusion results based on the
filter (left), algorithm (middle) and stitching (right) under the same decomposition and fusion condition.

Algorithm 1 The S-ADE Decomposition Procedure
Input: the source images: IMRI , ICT .
Output: the texture layers: TMRI , TCT and the base layers:

BMRI , BCT .
1: Generate the ‘‘common image’’ I0 using stitching

method.
2: for t = 1:iteration number do
3: Build the S-ADE model using Eq. (3) Eq. (4) Eq. (7)

and Eq. (8);
4: Build the diffusion function using Eq. (9);
5: Get the base layer BtI of the ‘‘common image’’ using

Eq. (10).
6: end for
7: Get the texture layer TI of the ‘‘common image’’ using

Eq. (11).
8: Get the base layers: BMRI ,BCT after segmenting BtI .
9: Get the texture layers: TMRI ,TCT after segmenting TI .

FIGURE 5. The experimental results of image decomposition. (a)
MR-T2 image. (b) CT image. (c) Base layer of MR-T2 image. (d) Base layer
of CT image. (e) Texture layer of MR-T2 image. (f) Texture layer of CT
image.

B. IMAGE FUSION RULES
The base layer and texture layer present different information,
and they largely vary in significance for MRI and CT image.
For example, texture information of MRI is more useful, and
basic information from CT can reflect the bone structure
better. Therefore, different fusion methods are designed for
different layers.

1) BASE LAYER FUSION RULE
The fusionmethod for base layer is simpler as the detail infor-
mation contained in BI is very limited. In this framework,
we use the ‘‘Maximum Absolute Value’’ rule as the fusion

FIGURE 6. Base layer fusion results of two groups of MR-T2 and CT
images. (a) MR-T2 image. (b) CT image. (c) MR-T2 image base layer.
(d) CT image base layer. (e) Base layer fusion result.

algorithm. We get the fusion map using:

mapB = (BMRI > BCT ) (12)

In this way, the base layer BF of the fused image can be
obtained by:

BF = BMRI × mapB + BCT × (1− mapB) (13)

The fused base layer results are shown in Fig. 6.

2) TEXTURE LAYER FUSION RULE
On texture layers, the fusion decision map is calculated
by NSMAL algorithm which is designed using directional
coefficients obtained by decomposing MRI and CT images.
Similar to the E-ADE model, the traditional SML algorithm
can be extended to NSML, and NML is defined as:

NML(x, y)

= |(c1 + c2)I (x, y)− c1I (x − step, y)

−c2I (x + step, y)| + |(c3 + c4)I (x, y)

−c3I (x, y− step)− c4I (x, y+ step)|

+ |(c5 + c6)I (x, y)− c5I (x − step, y− step)

−c6I (x + step, y+ step)| + |(c7 + c8)I (x, y)

−c7I (x−step, y+step)−c8I (x+step, y−step)| (14)

In order to establish the consistency between the decomposi-
tion and fusion process, the NMAL is proposed as:

c1 = cN , c3 = cW , c5 = cNW , c7 = cNE
c2 = cS , c4 = cE , c6 = cSE , c8 = cSW (15)
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FIGURE 7. Texture layer fusion results of two groups of MR-T2 and CT
images. (a) MR-T2 image. (b) CT image. (c) MR-T2 image texture layer.
(d) CT image texture layer. (e) Texture layer fusion result.

where the coefficients of Eq. (14) are the diffusion ones
obtained from the S-ADE model. After calculating the
NMAL(x, y), we get NSMAL(x, y) via NSMAL(x, y) =
N∑

i=−N

N∑
j=−N

NMAL(x + i, y+ j). The fusion decision map is

defined as:

mapT = (ω × NSMALT_MRI > NSMALT_CT ) (16)

where the weight coefficient ω > 1 as we hope to preserve
more details from MRI image.

In order to mitigate the staircase effects in fused tex-
ture layer, we establish a consistency check on the decision
map mapT through a sliding window, which aims to further
improve the quality of fused images. The window is set to
3 × 3. Similar to the image decomposition process, we cal-
culate the sum of eight values around the pixel in the map.
If more than half of the pixels are from the MRI image,
the value at pixel (x, y) is set to 1. By contrast, the value is set
to 0 (see Eq. (17)). The fused texture layer can be obtained
through Eq. (18).

mapT (x, y) =

{
1 ifsum > 4
0 else

(17)

TF = TMRI × mapT + TCT × (1− mapT ) (18)

The texture layer fusion results are shown in Fig. 7.

3) IMAGE RECONSTRUCTION
The image of low resolution which is treated as base layer is
obtained using S-ADEmodel to decompose the source image.
We subtract the low frequency information from the source
image to get texture layer according to Eq. (11). The image
reconstruction process is the inverse process of decomposi-
tion. Thus, the fused image F is given by a linear combination
of base layer and texture layer as:

F = BF + TF (19)

Two groups of fusion results images are shown in Fig. 8.

