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ABSTRACT In order to achieve selective ground fault protection for bus-connected Powerformers and
improve the reliability of the protection scheme, this paper presents a novel stator single-line-to-ground
(SLG) fault protection scheme for bus-connected Powerformers based on S-transform (ST) and bagging
ensemble learning algorithm. The scheme utilizes ST to decompose the zero-sequence current signals
acquired from the Powerformer terminal to obtain the amplitude-time-frequency matrix. Then, fault features
extraction is presented, and three features including the transient energy, the comprehensive correlation
coefficient, and the zero-sequence active power are discussed and selected as feature vectors. The calculated
data set is then extracted from feature vectors and used as inputs to the bagging ensemble learning algorithm
to detect faults. Simulation results have shown that, under different fault conditions, the novel scheme can
detect in which Powerformer a stator SLG fault is occurring and can detect internal faults from external
faults reliably even if the fault resistance is at 8000 �. The proposed protection scheme does not need to set
the threshold value and has noise-tolerant ability. Furthermore, the proposed technique performs better than
support vector machine (SVM), random forest (RF) and k-Nearest Neighbor (KNN) techniques in detecting
faults.

INDEX TERMS Powerformer, protection scheme, stator single-line-to-ground fault, S-transform, bagging
ensemble learning.

I. INTRODUCTION
Electric utilities are increasingly being asked to minimize
blackouts as most of economic losses of the customer due to
longer period of interruptions caused by faults. In this context,
the development of fast and reliable power system fault pro-
tection technology is a problem that has been extensively
studied for decades in the world.

The SLG fault is the most frequent of many fault types,
which seriously affects the operating state of the power equip-
ment and the stability of the power grid, so this paper makes
an in-depth study of SLG fault. Particularly, when a SLG fault
occurs on the stator winding of Powerformer (high terminal
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voltage generator, in theory, up to 400kV), the fault tends to
develop intomore severe turn-to-turn faults or phase-to-phase
faults, and even lead to cable explosion and Powerformer
damage, thereby reduces the reliability of the grid power
supply and cause huge economic losses. Therefore, it is of
great significance to study the stator SLG fault protection of
Powerformer.

Nowadays, many protection schemes only for stator SLG
fault for conventional generator have been developed. The
zero-sequence fundamental over-voltage relay has blind
zones near the generator neutral, so it can only be used to
determine the fault at the generator terminal [1], [2]. The
sub-harmonic voltage injection scheme with neutral ground-
ing signal [3] and the third-harmonic voltage scheme [4]
are important schemes to solve the blind zones. But the

88322 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9575-3712
https://orcid.org/0000-0001-6188-0265


Y. Wang et al.: Stator SLG Fault Protection for Bus-Connected Powerformers

former requires additional sub-harmonic power supplies,
which increases the investment costs for the implementation
of protection, while the latter achieves certain applications.
Reference [5] proposed an adaptive stator SLG fault pro-
tection scheme based on third-harmonic differential voltage,
which can realize the identification of stator SLG fault of
generator and cover 100% of the stator windings. However,
the protection based on the voltage signal cannot achieve
selective protection, because each generator that is con-
nected in parallel with the faulty generator has the same
voltage.

In electric power plants, multiple Powerformers are con-
nected to the same bus in parallel. If a stator SLG fault
occurs in one of the bus-connected Powerformers, the pro-
tection scheme should detect in which Powerformer the
ground fault is occurring. In order to solve this problem
for bus-connected Powerformers, many protection schemes
for stator SLG fault have been proposed and applied. Novel
criterions were proposed in [6], which based on the direc-
tion of leakage currents, the magnitude of leakage currents,
and the fault point energy dissipation, respectively. However,
these independent protection schemes use only one fault fea-
ture as a criterion, and their reliability is low. On the basis
of [6], in order to fuse as much fault features as possible to
improve the reliability of the protection scheme, [7] and [8]
further proposed protection schemes of the stator SLG fault
for Powerformer based on hierarchical clustering and fuzzy
clustering, respectively. The magnitude and direction of the
zero-sequence current, the magnitude and direction of the
leakage current are extracted as fault features and are used as
inputs to the classification model. The reliability of the pro-
tection schemes has improved, but above-mentioned protec-
tion schemes have not verified the protection accuracy with
measurement noises. A reliable solution for stator SLG fault
protection for bus-connected Powerformer with selectivity
has still not been found.

