IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 9, 2020, accepted April 27, 2020, date of publication May 11, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993563

A Survey and a Classification of Recent
Approaches to Solve the Google Machine
Reassignment Problem

DARIO CANALES, NICOLAS ROJAS-MORALES ", (Member, IEEE), AND MARIA-CRISTINA RIFF

Departamento de Informatica, Universidad Técnica Federico Santa Maria, Valparaiso 2390123, Chile
Corresponding author: Nicolds Rojas-Morales (nicolas.rojasm@usm.cl)

This work was supported in part by the Universidad Técnica Federico Santa Maria (UTFSM) under Project PI_LI_19_16, and in part by the
Fondo Nacional de Desarrollo Cientifico y Tecnolégico (FONDECYT) Project under Grant 1200126.

ABSTRACT Optimizing the usage of resources is an important topic in the development of technologies and
computational services. The Google Machine Reassignment Problem is an NP-hard problem that is related
to this crucial situation, based on the assignation of a set of processes into a set of machines trying to reduce
several costs. This problem was proposed for the 2012 ROADEF/EURO challenge and since its introduction,
many approaches have been proposed in order to reach better quality solutions or improve the execution time
of the existing techniques. In this work, we review a significant number of recently proposed approaches.
Due to the number of published papers, it is difficult to ascertain the level of current research in this area.
In order to provide a useful guide to new interested researchers, we include up-to-date best-known results
for benchmark instances, an analysis of the design of each technique and details of the experimental setup.
We also present a classification and a taxonomy of the reviewed approaches based on the design of these

techniques, considering their main components and the structure of the search strategies.

INDEX TERMS Google machine reassignment problem, metaheuristics, heuristics.

I. INTRODUCTION
Recently, the emerging development of technologies that
provide cloud services and data storage have generated great
interest in optimizing the usage of resources, which has a
direct impact on the service quality and the economy of this
business. A key aspect to consider services such as Google
Apps, Facebook and Microsoft is the maximization of the
obtained utilities along with the minimization of the operative
costs. There are many situations that may impact on the per-
formance of a computational service and as a consequence,
many strategies have been used to reduce the impact of fail-
ures and eventual shutdowns. Additionally, the overuse of the
resources of a machine may incur in additional costs, related
to its deterioration or to a greater electrical consumption.
Along the same line, the increasing concern about the
environmental impact of human activities is an important
motivation to reduce the electric energy consumption [1], [2].
Considering that only on the United States the 29% of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

greenhouse gases in 2015 where due to the electricity genera-
tion [3], the interest of reducing the greenhouse gas emissions
to compensate the climate change has increased.

These crucial situations are related to the Google Machine
Reassignment Problem (GMRP), the main topic of this arti-
cle, proposed by Google in 2012 in the context of the
ROADEF/EURO challenge. The objective of this problem
is to manage and re-assign a set of processes into a set of
machines, considering a set of hard-to-satisfy constraints.
The GMRP is a NP-hard problem and several approaches
have been proposed after the challenge on 2012 [4]. Section II
presents a description and the main details of the problem.

The objective of this article is to present an up-to-date
revision of the recently proposed approaches for solving this
interesting problem. Considering the number of proposed
approaches for the GMRP, it can be difficult to obtain a broad
view to understand the existing techniques, the trends in the
design of approaches for the GMRP, the actual best known
results, among other features. Our main motivation is to
provide an useful guide to new researchers that are interested
in working in the GMRP. For each technique, we considered

88815

https://orcid.org/0000-0001-7662-1397

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

their main algorithmic features, the instances used to evaluate
each approach and the performance of each algorithm. On
the ROADEF/EURO competition, a set of experimental setup
rules were defined. Considering the most used benchmark
instances of the GMRP, we report the actual best known
quality solution per instance in two scenarios: considering the
same rules of the competition or using a different experimen-
tal setup. Moreover, we report which algorithms are able to
reach each solution in both scenarios. We also present details
and a comparative of the experimental setup of each reviewed
technique with the hardware of the ROADEF/EURO com-
petition. Section III presents the revision of techniques and
Section IV presents an analysis and a discussion of the
reviewed approaches.