FIGURE 8. The fusion results of two groups of MR-T2/CT images.
(a)(d) MR-T2 images. (b)(e) CT images. (c)(f) MR-T2/CT fusion results.

FIGURE 9. The MR-T2/CT final fusion results of two groups of MR-T2 and
CT images. (a)(d)MR-T2 images. (b)(e) CT images. (c)(f) MR-T2/CT fusion
results after image correction.

4) IMAGE CORRECTION
There are gray lines within the white outline of the fused
results by observing the fusion images displayed in Fig. 8.
In our opinion, the lines are texture information from MRI
image and the white outline is preserved from CT image. The
white part of CT image reflects the bone information. But
current fused images may mislead a diagnosis as a fracture.
Therefore, we add a step to modify it. We get an intensity
weight map of CT image:

mapI = ICT > θ (20)

where θ is an intensity threshold used to extract contour from
CT image. Pixels with an intensity greater than θ are retained
in white outline of the fused image. The residual texture
information of the MRI image in the white outline of fused
image is eliminated by:

Ffinal = ICT × mapI + F × (1− mapI ) (21)

The final fused images are shown in Fig. 9.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA SETS
In our experiments, there are 20 pairs of MRI and CT
images (see Fig. 10). All of them are from the Whole Brain
Atlas database of Harvard Medical School, which is a pop-
ular medical image database. (http://www.med.harvard.edu/
AANLIB/home.html.)

B. EVALUATION
Both subjective visual effect and objective quantitative anal-
ysis are necessary when evaluating the fusion results. The
subjective evaluation is more important because fused images
are read by doctors. The intuitive visual effect may influence
the clinical diagnosis.

The objective quantitative indices we select to evalu-
ate the results from two aspects: the amount of salient
visual information transferred from source images to their
fused image and the visual quality of the fused image.
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FIGURE 10. The 20 groups of source multi-modality medical images are used in our experiment. Among each pair, MRI is on the left and CT
on the right.

Larger values indicate more information and better fusion
results. The metrics include:

(1) Mutual Information (MI) [47] measures the mutual
dependence of two images which is defined as:

MI (U ,V ) =
∑
u∈U

∑
v∈V

p(u, v)log2
p(u, v)
p(u)p(v)

(22)

where p(u, v) is the joint probability distribution function,
p(u) and p(v) are the marginal distribution function. The
quality of the fused result with respect to source images can
be calculated as:

QMI = 2
[

MI (A,F)
H (A)+ H (F)

+
MI (B,F)

H (B)+ H (F)

]
(23)

(2) Universal Quality Index (Q0) [48] models distortion as
a combination of three factors: loss of correlation, luminance
and contrast distortion. It is defined as:

Q0
=

σxy

σxσy
·

2x̄ȳ

(x̄)2 + (ȳ)2
·

2σxσy
σ 2
x + σ

2
y

(24)

where x̄ and ȳ mean the average, σx and σy represent the

variance, σxy = 1
N−1

N∑
i=1

(xi − x̄)(yi − ȳ).

(3) Edge-Based SimilarityMeasure (QAB/F ) [49] measures
the similarity between the fused image and source images by
evaluating the amount of edge information transferred in the
fusion process. The QAB/F is defined as:

QAB/F =

M∑
i=1

N∑
j=1

(QAFi,j w
A
i,j + Q

BF
i,j w

B
i,j)

M∑
i=1

N∑
j=1

(wAi,j + w
B
i,j)

(25)

where wXi,j is the weights for QXFi,j , (X = A,B). The def-
inition of QXFi,j is given as QXFi,j = QXFg,i,j · Q

XF
α,i,j where

QXFk,i,j, (k = g, α) presents the similarity of the width and
direction between X and F at location (i, j).

(4) Nonlinear Correlation Information Entropy (NCIE)
[50] has excellent mathematical properties as a measure for
the nonlinear type of correlation of concerned variables:

NCIE = 1+
K∑
i=1

λRi

K
logb

λRi

K
(26)

where λRi (i = 1, . . . ,K ) are the eigenvalues of the nonlinear
correlation matrix R.

(5) Visual Information Fidelity Fusion (VIFF) [51]:

VIFF(I1, . . . , IF )=
∑
k

pk ·

∑
b
FVIDk,b(I1, . . . , IF )∑

b
FVINDk,b(I1, . . . , IF )

(27)

where FVIDk,b and FVINDk,b denote fusion visual infor-
mation with distortion and fusion visual information without
distortion in the bth block at kth sub-band, respectively.