Nowadays, some classic single machine learning algo-
rithms have achieved good results in fault detection, diagnosis
and protection of power system, such as SVM [9], RF [10],
KNN [11]. If these methods are applied to generator protec-
tion, it is expected to improve the performance of generator
protection. However, the use of a single method may lead
to poor generalization performance due to randomness and
interference [12]. Fortunately, [13] and [14] have shown that
the ensemble learning classification technique has advantages
over single algorithm in improving the accuracy of fault
protection and enhancing anti-interference ability. In order
to improve the fault protection accuracy under unfavorable
conditions (with noise, via high fault resistance), a fault
protection technology based on ensemble learning classifier
(bagging [15]) is proposed in this paper. With the help of
bagging, three base classifiers of SVM, RF, and KNN are
trained for different sampling subsets. Then the results of
each basic classifier are voted to obtain a strong classifier to
maximize the accuracy of the stator SLG fault protection for
Powerformer.

In this paper, a novel stator SLG fault protection scheme
for Powerformer based on ST and bagging ensemble learning
algorithm is proposed. The main contributions of the paper
are as follows:

(1) The fault features generated by Powerformer is
non-stationary. We find that ST is more suitable for
Powerformer fault feature extraction than the Short-time
Fourier Transform (STFT) with fixed window width and
the Wavelet Transform (WT) with mother wavelet to be
selected. In this paper, ST is used to decompose the
non-stationary fault signals including the phase information
and the absolutely-referenced frequency information in full
time-frequency range, which can extract fault features more
effectively.

(2) Powerformer protection is to judge whether the equip-
ment is faulty or not, which can be regarded as a classifica-
tion problem. Among the existing classification algorithms,
ensemble learning algorithms can improve the accuracy of
fault classification, among which bagging is a well-known
representative of ensemble learning algorithms. Bagging can
train different sample subsets with the given base classifiers,
and then vote the results of each base classifier to get a strong
classifier. This paper uses the bagging ensemble learning
algorithm for fault identification to improve the performance
of the protection scheme. In addition, the classification tech-
nology of bagging ensemble learning is based on the differ-
ence of feature vectors, so the proposed protection scheme
does not need to set threshold.

(3) When the fault resistance reaches 5000 �, the fault
detection accuracy of general protection schemes is low.
While the proposed protection scheme can correctly identify
the fault with a fault resistance of 8000 �.

(4) The proposed technique shows better generalization
ability and noise-tolerant ability than SVM, RF and KNN
techniques in detecting faults.

This paper is organized as follows: In Section II, the prin-
ciple of ST and bagging ensemble learning algorithm are
introduced. In Section III, the fault features of stator SLG
fault for Powerformer are analyzed, and the extraction pro-
cess of the feature vectors is introduced. Next, in Section IV,
the protection principle of stator SLG fault for Powerformers
is proposed. Simulation experiments to verify the proposed
scheme are shown in Section V, and the conclusions are given
in Section VI.

II. BACKGROUND THEORIES
A. S-TRANSFORM
The fault information extracted from the stator SLG fault
is generally a non-stationary signal, which requires signal
processing techniques to transform the measured data into
a more informative analysis domain to reveal the hidden
features of the fault. Fourier Transform (FT) and Fast Fourier
Transform (FFT) are the first generation of signal processing
tools, which can effectively analyze stationary signals, but
when processing non-stationary signals, error information
will be generated due to the loss of time data. In response
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to this, STFT decomposes the entire time-domain process
into multiple small processes (windows) of equal width. Each
small process is approximately stationary, and then FT can
be used to capture the change of signal frequency with time.
But for time-varying, non-stationary signals, the high fre-
quency is suitable for narrow windows while the low fre-
quency is suitable for wide windows. However, the window
of STFT is fixed, so the STFT still cannot capture the change
of frequency of time-varying signal with time. After that,
Wavelet Transform (WT) appears, it inherits and develops the
idea of STFT signal analysis and processing, and overcomes
the shortcoming that the window width does not change
with frequency. It is an ideal tool for signal time-frequency
analysis and processing. However, WT-based fault detection
technology also has the following disadvantages: (1) Narrow
high-frequency support range; (2) Subjective choice of
mother wavelet; (3) Lack of feature resolution [16].