We propose a classification and a taxonomy of the
reviewed techniques considering design characteristics, algo-
rithmic features, and some characteristics related to the pro-
posed strategies for solving this complex problem.

The main contributions of this article are:

« A revision of the existing approaches proposed for solv-
ing the GMRP since the ROADEF/EURO challenge

o An updated list of the actual best known solutions per
benchmark instance

o A classification and taxonomy of the reviewed
techniques

It is important to mention that there are some previously
published literature reviews that are focused in a different
manner that our work (e.g, a revision and classification of the
finalist teams of the ROADEF/EURO challenge is presented
in [5]). Here, we presented an up-to-date revision, classifi-
cation and taxonomy of algorithms proposed for the GMRP.
Section V presents the classification and taxonomy. Finally,
Section VI presents some conclusions of this revision and
trends for future work.

Il. MACHINE REASSIGNMENT PROBLEM

The Google Machine Reassignment Problem (GMRP) was
formally presented for the ROADEF/EURO Challenge
2012 [6]. This problem consists of the allocation of a series of
processes to a set of machines satisfying a set of constraints.
A feasible initial assignment s is provided in each problem
instance, where all the processes are distributed among the
machines. To determine the quality of a candidate solution,
the objective function considers a weighted sum of a Load
Cost, a Balance Cost, a Process Move Cost, a Service Move
Cost, and a Machine Move Cost. The problem also considers
a set of constraints that are related to the capacity of the
machines, the usage of resources, dependency, among oth-
ers. For example, each process has system requirements of
various resources like CPU, RAM and Hard Disk. On the
other hand, machines have a certain capacity limit for each
resource. These resources are consumed by each assigned
process. Starting from s, the objective is to obtain a better
quality candidate solution that minimizes the different costs
of the problem, as well as satisfying all constraints. This

88816

TABLE 1. Hard constraints summary.

Constraints | Details Focus

Capacity Resource capacities of each | Resource requirements
machine should not be ex- | feasibility
ceeded

Conflict Processes of the same ser- | Robustness to possible
vice should not be assigned | machine failures
to a same machine

Spread Some processes, related to | Robustness to possible
some services, should be as- | machine failures
signed to a minimum num-
ber of different locations

Dependency | Dependent services should | Robustness to possible
be executed on the same | machine failures
neighborhood

Transient Defines that some resources | Retain resources during

Usage require a transient usage | migration of processes
when processes are moved
between machines

section presents a brief description of the GMRP and in order
to complement this explanation, on the Annexes section, a
mathematical model of the MRP is presented.

A. COMPONENTS
The Google Machine Reassignment Problem (GMRP) con-
sider the following components:

o Processes: elements that need to be assigned consider-
ing their resource requirements.

o Services: can be considered as sets of processes. Ser-
vices have dependence relationships, which are traduced
into constraints of the problem.

e Machines: equipment to which processes will be
assigned. Each machine has a set of available resources
with a defined capacity. These resources will be con-
sumed by some assigned processes.

e Location: is defined as a set of machines. A location
defines how processes of a particular service should
be distributed (among machines of different locations).
Moreover, for each service, a minimum number of loca-
tions where their processes should be assigned is defined
(spreadmin). All locations are disjoint sets.

o Neighborhood: is defined as a set of machines. When
a dependence relationship between services exists, pro-
cesses should be assigned on machines of the same
neighborhood. All neighborhoods are disjoint sets.

The problem constraints are grouped into five main cate-
gories: Capacity, Conflict, Spread, Dependency and Transient
Usage. Table 1 presents a summary of these constraints. The
general objective of the GMRP is to aim for a better dis-
tribution of processes on the available machines. Following
this idea, the objective function of the GMRP minimizes the
weighted sum of five cost functions summarized in Table 2.

1) EXAMPLES

Let us suppose a small problem instance that contains a set of
processes (p1, p2, ps), a set of machines (my, mp, mc, mp),
a service sg (that considers processes p> and ps), a location
I (that considers machines my4 and mp) and a neighborhood

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

RESOURCES
CPU: eeeens

RAM: eeeeeo

DISK: eeees e

CPU: ooee | | A - =
RAM: eeeee | |
DISk: esee : [T B | @G

7
MACHINE

PROCESS SERVICE

FIGURE 1. Components of GMRP.