(6) Feature Similarity Index (FSIM) [52] focuses on low-
level features. It calculates the similarity between images
using phase congruency (PC) and gradient magnitude (GM)
information:

FSIM =

∑
x∈�

SL(x) · PCm(x)∑
x∈�

PCm(x)
(28)

where SL(x) = SPC (x) · SG(x). The similarity measure for
PC1(x) and PC2(x) is defined as SPC (x) =

2PC1(x)·PC2(x)+T1
PC2

1 (x)+PC
2
2 (x)+T1

where T1 > 0. Similarly, SG(x) =
2G1(x)·G2(x)+T2
G2
1(x)+G

2
2(x)+T2

.
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FIGURE 11. The evaluation of results about experiments on the relationship between parameters and fusion results. (a) The evaluation results
about the relationship between K value and the fusion result where iteration = 30, α = 1. (b)The evaluation results about the relationship
between α and fusion result where K = 20, iteration = 30. (c)The evaluation results about the relationship between iteration times of S-ADE
algorithm and fusion result (K = 20, α = 1).

TABLE 1. The subjective evaluation criteria.

(7) Information Fidelity Criterion (IFC) [53]:

IFC =
∑

k∈subbands

I (CNk ,k ;DNk ,k |sNk ,k ) (29)

where CNk ,k denotes Nk coefficients form the RF Ck of the
kth sub-band, and similarly for DNk ,k and sNk ,k .
(8) Visual Saliency induced Index (VSI) [54] employed

as a weighting function is closely related to image quality
assessment which reflects the importance of a local region:

VSI =

∑
x∈�

S(x) · VSm(x)∑
x∈�

VSm(x)
(30)

where S(x) = SVS (x) · [SG(x)]α · [SC (x)]β , α and β

are two parameters used to adjust the relative importance
of visual saliency (VS), GM and chrominance features,
SVS (x) =

2VS1(x)·VS2(x)+C1
VS21 (x)+VS

2
2 (x)+C1

and SC (x) =
2M1(x)·M2(x)+C2
M2

1 (x)+M
2
2 (x)+C2

·

2N1(x)·N2(x)+C3
N 2
1 (x)+N

2
2 (x)+C3

whereM and N denote channels of images.

The subjective evaluation criteria are described in
TABLE 1. We invite five experts to evaluate the proposed
method with other methods subjectively. All images are
displayed under the same conditions.

C. PARAMETERS SETTINGS
In order to make the S-ADE model more suitable for the
decomposition of MRI and CT images, we discuss the set-
tings of diffusion function parameters. To improve the com-
putational efficiency of the model, we choose constants

FIGURE 12. The results under synchronized decomposition and
independent decomposition.

as hyperparameters. The experiments are performed on ten
pairs of images. The objective evaluation about experimental
results is shown in Fig. 11.

It is obvious that most scores rise and stabilize gradually
fromK = 0.5 toK = 20, then they slide down slightly except
the IFC and QAB/F in Fig. 11(a). IFC keeps rising and QAB/F

decreases. Both of them flatten gradually, that is, the slope
decreases. Because the value of QAB/F decreases more in CT
image than it rises in MRI image, the average one goes down.
So we decide thatK= 20 in the S-ADEmodel after analyzing
the objective quantitative evaluation.

In order tomaintain the properties of the diffusion function,
α is an odd number. It is set to 1 after analyzing the sensitivity
of the indices to changes of α in Fig.11(b). IFC decreases
more obviously than MI, VSI and QAB/F which rise a little in
α ∈ [1, 3].
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FIGURE 13. The fusion results on first group of MR-T2 image and CT image under 14 different methods.

FIGURE 14. The subjective evaluation on different groups of images.

The evaluation results in Fig.11(c) indicate that most of
the indices rise up slowly before 20 iterations, decline until
30 iterations. Because the details of MRI image increase
less than the lost basic information of CT image during the
iteration process, the scores of FSIM and QAB/F reduce a

little, but not enough to affect the conclusion, the number of
iterations = 30.
Fig. 12 shows the effectiveness in establishing decompo-

sition synchronism using stitching on ten pairs of images
in terms of objective quantitative evaluation. The scores in
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TABLE 2. The objective evaluation of the fusion results of the first group of images.

FIGURE 15. The fusion results on second group of MR-T2 image and CT image under 14 different methods.

TABLE 3. The objective evaluation of the fusion results of the second group of images.

the figure have been normalized in the same way for the
convenience of display. The MI, Q0 and IFC get improved
obviously, NCIE, VIFF and VSI rise a little, but QAB/F and
FSIM reduce slightly. Overall, generating ‘‘common image’’
can ameliorate the fusion effect.

D. COMPARATIVE ANALYSIS AND RESULTS DISCUSSION
In this subsection, we will show seven groups of experi-
mental results about medical multi-modality images fusion.