ST can solve aforementioned shortcomings and deal with
non-stationary signals [17]. It introduces a Gaussian window
function whose window width changes with frequency, so as
to obtain a time-frequency matrix corresponding to the
frequency. It has the advantages of linearity, locality, lossless
reversibility and good time-frequency resolution. Therefore,
this paper utilizes ST to extract the fault features.

ST is developed by the STFT of the normalized Gaussian
window and the phase-corrected WT. The ST of a time signal
x(t) is defined as:

S(τ, f ) =
∫
∞

−∞

x(t)w(t − τ, f )e−j2π ftdt (1)

w(t − τ, f ) =
|f |
√
2π

e
−f 2(t−τ )2

2 (2)

where w(t − τ, f ) is the Gaussian window, τ and f are
the transform time and frequency coordinates, and j is the
imaginary unit. It is important to note that the window also
depends on f , causing the width of the window to decrease
with increasing frequency [18]. So, it can solve the problem of
window function selection and overcome the disadvantages
of fixed window width.

Since ST is established on the premise of the FT, the
discrete S-transform (DST) can be obtained by FFT. Letting
τ → kT , f → n/NT , DST representations are available
from (1) and (2) [19]:

S
[
kT ,

n
NT

]
=

N−1∑
m=0

X
[
n+ m
NT

]
e(
−2π2m2

n2
+
j2πmk
N )

, (n 6= 0)

S [kT , 0]=
1
N

N−1∑
m=0

x(
m
NT

), (n = 0)

(3)

where T is the sampling interval, N is the number of sam-
pling points, n is the frequency parameter, k , m, n = 0, 1,
2, . . . ,N−1. X

[ n+m
NT

]
is obtained by shifting the input signal

x(t) by discrete FFT.

Thus, the complex amplitude-time-frequency matrix of
discrete signal can be obtained by (3). Notations (N /2+1) =
number of rows in the matrix S, which corresponds to the
sampling frequency;N = number of columns in thematrix S,
which corresponds to the point of sampling time. When fs
is the actual sampling frequency, the frequency difference
between two adjacent rows is:

1f =
fs
N

(4)

B. BAGGING ENSEMBLE LEARNING ALGORITHM
Fault detection, diagnosis and protection usual use single
machine learning algorithms, including SVM, RF and KNN.
These single algorithms achieve encouraging results and have
the ability to deal with most protection problems, by cor-
rectly discriminating useful information contained within
the fault signals from the unwanted information includ-
ing healthy signals or disturbing signals [6]. If the ensem-
ble learning classification technology is further adopted,
the accuracy of fault detection, diagnosis and protection will
be improved [12]–[14]. Bagging is a famous representa-
tive of parallel ensemble learning algorithms. It trains dif-
ferent sample subsets with the given base classifiers, and
then votes the results of each base classifier to get a strong
classifier [20]–[22]. Bagging is based on bootstrap sampling
with replacement. Namely, the bagging algorithm iteratively
selects a certain number of training samples randomly with
replacement from the original data set. And after randomly
selecting sample, the sample is immediately put back to
the original data set and for the next selection again. For a
given set D containing p samples, r-round sampling is per-
formed, and q data (q ≤ p) are randomly selected per round,
thereby forming r sampling subsets (D1, D2, D3, . . . ,Dr ).
Base classifiers hg(x, Dr ) for each of the r sample subsets
are selected and trained, and then integrated into a strong
classifier H (x, D). Since the sample subsets are different,
the base classifiers trained for each sample subset are also
different. The sampling with replacement ensures that there
are repeated samples in multiple sample subsets to avoid poor
training results.