€]
=)
@]
=)

LOCATION

NEIGHBORHOOD

FIGURE 2. Components that describe sets of machines in the problem.

TABLE 2. Costs considered in GMRP.

Costs Details

Load Considering some defined safety capacity boundaries, it

Cost represents the excess of used resources on each machine.

Balance Considering some defined resource balance rules, it

Cost represents how the resources are consumed on each
machine.

Process Considering the provided initial assignment sq, it rep-

Move resents the cost of migrate processes from their original

Cost machines

Service Considering all the moved processes, it represents the

Move maximum number of moved processes over services

Cost

Machine | Represents the cost of moving a process from a source

Move machine to a destination machine

Cost

Ne (that considers m¢ and mp). Figures 1 and 2 present these
components and their relationships. Machine m4 has 4 avail-
able units of CPU, 5 units of RAM and 4 units of Disk. Here,
process pp can be assigned to m4 because its requirements are
fully satisfied (satisfying the capacity constraint).

Let us suppose that a transient usage TR = {Disk} has
been defined. This means that when processes are reassigned,
consumed units of Disk are not available to be used by other
processes until the next iteration (or reassignment step). For
example, if p; is moved from machine m4, the 4 consumed
units of Disk will not be available until the next iteration. As
a consequence, processes that consume more than 2 units of
Disk (and more than 6 units of CPU and 6 units of RAM),
will not be able to be assigned to my4 at this step.

Let us suppose we want to assign py and ps to a machine.
As these processes are part of the service sg, the conflict
constraint will be violated if both processes are assigned to
the same machine (e.g. machine m,). This constraint requires
that p, and ps should be assigned to different machines.

The spread constraint requires that some processes, related
to a service, should be assigned to a minimum number of
different locations (named SpreadMin). Let us suppose that
a SpreadMin value is defined as 2. The spread constraint will
be violated if we assign p> and ps to machines my or mp,

VOLUME 8, 2020

considering that these machines are part of /4. The constraint
will force the assignation of both processes in 2 different
locations.

Let us suppose that we have a new service s— and suppose
that s— depends on sg. The dependency constraint forces that
processes of both services should be assigned to machines of
the same neighborhood. In this case, if p> and p5 are assigned
to machine mc, processes of s— should be also assigned to
machines m¢ or mp.

B. DETAILS OF THE COMPETITION

The Machine Reassignment Problem was proposed in
ROADEF/ EURO 2012 [6].! On the competition, 48 teams
participate of the qualification phase. Teams were divided in
two categories: Junior (for young researchers) and Senior (for
qualified researchers).

1) EXPERIMENTAL SETUP OF THE CHALLENGE

In order to evaluate each presented algorithm, an independent
execution was performed sequentially with a time limit of
300 seconds. All experiments were executed on a computer
with an Intel Core 2 Duo E8500 (3.16 GHz, 64 bits, 4 GB of
RAM).

2) INSTANCES

In the competition, 30 instances were used to evaluate all
the proposed approaches. These instances are available in the
website of the challenge and are divided in three sets:>

o Set A: problem instances that consider a limit of 1000
processes.

o Set B: problem instances with a number processes
between 5000 and 50000.

e Set X: problem instances with a number processes
between 5000 and 50000.

Tables 3, 4 and 5 show the main characteristics of the
instances of the data sets A, B and X respectively. Nowa-
days, these instances have been widely used as benchmark
problems to evaluate and compare different algorithms in the
literature.

3) SCORE AND PHASES

A specific metric to rank each algorithm was defined, using

the following score:

Cost(S) — Cost(B)
Cost(sg)

Score(l) = 100 (1)
where Cost of the evaluation of a candidate solution, / is the
problem instance in which the score will be obtained, s is the
initial solution, S the solution found by the algorithm and B is
the best solution found in the challenge among all algorithms
for that specific instance. The two phases of the ROADEF
competition were:

1 Competition webpage http://challenge.roadef.org/2012/en/
2Competition web-page http://challenge.roadef.org/2012/en/instances.php

88817

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

TABLE 3. Data set A characteristics - considering | R | the number of
resources, | M| the number of machines, |S| the number of services, |P|
the number of processes, | C| the number of locations and |A/| the
number of neighborhoods.