It consists of four groups of MR-T2 and CT images (MR-
T2/CT), a group of MR-T1 and CT images (MR-T1/CT),
a group of MR-Gad and CT images (MR-Gad/CT) and a
group ofMR-PD and CT images (MR-PD/CT). The proposed
method is compared with 13 fusion methods: CBF [11],
CNN [31], CS-MCA [27], GFF [9], LE [12], LP-SR [24],
MSSF [28], TSIF [29], VSMWLS [30], MSVD [55], CVT
[17], ADKLT [45] and FPDE [46]. The parameters of the
methods above are the default ones from the provided codes.
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FIGURE 16. The fusion results on third group of MR-T2 image and CT image under 14 different methods.

TABLE 4. The objective evaluation of the fusion results of the third group of images.

FIGURE 17. The fusion results on fourth group of MR-T2 image and CT image under 14 different methods.

The first group of MR-T2 image and CT image fusion
results from 14 methods are shown in Fig. 13. First,
we observe the information obtained from CT image, which
highlights bone information. The information in (c) and (f)
is lost a lot because CBF and GFF methods perform well
in details preservation but bad in base information retention.
The results MSVD, ADKLT and FPDE have low contrast as
the fuse rule they use for base layers perform not well. Then

we pay attention to the central of (a). It is obvious that CS-
MCA, LP-SR,MSSF, TSIF and CVT have poor performance.
Combining the above two aspects, there are relatively excel-
lent fusion visual effects in CNN, LE and proposed method
whereas VSMWLS method has slight color distortion in
center. The texture details in the red box are enlarged in
the upper right corner of each image. There is faint texture
information in the white outline in (d) and (g) which may
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TABLE 5. The objective evaluation of the fusion results of the fourth group of images.

FIGURE 18. The fusion results about MR-T1 image (a1) MR-Gad image (a2) MR-PD (a3) and CT image (b) from 14 different methods. (c) CBF
(d) CNN (e) CS-MCA (f) GFF (g) LE (h) LP-SR (i) MSSF (j) TSIF (k) VSMWLS (l) MSVD (m) CVT (n) ADKLT (o) FPDE (p) Proposed.

lead to misdiagnosis as we explained in the previous section.
Besides, (d) and (p) retain more detail structure than (g). The
subjective evaluation results are shown in Fig. 14(a). The bold

in TABLE 2 indicates the highest score in terms of objective
evaluation. It is clear that the fused image obtained by the
proposed method is better than others.
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TABLE 6. The statistical results about objective evaluation indices on different fusion methods.

The second group of MR-T2/CT fusion results are shown
in Fig. 15 which reveals that most fused images preserve the
outline information except for CBF, MSSF, MSVD, CVT,
ADKLT and FPDE. It is because that multiscale transform
based or filter based methods cannot completely extract
the effective information from the base layers. In addition,
the fuse rules used for base layers in these algorithms do
not perform well. Observing the eyes, CNN, CS-MCA,
LE, TSIF, VSMWLS and proposed method perform better.
Further, the texture information marked by red and blue
boxes is enlarged to the corresponding directions. The details
lost in (d), (e), (j) and (g) successively increase, that is,
CNN<CS-MCA<TSIF<LE. However, the proposedmethod
can preservemore details as the anisotropic diffusion function
is sensitive to the texture and the fuse algorithm using com-
mon coefficients has excellent performance. The ‘‘Maximum
Absolute Value’’ rule extracts information from base layers
effectively. The objective evaluation (in TABLE 3) and sub-
jective evaluation (in Fig. 14(b)) indicate that the fused image
obtained by proposed method performs better.

The third group of fused images are shown in Fig. 16. The
result (c) has relatively poor performance in preserving the
information from CT image. The white part, bone informa-
tion is lost a lot. There is color distortion in (l), (m), (n)
and (o) where the skeleton part appears gray in visual. The
texture details in red box are enlarged. It is obvious that there
is noise in LE and MSSF feels blurry. The lines in contours
of CNN, LP-SR and VSMWLS may lead to misdiagnosis.
By observing closely at the enlarged part, our method retains
more details than CS-MCA and TSIF. The evaluation indices
in TABLE 4 illustrate that GFF performs best in QAB/F but
the information at bottom in fused image is partly lost. The
proposed algorithm retains effective information though it
ranks second. In other aspects, our method performs better.
The subjective evaluation in Fig. 14(c) indicates that the
proposed method has stable fusion effect.

The fourth group of MR-T2/CT image fusion results
are shown in Fig. 17. The result (m) has artifacts which
reduce image quality in visual. The (l), (n) and (o) have
lower contrast. Considering about the central part of the

TABLE 7. Average run time of different fusion methods on data set.

image, (c), (e), (f), (h), (i) and (j) lose information to varying
degrees. The details in red box can be observed carefully. The
skeleton information from CT image are retained better in
proposed method, than CNN, LE and VSMWLS. The objec-
tive evaluation in TABLE 5 shows that LE gets the highest
score in Q0. The proposed method is in second position. The
subjective evaluation in Fig. 14(d) shows that the proposed
algorithm has excellent performance in visual.