The voting scheme is commonly used to integrate multiple
base classifiers, following the principle that the minority
obeys the majority. The majority voting rule takes the labels
classified by the most classifier as the labels of the samples
to be classified. The Equation is (5):

H (x) = c(argmax
Z

∑r
g=1 h

Z
g (x))

(5)

where cZ = {c1, c2, . . . , cL} is the labels set; Z ∈

{1, 2, . . . ,L}; L is the number of class labels, r is the number
of base classifiers; hZg (x) is the output of hg on the class
label cZ ; g = 1, 2, . . . , r .
If the number of votes (majority) obtained by multiple

labels is the same, one of the labels is generally randomly
selected as the final result. The process of bagging ensemble
learning algorithm is implemented as shown in Fig. 1.
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FIGURE 1. Process of bagging ensemble learning algorithm.

SVM, RF and KNN have achieved positive results in
fault detection, diagnosis and protection of power system.
Therefore, this paper first selects these three algorithms
as the base classifiers of bagging algorithm and combines
them into an ensemble classifier for fault discrimination of
Powerformers.

III. FAULT FEATURES EXTRACTION
Powerformers are different from conventional generators in
that their capacitance to ground is much larger than that of
conventional generators, resulting in capacitance current is
dozens of times of the conventional generator, so some weak
information can be measured [6]. The information generated
by the fault can be used to construct the feature vectors to
reflect the operating state of Powerformers. The fault features
generated by Powerformers is non-stationary. And the fault
features in previous models ([6]–[8]) easily affected by fault
resistance and fault locations. In order to solve this problem,
ST is used to decompose the non-stationary fault signals
(the zero-sequence current I0) including the phase informa-
tion and the absolutely-referenced frequency information in
full time-frequency range, which can extract fault features
more effectively. The transient energy, the comprehensive
correlation coefficient and the zero-sequence active power
of each Powerformer are extracted as fault features in the
proposed protection scheme. And the contributions of this
paper are emphasized in the Introduction.

A. TRANSIENT ENERGY EXTRACTED BY ST
The transient energy of the faulty Powerformer is much larger
than that of the non-fault Powerformers, so the transient
energy can be selected as the fault feature. The zero-sequence
current of Powerformer is decomposed by the ST to obtain
the complex amplitude-time-frequency matrix S. Then the
energy of frequency band A(i, l) (the i-th row in matrix A)
of each Powerformer is calculated, and the maximum energy
of frequency band is selected as the transient energy of the
Powerformer. The following is the calculation process of
transient energy extracted by ST.

The complex amplitude-time-frequency matrix S is
obtained by ST. Sil is the element of the i-th row and l-column
of the matrix S, whose real part is X and the imaginary part
is Y correspond to the l-th time period at the i-th frequency.
Its magnitude ali is defined as:Ail = ali = |Sil | ∗3

3 = sign(arctan
Y
X
)

(6)

where 3 represents the phase polarity at time-frequency,
i = 1, 2, 3, . . . ,N/2+ 1; l = 1, 2, 3, . . . ,N .
All of Ail are calculated according to (6) to form the

amplitude-time-frequency matrix A:

A =



a11 · · · al1 · · · aN1
...

...
...

a1i · · · ali · · · aNi
...

...
...

a1N
2 +1

alN
2 +1

aNN
2 +1


(7)

Fig. 2 (a) and (b) show the three-dimensional graphs
of the amplitude-time-frequency matrix A of the faulty
Powerformer and the non-fault Powerformer, respectively.

FIGURE 2. Three-dimensional graphs of the amplitude-time-frequency
matrix A: (a) the faulty Powerformer; (b) the non-fault Powerformer.
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It can be seen that the frequency bands of the former and the
latter are significantly different.

Letting the transient energy of the Powerformer η be Eη,
and the Equation is as follows:

Eη(i) =
N∑
l=1

|Ail |2

Eη = max(Eη(i)), i = [1,
N
2
+ 1]

(8)

where Eη(i) is the energy of frequency band (the i-th row
elements in matrix A), and Eη is the maximum value of Eη(i)
in matrix A.
In order to eliminate the discrepancies caused by the

measurement at different scales, the transient energy can be
normalized at the same proportional scale as:

e =
Eη
J∑
η=1

Eη

(9)

where J is the number of Powerformers connected in parallel

in the system (J ≥ 3).
J∑
η=1

Eη is the sum of the transient

energy of J Powerformers.
Therefore, in case of internal fault, the transient energy of

the fault Powerformer is greater than that of the non-fault
Powerformers, and their values range from 0 to 1. While the
fault occurs in external system, the transient energy of all
Powerformers are roughly equal, close to 1/J . It can be used
as the criterion for Powerformer protection scheme.