Instance [R] [M] [S] [P] L] [N]
Al_1l 2 4 79 100 4 1
Al_2 4 100 980 1,000 4

Al_3 3 100 216 1,000 25

Al_4 3 50 142 1,000 50 5
Al_S 4 12 981 1,000 4

A2_1 3 100 1,000 1,000 1
A2 2 12 100 170 1,000 25
A2 3 12 100 129 1,000 25
A2 4 12 50 180 1,000 25
A2_5 12 50 153 1,000 25

TABLE 4. Data set B characteristics - considering | R | the number of
resources, | M| the number of machines, |S| the number of services, |P|
the number of processes, | C| the number of locations and |\/| the
number of neighborhoods.

NN O NN

Instance [R[[M] [S] [P] [Z] VT
B_1 12 100 2,512 5,000 10 5
B2 12 100 2,462 5,000 10 5
B_3 6 100 15,025 20,000 10 5
B_4 6 500 1,732 20,000 50 5
B_5 6 100 35,082 40,000 10 5
B_6 6 200 14,680 40,000 50 5
B_7 6 4,000 15,050 40,000 50 5
B_8 3 100 45,030 50,000 10 5
B_9 3 1,000 4,609 50,000 100 5
B_10 3 5,000 4,896 50,000 100 5

TABLE 5. Data set X characteristics - considering | R | the number of
resources, | M| the number of machines, |S| the number of services, |P|
the number of processes, | C| the number of locations and |\/| the
number of neighborhoods.

Instance [R] [M] |S] [P] L] N
X_1 12 100 2,529 5,000 10 5
X 2 12 100 2,484 5,000 10 5
X3 6 100 14,928 20,000 10 5
X 4 6 500 1,190 20,000 50 5
X5 6 100 34,872 40,000 10 5
X 6 6 200 14,504 40,000 50 5
X_7 6 4,000 15,273 40,000 50 5
X 8 3 100 44,950 50,000 10 5
X9 3 1,000 4,871 50,000 100 5
X_10 3 5,000 4,615 50,000 100 5

1) Qualification phase: In this phase, each algorithm was
executed with instances of Set A. Here, the 30 best
scores of each category where selected.

2) Final phase: Each algorithm was executed with large
sized instances (groups B and X), from 5,000 to 50,000
processes and 100 to 5,000 machines.

Ill. REVIEW OF APPROACHES
This section presents a review of recently proposed
approaches for the Google Machine Reassignment Problem
(GMRP). For each algorithm, we present a summary of their
algorithmic features, details of their main components, the
instances used to evaluate the algorithm and the performance
of the proposed algorithm. Considering the complexity of the
GMRP, we present an analysis of how the problem is faced
by each strategy, in terms of the satisfaction of the constraints
and the optimization.

As we mentioned, for the competition, some experimental
setup rules were defined: (1) execution time limit of 300

88818

seconds, (2) algorithms are evaluated sequentially. Here, we
divide the algorithms in two main groups: approaches that
were evaluated using the Same Experimental Setup of the
competition or a Different Experimental Setup (e.g., execu-
tion time, executed in parallel, among others). To analyze
the performance of each algorithm, we present the number of
instances that each technique reaches the actual best known
solution for each set. For this, we considered the best quality
solution obtained by each algorithm. A discussion and fur-
ther analysis related to the performance of each algorithm is
presented in the next section.