The average subjective evaluation scores on four groups
of experiments are shown in Fig. 14(e). It is clear that the
proposedmethod has relatively stable performance with good
visual effects. Besides the MR-T2 images, which are used
widely, there are otherMRI images, such asMR-T1,MR-Gad
and MR-PD. The fused images between them and CT images
are shown in Fig. 18. It shows that the proposed method can
perform well.

The statistical results about objective evaluation indices
on 20 groups experimental data are concluded in TABLE 6.
Except for the QAB/F , the proposed method obtains the high-
est scores. For QAB/F , GFF performs best, and our method
takes the second place. In our opinion, the GFF method is
good at preserving the edge information due to its principle of
decomposing images. So it has better performance in QAB/F

but worse in Q0 than our method. In general, the proposed
method based on S-ADE model has the ability to fuse MRI
images and CT images effectively, maintaining more useful
information as well as ensuring the quality of the fused
images.

E. COMPUTATIONAL EFFICIENCY ANALYSIS
All the algorithms are implemented using the
MATLAB 2016b, the simulations are run on Dell Inspiron
3668 with Intel Core CPU 3.0 GHz and 8GB of RAM.
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The computational efficiencies of methods compared above
are concluded in TABLE 7. Among CNN, CS-MCA, GFF,
LE and LP-SR methods, which have excellent performance
in fused images, the CS-MCA method is a time-consuming
one as shown in the table. The CNN model needs amounts
of time to train medical images to improve the quality of
fusion results. The LP-SR method uses a trained dictionary
to realize fusion work. But the time of their preliminary
work is not counted in the running time. The GFF has
higher computational efficiency than our method, which is
higher than LE method. The other fusion algorithms have
shorter running time. However, they perform not well in
fusion results. On the whole, the proposed fusion method
has excellent fusion results with acceptable computational
efficiency.

V. CONCLUSION
In this paper, we propose a medical image fusion method
based on S-ADE model. First, the MRI images and CT
images are decomposed into two layers: base layer and tex-
ture layer. Then, the ‘‘MaximumAbsolute Value’’ rule is used
for the base layer fusion. On the texture layer, we design the
NSMAL fusion rule using common decomposition coeffi-
cients in order to retain more details. In this way, the image
decomposition and fusion process have consistency in identi-
fying textural information, which is beneficial to improve the
quality of the fused image. Simultaneously, the consistency
check using a sliding window is designed for decision map on
texture layer to mitigate the staircase effect. Finally, correct
the fusion results after image reconstruction. In the exper-
iments, we select subjective evaluation and eight different
objective evaluation metrics including MI,Q0,QAB/F , NCIE,
VIFF, FSIM, IFC and VSI. Compared with 13 excellent algo-
rithms, the proposed method gets the highest scores except
for QAB/F . The QAB/F uses the local metric to estimate the
performance of the significant information from the source
images in the fused one. The higher theQAB/F value, themore
the edge information of the fused image. The GFF method
performs better because it belongs to a filtering algorithm
that can maintain edges. Our method is in the second place
with a small score gap. At the same time, the computational
efficiency is acceptable. Overall, the experimental results
demonstrate that the proposed method can maintain more
information from the two source images and preserve the
visual effect of the image comparedwith 13 fusion algorithms
used widely.

In the future, we will work on the research about the
diffusion function design and the combination of neural net-
works method to realize image fusion. At the same time,
we are going to try to improve the computational efficiency.
In addition, the situation of anatomical and function image
fusion would be helpful for clinical diagnosis. The proposed
method can be extended to fuse anatomical and function
imaging modalities via some color space transform methods.
The approach that avoids introducing structural and color
distortion during the fusion process needs further study.

REFERENCES
[1] L. Chang, X. Feng, X. Zhu, R. Zhang, R. He, and C. Xu, ‘‘CT and

MRI image fusion based on multiscale decomposition method and hybrid
approach,’’ IET Image Process., vol. 13, no. 1, pp. 83–88, Jan. 2019.

[2] R. Hou, D. Zhou, R. Nie, D. Liu, and X. Ruan, ‘‘Brain CT and MRI
medical image fusion using convolutional neural networks and a dual-
channel spiking cortical model,’’ Med. Biol. Eng. Comput., vol. 57, no. 4,
pp. 887–900, Apr. 2019.

[3] A. Krishn, V. Bhateja, Himanshi, and A. Sahu, ‘‘Medical image fusion
using combination of PCA and wavelet analysis,’’ in Proc. Int. Conf. Adv.
Comput., Commun. Informat. (ICACCI), Sep. 2014, pp. 986–991.