B. COMPREHENSIVE CORRELATION COEFFICIENT OF ST
In the process of modeling, voltage and current signals were
extracted from the sensor, and all classifications of signals
(including steady-state & transient components, fundamental
& harmonic components, active & reactive components,
fault components of each phase, sequence components) are
taken as artificial features to establish the criterion. And then
base on the correlation analysis, the correlation coefficient
of the characteristic frequency band is selected for fault
discrimination of Powerformers. In order to better reflect the
difference between the amplitude-time-frequencymatrixes of
Powerformers, the correlation coefficient is defined.
According to Section IV A, the frequency band A(i, l)
with the maximal energy is calculated. Then calculate
M = argmax

i∈[1,N/2+1]
(Eη(i)).

TheM-th row of matrix A corresponds to the characteristic
frequency band. This characteristic frequency band A(M , l)
is used as the dominant frequency vector for each Power-
former. Then the defined correlation coefficient is calculated
as follows:

Rηβ =

N∑
l=1

Aη(M , l)Aβ (M , l)√
N∑
l=1

A2η(M , l)
N∑
l=1

A2β (M , l)

(10)

where Rηβ represents the correlation coefficient between
Powerformer η and Powerformer β. Aη(M , l) and Aβ (M , l)
are the dominant frequency vectors of Powerformer η and
Powerformer β, respectively.

Since the inductive current cannot be abruptly changed
at the initial stage of the fault, the fault current cannot be
fully compensated by Petersen coil. Therefore, in the resonant
grounding system, the characteristics of the zero-sequence
current component at the initial stage of the fault are mainly
determined by the transient capacitor current component.
At this time, the magnitude and direction of the transient
zero-sequence current component of the faulty Powerformer
and of the non-fault Powerformers are quite different, while
the difference between that of the non-fault Powerformers
is relatively small. As a result, the correlation coefficient
between the faulty Powerformer and the non-fault Pow-
erformer is close to −1, and the correlation coefficient
among the non-fault Powerformers is close to 1. In the
high-resistance grounding system, the current component of
the faulty Powerformer and of non-fault Powerformer is at a
certain angle difference, but still meet the above correlation
coefficient relationship.

In order to more intuitively reflect the differences
of Powerformers, this paper defines the comprehensive
correlation coefficient of Powerformer η as follows:

ρ =
1

J − 1
(
J∑
β=1

Rηβ − 1) =
1

J − 1

J∑
β=1,β 6=η

Rηβ (11)

where
J∑

β=1,β 6=η
Rηβ is the sum of the correlation coeffi-

cients between Powerformer η and other Powerformers in the
system. It can ensure that the correlation coefficient between
the Powerformer η and other Powerformers in the system can
be effectively calculated.

After a stator SLG fault occurs in power system, the com-
prehensive correlation coefficient of the faulty Powerformer
is close to −1, and that of the non-fault Powerformers is
close to 1 − 2

/
(J − 1). It can be used as the criterion for

Powerformer protection scheme.

C. ZERO-SEQUENCE ACTIVE POWER
The zero-sequence active power is the integral average of
zero sequence current and zero sequence voltage in a power
frequency cycle (T1). The expression is as follows:

1Pη =
1
T

∫ t+T1

t
1U0(t)1I0η(t)dt

1U0(t) = U0(t)− U0(t − 2T1)
1I0η(t) = I0η(t)− I0η(t − 2T1)

(12)

where,1Pη,1U0(t) and1I0η(t) are the average active power
fault component, the zero-sequence voltage fault component
and the zero-sequence current fault component in the terminal
of Powerformer η, respectively.