A. SAME EXPERIMENTAL SETUP

A Variable Neighborhood Search (VNS) algorithm is pre-
sented in [7]. This algorithm is a local search algorithm
focused on the reduction of the Load Cost of the objec-
tive function. The design of VNS is mostly based on the
requirements of each process, in terms of resources.’ As a
consequence, VNS is mostly focused on the satisfiability of
resource-related constraints (Capacity and Transient Usage).
During its search process, VNS tries to obtain better quality
candidate solutions using four different operators to produce
feasible solutions:

« Shift: move one process to another machine,

e Swap: interchanges two processes from different
machines,

o Chain: shift a defined number of processes at the same
time,

o Big Process Rearrangement (BPR): reassign big pro-
cesses to a target machine. For this, other smaller pro-
cesses could be also reassigned to generate enough
space.

Authors note that when convergence is reached, it is diffi-
cult to reassign processes that consume several resources.
Moreover, they suggest to reassign big processes during early
stages of its search process. For this, the algorithm give prior-
ity to big processes to be reassigned first and also, operators
are applied in a particular order: (1) BRP, (2) Shift, (3) Swap,
and (4) Chain operator.

In order to increase the exploration of the algorithm, the
objective function is modified from the original weighted
sum. VNS was proposed for the ROADEF challenge and
obtained the first place during the final phase of the competi-
tion. To evaluate VNS, authors performed 100 independent
runs considering instances from sets A and B. However,
results of VNS on Set X are reported in [8]. Results showed
that VNS reached one actual best known solutions in set A
and 2 in set X.

Two Large Neighborhood Search (LNS) approaches are
presented in [9], one based on a Mixed Integer Linear Pro-
gramming model (LNS-MIP) and the other based on a Con-
straint Programming (LNS-CP) model. Both algorithms are
collaborative techniques, where Local Search and Exhaustive

3 Authors define Big Processes and Small processes, related to the amount
of resources consumed for their assignation.

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

Search strategies cooperate to solve the GMRP. CPLEX is
used in both techniques.* In LNS-MIP, the algorithm creates
and solves sub-problems iteratively. For this, from a selected
subset of machines, their processes are reassigned until a time
limit is reached. On the other hand, the LNS-CP is divided in
two main phases: (1) select and create a sub-problem (where
a subset of processes and machines are selected), and (2)
optimize the sub-problem. In the second phase, a Systematic
Search is applied with a stopping criteria based on the number
of failures and a given threshold. For the Systematic Search,
three components are used: variable ordering heuristics, value
ordering heuristics and filtering rules applying constraint
propagation. Constraint satisfaction is mostly ensured on the
first phase and on the Constraint Propagation. On the other
hand, the second phase is focused in improving the quality of
candidate solutions. Instances from set A were used to eval-
uate LNS-MIP and instances from sets A and B to evaluate
LNS-CP. However, results of LNS-CP on Set X are reported
in [8]. Results showed that both algorithms reached one actual
best known solution on set A.

A local search based algorithm named Multi-Start Iter-
ated Local Search (MS-ILS) was presented in [10]. MS-ILS
was proposed for solving the Multi-Capacity Bin Packing
Problems (MCBPP) and the GMRP. Based on Iterated Local
Search (ILS) [11], the algorithm includes a local search pro-
cedure that considers Swap and Shift operators. First, a sub-
set of machines M is constructed optimizing only the Load
and Balance costs. Then, both operators are independently
applied considering a machine m; selected from M. The oper-
ator that obtains the higher quality solution is accepted. In
order to balance the exploitation and exploration on MS-ILS,
the local search procedure can be applied to the best solution
found or to the current solution in each iteration.

MS-ILS includes a multi-start component to escape from
local optima solutions. For this, two operators named shaking
moves were used to produce feasible solutions:

o Home Relocate: selects randomly k processes that are
currently not hosted on their initial machine, and relo-
cates them to their initial machine.

e K-Swap: randomly selects k times a pair of machines,
and performs a swap of random groups of either 3,
4, or 5 processes, with equal probability, among these
machines.

With the objective of decreasing the execution time of
MS-ILS, the shaking moves are triggered dynamically when
the improvement of the objective functions is less than a
certain threshold. The algorithm was evaluated using sets A,
B and X. Results showed that MS-ILS obtained one actual
best known solution on set A.