[4] V. Bhateja, A. Krishn, and A. Sahu, ‘‘Medical image fusion in curvelet
domain employing pca and maximum selection rule,’’ in Proc. ICT, Hyder-
abad, India, 2016, pp. 1–9.

[5] S.Madanala andK. J. Rani, ‘‘PCA-DWTbasedmedical image fusion using
non sub-sampled contourlet transform,’’ inProc. Int. Conf. Signal Process.,
Commun., Power Embedded Syst. (SCOPES), Oct. 2016, pp. 1089–1094.

[6] J. Reena Benjamin and T. Jayasree, ‘‘Improvedmedical image fusion based
on cascaded PCA and shift invariant wavelet transforms,’’ Int. J. Comput.
Assist. Radiol. Surg., vol. 13, no. 2, pp. 229–240, Feb. 2018.

[7] J. Du, W. Li, B. Xiao, and Q. Nawaz, ‘‘Union Laplacian pyramid with
multiple features for medical image fusion,’’ Neurocomputing, vol. 194,
pp. 326–339, Jun. 2016.

[8] A. Sahu, V. Bhateja, A. Krishn, and Himanshi, ‘‘Medical image fusion with
Laplacian pyramids,’’ in Proc. Int. Conf. Med. Imag., m-Health Emerg.
Commun. Syst. (MedCom), Nov. 2014, pp. 448–453.

[9] S. Li, X. Kang, and J. Hu, ‘‘Image fusion with guided filtering,’’ IEEE
Trans. Image Process., vol. 22, no. 7, pp. 2864–2875, Jul. 2013.

[10] W. Li, L. Jia, and J. Du, ‘‘Multi-modal sensor medical image fusion based
on multiple salient features with guided image filter,’’ IEEE Access, vol. 7,
pp. 173019–173033, 2019.

[11] B. K. Shreyamsha Kumar, ‘‘Image fusion based on pixel significance
using cross bilateral filter,’’ Signal, Image Video Process., vol. 9, no. 5,
pp. 1193–1204, Jul. 2015.

[12] Z. Xu, ‘‘Medical image fusion using multi-level local extrema,’’ Inf.
Fusion, vol. 19, pp. 38–48, Sep. 2014.

[13] R. Vijayarajan and S. Muttan, ‘‘Discrete wavelet transform based principal
component averaging fusion for medical images,’’ AEU Int. J. Electron.
Commun., vol. 69, no. 6, pp. 896–902, Jun. 2015.

[14] V. Bhavana and H. K. Krishnappa, ‘‘Multi-modality medical image
fusion using discrete wavelet transform,’’ Procedia Comput. Sci., vol. 70,
pp. 625–631, Jan. 2015.

[15] X. Xu, Y. Wang, and S. Chen, ‘‘Medical image fusion using discrete
fractional wavelet transform,’’ Biomed. Signal Process. Control, vol. 27,
pp. 103–111, May 2016.

[16] F. E. Ali, I. M. El-Dokany, A. A. Saad, and F. E. Abd El-Samie, ‘‘A curvelet
transform approach for the fusion of MR and CT images,’’ J. Modern Opt.,
vol. 57, no. 4, pp. 273–286, Feb. 2010.

[17] F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, ‘‘Remote sensing
image fusion using the curvelet transform,’’ Inf. Fusion, vol. 8, no. 2,
pp. 143–156, Apr. 2007.

[18] G. Bhatnagar, Q. M. J. Wu, and Z. Liu, ‘‘Directive contrast based multi-
modal medical image fusion in NSCT domain,’’ IEEE Trans. Multimedia,
vol. 15, no. 5, pp. 1014–1024, Aug. 2013.

[19] Z. Zhu,M. Zheng, G. Qi, D.Wang, andY. Xiang, ‘‘A phase congruency and
local Laplacian energy based multi-modality medical image fusion method
in NSCT domain,’’ IEEE Access, vol. 7, pp. 20811–20824, 2019.

[20] M. M. I. Ch, M. M. Riaz, N. Iltaf, A. Ghafoor, and A. Ahmad,
‘‘Weighted image fusion using cross bilateral filter and non-subsampled
contourlet transform,’’ Multidimensional Syst. Signal Process., vol. 30,
no. 4, pp. 2199–2210, Oct. 2019.

[21] X. Liu, W. Mei, and H. Du, ‘‘Structure tensor and nonsubsampled shearlet
transform based algorithm for CT and MRI image fusion,’’ Neurocomput-
ing, vol. 235, pp. 131–139, Apr. 2017.