It can be known from (12) that the difference of 1Pη
in Powerformers connected in parallel is mainly reflected
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by1I0η(t). However, the magnitude of zero-sequence current
of the faulty Powerformer is greater than the sum of non-fault
Powerformers, and the direction of zero-sequence current of
the former is different from that of the latter.

Then, the zero-sequence active power of Powerformer η
can be defined:

λ =
1Pη

J∑
η=1

∣∣1Pη∣∣ (13)

where
J∑
η=1

∣∣1Pη∣∣ is the sum of the absolute value of

zero-sequence active power of J Powerformers. Therefore,
it can be known that the value of the zero-sequence active
power of the faulty Powerformer is in the range of 0 to 1,
while the value of zero-sequence active power of the non-fault
Powerformers is in the range of -1 to 0. It can also be used as
the criterion for Powerformer protection scheme.

D. EXTRACTION PROCESS OF THE FEATURE VECTORS
The above three fault features can constitute a feature vector
x = (e, ρ, λ), which represents the current operating state
of Powerformers. For each fault, each Powerformer in the
system can obtain a feature vector, and a data set of feature
vectors can be formed. The extraction process of the fea-
ture vectors is shown in Fig. 3. Where K is the number of
feature vector samples, xK is the K-th feature vector sample.

FIGURE 3. The extraction process of the feature vectors.

IV. PROTECTION PRINCIPLE WITH S-TRANSFORM
AND BAGGING ENSEMBLE LEARNING
FOR POWERFORMERS
The proposed protection scheme is suitable for a system with
three or more bus-connected Powerformers (J ≥ 3). And
as long as the parameters of the parallel Powerformers are
similar, the proposed scheme is suitable for various types
of Powerformers. Fig. 4 shows the system model for J
Powerformers connected in parallel. The fault resistance is
set from 5 to 8000 �, and the neutral point of Powerformers
is grounded by high-resistance or reactance, which helps
to form training and test data sets for the bagging ensem-
ble learning algorithm. The following five steps illustrate
the principle of the stator SLG fault protection scheme for
Powerformers.

Step1: The zero-sequence voltage of the system is mea-
sured from the voltage transformer (VT) connected to the
busbar to determine whether a SLG fault occurs in the system.

FIGURE 4. System model for Powerformers connected in parallel.

FIGURE 5. Zero-sequence current waveform of Powerformers. Note: a
parallel system with three Powerformers is taken as an example (fault
started at 0.055s).

Step2: After detected the SLG fault in the system, the
zero-sequence voltage and the zero-sequence current of Pow-
erformers are sampled. Fig. 5 shows the zero-sequence cur-
rent waveform of three Powerformers when stator SLG faults
occur in Powerformer 1 (This paper uses the parameter setting
in the ATP-EMTP simulation software to set the switch to
close at 0.055s for controlling the level of current). The direc-
tion of the zero-sequence current of the faulty Powerformer
and the normal Powerformers is almost opposite, and the
magnitude of the zero-sequence current is greatly different.

Step3: The zero-sequence current in the first quarter of
the power frequency cycle (T1/4) after the fault is decom-
posed by ST. And all the amplitude-time-frequency ele-
ments are calculated according to (6) and (7) to form the
amplitude-time-frequency matrix A. Then the ST transient
energy e, the comprehensive correlation coefficient ρ and the
zero-sequence active power λ are calculated according to (9),
(11) and (13), respectively.

VOLUME 8, 2020 88327



Y. Wang et al.: Stator SLG Fault Protection for Bus-Connected Powerformers

Step4: According to the Fig. 3, the above three fault fea-
tures obtained in Step3 constitute the data set of fault feature
vectors.

Step5: The final step is utilizing bagging ensemble learn-
ing algorithm for fault protection. In this scheme, the data
set is divided into training set (70% of the data) and test
set (the rest 30% of the data), and different base classifiers
SVM, RF and KNN are used for training, then the output
results are voted to get the final labels. Finally, the fault
protection result is output, that is, the operating state of
Powerformers is judged: fault (1), non-fault (0), and external
fault (2).

The proposed scheme generates different testing data sets
considering the effects of measurement noise to test the
performance of the bagging ensemble learning algorithm.
Fig. 6 shows the complete flow chart of the proposed fault
protection scheme.