[22] P. Ganasala and A. D. Prasad, ‘‘Medical image fusion based on frei-chen
masks in NSST domain,’’ in Proc. 5th Int. Conf. Signal Process. Integr.
Netw. (SPIN), Feb. 2018, pp. 619–623.

[23] R. Singh and A. Khare, ‘‘Fusion of multimodal medical images using
daubechies complexwavelet transform—Amultiresolution approach,’’ Inf.
Fusion, vol. 19, pp. 49–60, Sep. 2014.

[24] Y. Liu, S. Liu, and Z. Wang, ‘‘A general framework for image fusion based
on multi-scale transform and sparse representation,’’ Inf. Fusion, vol. 24,
pp. 147–164, Jul. 2015.

VOLUME 8, 2020 91349



R. Zhu et al.: MRI and CT Medical Image Fusion

[25] H. Li, X. He, D. Tao, Y. Tang, and R. Wang, ‘‘Joint medical image fusion,
denoising and enhancement via discriminative low-rank sparse dictionaries
learning,’’ Pattern Recognit., vol. 79, pp. 130–146, Jul. 2018.

[26] J.-J. Zong and T.-S. Qiu, ‘‘Medical image fusion based on sparse repre-
sentation of classified image patches,’’ Biomed. Signal Process. Control,
vol. 34, pp. 195–205, Apr. 2017.

[27] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, ‘‘Medical image fusion via
convolutional sparsity based morphological component analysis,’’ IEEE
Signal Process. Lett., vol. 26, no. 3, pp. 485–489, Mar. 2019.

[28] D. P. Bavirisetti and R. Dhuli, ‘‘Multi-focus image fusion using multi-scale
image decomposition and saliency detection,’’ Ain Shams Eng. J., vol. 9,
no. 4, pp. 1103–1117, Dec. 2018.

[29] D. P. Bavirisetti and R. Dhuli, ‘‘Two-scale image fusion of visible and
infrared images using saliency detection,’’ Infr. Phys. Technol., vol. 76,
pp. 52–64, May 2016.

[30] J. Ma, Z. Zhou, B. Wang, and H. Zong, ‘‘Infrared and visible image fusion
based on visual saliencymap andweighted least square optimization,’’ Infr.
Phys. Technol., vol. 82, pp. 8–17, May 2017.

[31] Y. Liu, X. Chen, J. Cheng, and H. Peng, ‘‘A medical image fusion method
based on convolutional neural networks,’’ in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Xi’an, China, Jul. 2017, pp. 1–7.

[32] K.-J. Xia, H.-S. Yin, and J.-Q. Wang, ‘‘A novel improved deep convolu-
tional neural network model for medical image fusion,’’ Cluster Comput.,
vol. 22, no. S1, pp. 1515–1527, Jan. 2019.

[33] J. Wang, X. Li, Z. Wang, H. Duan, and X. Zhang, ‘‘Exposure correc-
tion using deep learning,’’ J. Electron. Imag., vol. 28, no. 3, May 2019,
Art. no. 033003.

[34] Z. Wang, X. Li, H. Duan, X. Zhang, and H. Wang, ‘‘Multifocus image
fusion using convolutional neural networks in the discrete wavelet trans-
form domain,’’Multimedia Tools Appl., vol. 78, no. 24, pp. 34483–34512,
Dec. 2019.

[35] J. Ma, P. Liang, W. Yu, C. Chen, X. Guo, J. Wu, and J. Jiang, ‘‘Infrared
and visible image fusion via detail preserving adversarial learning,’’ Inf.
Fusion, vol. 54, pp. 85–98, 2020.

[36] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, ‘‘FusionGAN: A generative
adversarial network for infrared and visible image fusion,’’ Inf. Fusion,
vol. 48, pp. 11–26, Aug. 2019.

[37] J. Ma, H. Xu, J. Jiang, X. Mei, and X.-P. Zhang, ‘‘DDcGAN:
A dual-discriminator conditional generative adversarial network for
multi-resolution image fusion,’’ IEEE Trans. Image Process., vol. 29,
pp. 4980–4995, 2020.

[38] J. Ma, C. Chen, C. Li, and J. Huang, ‘‘Infrared and visible image fusion
via gradient transfer and total variation minimization,’’ Inf. Fusion, vol. 31,
pp. 100–109, Sep. 2016.

[39] E. Daniel, J. Anitha, and J. Gnanaraj, ‘‘Optimum Laplacian wavelet mask
based medical image using hybrid cuckoo search—Grey wolf optimization
algorithm,’’ Knowl.-Based Syst., vol. 131, pp. 58–69, Sep. 2017.

[40] C. S. Asha, S. Lal, V. P. Gurupur, and P. U. P. Saxena, ‘‘Multi-modal medi-
cal image fusion with adaptive weighted combination of NSST bands using
chaotic grey wolf optimization,’’ IEEE Access, vol. 7, pp. 40782–40796,
2019.

[41] V. S. Parvathy and S. Pothiraj, ‘‘Multi-modalitymedical image fusion using
hybridization of binary crow search optimization,’’ Health Care Manage.
Sci., pp. 1–9, Jul. 2019.

[42] R. R. Nair, E. David, and S. Rajagopal, ‘‘A robust anisotropic diffusion
filter with low arithmetic complexity for images,’’ EURASIP J. Image
Video Process., vol. 2019, no. 1, p. 48, Dec. 2019.

[43] M. Al-nasrawi, G. Deng, and W. Waheed, ‘‘Structure extraction of images
using anisotropic diffusion with directional second neighbour deriva-
tive operator,’’ Multimedia Tools Appl., vol. 78, no. 5, pp. 6385–6407,
Mar. 2019.

[44] P. Perona and J. Malik, ‘‘Scale-space and edge detection using anisotropic
diffusion,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7,
pp. 629–639, Jul. 1990.

[45] D. P. Bavirisetti and R. Dhuli, ‘‘Fusion of infrared and visible sensor
images based on anisotropic diffusion and karhunen-loeve transform,’’
IEEE Sensors J., vol. 16, no. 1, pp. 203–209, Jan. 2016.

[46] D. P. Bavirisetti, G. Xiao, and G. Liu, ‘‘Multi-sensor image fusion based
on fourth order partial differential equations,’’ in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Xi’an, China, Jul. 2017, pp. 1–9.

[47] G. Qu, D. Zhang, and P. Yan, ‘‘Information measure for performance of
image fusion,’’ Electron. Lett., vol. 38, no. 7, p. 313, 2002.

[48] Z. Wang and A. C. Bovik, ‘‘A universal image quality index,’’ IEEE Signal
Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[49] C. S. Xydeas and V. Petrovic, ‘‘Objective image fusion performance mea-
sure,’’ Electron. Lett., vol. 36, no. 4, pp. 308–309, Feb. 2000.

[50] Q. Wang, Y. Shen, and J. Jin, ‘‘Performance evaluation of image fusion
techniques,’’ Image Fusion, Algorithms Appl., vol. 19, pp. 469–492,
Jun. 2008.

[51] Y. Han, Y. Cai, Y. Cao, and X. Xu, ‘‘A new image fusion performance
metric based on visual information fidelity,’’ Inf. Fusion, vol. 14, no. 2,
pp. 127–135, Apr. 2013.

[52] L. Zhang, L. Zhang, X. Mou, and D. Zhang, ‘‘FSIM: A feature similarity
index for image quality assessment,’’ IEEE Trans. Image Process., vol. 20,
no. 8, pp. 2378–2386, Aug. 2011.

[53] H. R. Sheikh, A. C. Bovik, and G. de Veciana, ‘‘An information fidelity
criterion for image quality assessment using natural scene statistics,’’ IEEE
Trans. Image Process., vol. 14, no. 12, pp. 2117–2128, Dec. 2005.

[54] L. Zhang, Y. Shen, and H. Li, ‘‘VSI: A visual saliency-induced index
for perceptual image quality assessment,’’ IEEE Trans. Image Process.,
vol. 23, no. 10, pp. 4270–4281, Oct. 2014.

[55] V. P. S. Naidu, ‘‘Image fusion technique using multi-resolution singular
value decomposition,’’ Defence Sci. J., vol. 61, no. 5, p. 479, 2011.

RUI ZHU received the B.S. degree in software
engineering and the master’s degree from Jilin
University, in 2016, where she is currently pursu-
ing the Ph.D. degree. Her research specializes in
image processing and deep learning.

XIONGFEI LI (Member, IEEE) received the B.S.
degree in computer software fromNanjing Univer-
sity, in 1985, theM.S. degree in computer software
from the Chinese Academy of Sciences, in 1988,
and the Ph.D. degree in communication and infor-
mation system from Jilin University, in 2002.
Since 1988, he has been a member of the faculty
of the Computer Science and Technology, Jilin
University, Changchun, China. He is currently a
Professor of computer software and theory with

Jilin University. He has authored more than 60 research articles. His research
interests include data mining, intelligent network, image processing, and
analysis.

XIAOLI ZHANG received the B.S. degree in com-
puter science and engineering fromDalian Nation-
alities University, in 2010, and the Ph.D. degree
in computer science and technology from Jilin
University, in 2016. He is currently an Associate
Professor with the College of Computer Science
and Technology, Jilin University. He has authored
more than 30 research articles. His research inter-
ests include image fusion and machine learning.

MINGRUI MA received the B.S. degree from Jilin
University, in 2018, where he is currently pursuing
the master’s degree. His research interests include
image fusion and image enhancement.

91350 VOLUME 8, 2020