FIGURE 6. Flow chart of the stator SLG fault protection scheme.

V. SIMULATION ANALYSIS
A. SIMULATION MODEL
The simulation model of the stator SLG fault of Powerformer
is built by ATP-EMTP. Three Powerformers connected in par-
allel are directly connected to the external system of the grid
is taken as an example. The equivalent circuit of capacitance
of the Powerformer winding is shown in Fig. 7. One portion
αCg of the total capacitance to ground of the winding Cg can

FIGURE 7. Equivalent circuit of capacitance of the Powerformer winding.

FIGURE 8. Stator winding model of Powerformer 1 and an internal stator
SLG fault at 25% of phase c.

be associated with the voltage at the generator neutral of the
phase windingwhile the rest (1−α)Cg, can be associated with
the voltage at the generator terminal of the winding [23], [24].
In addition, the stator winding model of each Powerformer is
established, and each phase of the stator winding is divided
into 4 units. The electromotive force and resistance of the
stator winding are equally divided into each unit circuit,
as shown in Fig. 8. An internal stator SLG fault occurs at
the stator winding in phase c of Powerformer 1. Where K1
and K2 are used to switch the neutral grounding methods
of Powerformer: K1 closure represents the high-resistance
grounding, K2 closure represents the reactance grounding.

The Powerformers have the following characteristics:
(1) The rated capacity, the rated voltage, the rated

frequency, the winding capacitance (Cg1, Cg2, Cg3) to
ground per phase of Powerformer1-3, and the capaci-
tance (Ct ) to ground per phase of external system are
the same as those used in [8].

(2) The inception angle is 0◦;
(3) The inductance Ln is 1838mH;
(4) The damping resistance Rn is 57�;
(5) The neutral grounding resistance RL is 1900�;
(6) Grounding fault starts at 0.055s;
(7) The following faults were simulated:
a. Fault resistance Rg: 5, 100, 500, 750, 1000, . . . , 7500,

7750, 8000 �;
b. Internal SLG fault when 0%, 25%, 50%, 75%, 100% of

the stator winding are grounded (Fig. 8 is marked with ‘‘F’’);
c. Different external faults;
d. The neutral grounding methods: high-resistance ground-

ing or reactance grounding.
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TABLE 1. Simulation results of feature vectors of all Powerformers.

FIGURE 9. Part of sample data mapped into three-dimensional space.

B. SIMULATION DATA RESULTS
This paper changes the fault conditions by changing the
neutral grounding methods, the fault resistance and the fault
location, thereby increasing the diversity of samples to evalu-
ate the detection efficiency. The above fault conditions were
simulated, and the ST transient energy e, the comprehensive
correlation coefficients ρ and the zero-sequence active power
λ were calculated. The simulation data of faults under differ-
ent conditions were obtained as shown in Table 1. Due to lim-
ited space, only part of the data is listed, where ‘‘–’’ represents
SLG fault occurring in external system. Powerformer pro-
tection is regarded as a classification problem in this paper.
As shown in Fig. 9, the data set are projected in multidimen-
sional space, and the dimension of the space is the number of
features. The distribution of the samples in each dimension
can reflect the impact of features in the protection results.
If the selected features make the relative distance between the
classes larger (samples in the same class are highly similar to
each other; and separation signals from different classes have
low similarity to each other), the selected features contribute
more to the protection scheme.

FIGURE 10. Effection of fault resistance on the valves of fault features.
Note: G1, G2 and G3 represent Powerformer 1, 2 and 3 respectively.

TABLE 2. Classification results of the proposed scheme.

C. EFFECTION OF FAULT RESISTANCE
The fault current is very weak when the fault resistance
is high. Generally, when the fault resistance reaches about
5000 �, the traditional over-current relay cannot detect the
fault correctly. Therefore, this paper needs to consider the
effect of fault resistance on the values of fault features.
Various conditions of fault resistance from 5-8000 � were
verified.
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TABLE 3. Performance of classifiers for the test set under different noise levels.

Fig. 10 shows the relationship between fault resistance
and the values of fault features e, ρ, λ (α = 25%, SLG
fault at Powerformer 1). With the increase of the fault resis-
tance, the values of three fault features are almost unchanged.
Even if the Rg reaches 8000 �, the values of e, ρ, λ of
non-fault Powerformers and faulty Powerformer are still sig-
nificantly different. It can be inferred that fault resistance
has no effect on the protection scheme proposed in this
paper.

D. EFFECTION OF FAULT LOCATIONS
AND EXTERNAL FAULTS
In the previous models [6]–[8], different fault locations
caused significant changes in the values of fault features.
Considering this effect, stator SLG faults at phase c
(Rg = 5�, α = 25%, 50%, 75%, 100%) of Powerformer 1
and faults at external system were verified. The relationship
between the fault locations and the values of the fault features
is shown in Fig. 11. As can be observed, in the case of internal
fault, the values of fault features did not change with the fault
locations, so the fault features can easily distinguish the faulty
Powerformer from the healthy Powerformers. When a fault
occurs in an external system, the values of fault features of
each Powerformer are almost the same.

E. FAULT DETECTION AND CLASSIFICATION PROBLEM
A total of 1188 sample data were obtained from the
simulation, of which 831 are training samples and 357 are test
samples. After the bagging ensemble learning fault detection
model is trained, the test samples are used as input to the
classifier for fault detection. The classification results are
shown in Table 2.

Table 2 shows the proposed scheme is able to distinguish
faulty Powerformer from non-fault Powerformers with 100%
accuracy, as well as to identify internal faults and external
faults. When the internal fault occurs, the data obtained from
Powerformer 1 indicates a fault, while the data obtained from
Powerformer 2 and 3 indicate the normal operation on the
contrary. When a fault occurs in the external system, the data
of three Powerformers indicates the external fault. From the
above analysis, it can be inferred that the proposed scheme
is independent of the neutral grounding methods and fault
resistance.

F. FAULT PROTECTION IN NOISY ENVIRONMENT
The proposed scheme added additive white Gaussian
noise (AWGN) to the zero-sequence current signals measured
from the Powerformer terminal to test the efficacy of the

FIGURE 11. Relationship between fault locations and the values of fault
features. (a) the values of e; (b) the values of ρ; (c)the values of λ. Note:
G1, G2 and G3 represent Powerformer 1, 2 and 3 respectively.

trained bagging ensemble learning algorithm. In the presence
of 30, 20, 15, 10dB signal-to-noise ratio (SNRs), the proposed
scheme is compared with SVM, RF and KNN.

Table 3 shows the comparison of fault protection perfor-
mance between bagging ensemble learning algorithm and
single algorithms under different noise levels. Three eval-
uation indexes of accuracy, recall and F1-score [25] are
used to evaluate the fault protection technology. According
to Table 3, bagging ensemble learning algorithm is superior to
the single algorithm in the three evaluation indexesmentioned
above. And the stronger the noise intensity is, the better the
performance of the proposed algorithm is.

VI. CONCLUSIONS
This paper proposed a novel stator SLG fault protection
scheme for Powerformers. The proposed scheme decom-
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poses the zero-sequence current signals measured from Pow-
erformer terminal and extracts feature vectors employing
ST. Then, the feature vectors are used as inputs to bagging
ensemble learning algorithm to detect faults under different
conditions. Simulation results demonstrate the effectiveness
of the proposed scheme on detecting the SLG faults in the
system of parallel connection of Powerformers. Its specific
merits are as follows:

(1) The bagging ensemble learning algorithm trains SVM
RF and KNN as the base classifiers, and then votes the results
of each base classifier to get a strong classifier. It improves
the reliability of the protection scheme.

(2) This protection scheme does not need to set the thresh-
old value. In addition, the technique is independent of the neu-
tral grounding methods and fault resistance, and can detect in
which Powerformer a stator SLG fault is occurring even if the
fault resistance is at 8000 �.
(3) Under different fault conditions, the novel scheme

can distinguish internal faults from external faults reliably.
Besides, the proposed technique shows better generalization
ability and noise-tolerant ability than SVM, RF and KNN
techniques in detecting faults.
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