A hyperheuristic based in Simulated Annealing named
HH-MRP was proposed in [12]. HH-MRP uses two low-level
heuristics (HO and HI) and each one applies some operators
to candidate solutions:

4http://www—O 1.ibm.com/software/commerce/optimization/cplex-
optimizer/

VOLUME 8, 2020

o HO: this heuristic applies Shift, Swap and Backtracking
(perform a backtracking process to a subproblem) oper-
ators.

e HI: this heuristic applies Shift, Swap and Double Shift
(tries to perform Shift operator re-assigning other pro-
cesses if it is necessary) operators.

In both heuristics, the decision of which operators are applied
is stochastically performed using some probability param-
eters. In order to produce a balance between exploration
and exploitation of the search space, HH-MRP uses a self-
adaptive strategy. The general schema of HH-MRP are three
phases. On the first phase, HO is applied for a fixed time
limit and the temperature is reduced iteratively. Then, the
second phase independently applies HO and H1 to the current
solution during a specific amount of time (maintaining the
temperature). The obtained solution with the higher qual-
ity will be used on the next phase. In the third phase, the
selected heuristic is executed again, during a higher amount
of time in order to improve the obtained solution. These
phases are repeated until the execution time limit is reached.
Parameter values were defined using a tuner algorithm named
ParamILS [13]. To evaluate the performance of HH-MRP,
instances from sets B and X were used. Results showed that
HH-MRP is competitive to the three best teams of the Senior
category of the challenge. However, none actual best known
solution are reached.

In [14], an analysis of the GMRP from a Vector Bin
Packing perspective (VBP) is presented (H-VBP). Authors
propose a generalization of VBP that allows distinct capaci-
ties of bins for each dimension called Vector Bin Packing with
Heterogeneous Bins (VBPHB) (resulting the same multi-
capacity bin packing referred by [10]). Here, authors used
several greedy-based heuristics to construct solutions for
VBPHB classified into: item centric heuristics, bin centric
heuristics and bin balancing heuristics. Then, an analysis of
some structural properties of the MRP are presented. Authors
conclude that instances can be decomposed into smaller sub-
problems and showed that the mentioned heuristics can be
adapted to the MRP. Based on this, a multi-start algorithm
was proposed to generate feasible solutions assigning all
processes (instead of using the provided initial solution sg).
Even though the MRP is a very constrained problem, the
proposed heuristics were able to assign more than the 90%
of the processes in all the instances. Authors denote that the
best heuristics, in terms of the number of feasible solutions,
were the item centric heuristics with priorities on processes
and machines (randomly ordered or normalized by bins
capacities). Moreover, using item centric heuristics, feasible
solutions were obtained in 1 instance of the set A, 5 in set B
and 6 in set X. Using bin centric heuristics, feasible solutions
were obtained in 2 instances from set A, 4 from set B and 5
from set X. About bin balancing heuristics, feasible solutions
were obtained in 1 instance from set A, 5 from set B and 4
from set X.

A hybrid approach based on Hill Climibing and Large
Neighborhood Search (LNS) was presented in [15].

88819

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

The algorithm HC-LNSHC has two main components, a First
Improvement Hill Climbing (FI-HC) algorithm and a LNS
algorithm (which uses Mixed Integer Programming to solve
sub-problems). Starting from the provided initial solution, it
executes FI-HC to improve the quality of solution using a
Shift operator. The idea is to reassign processes to produce
feasible candidate solutions until a local optima is reached.
For this, a process potential preprocessing is executed, to
apply the Shift operator giving priority to some processes that
can produce higher reductions of the Load and Move costs.
Moreover, a Tabu List is used to consider only machines that
produce an improvement of the candidate solution.

Then, LNS is applied to perform additional improvements
creating sub-problems that consider a subset of the total
machines. The LNS component tries to move several pro-
cesses at the same time and CPLEX solver is used to solve
each sub-problem. Authors conclude that the use of FI-HC
showed improvements mainly in the large size instances.
Moreover, authors note that considering the large number of
constraints and dependencies of the instances of the GMRP,
re-assign many processes at once is indispensable to obtain
high quality results. Results in instances of sets A and B
showed that HC-LNSHC reached one best known solution
on set B.

A hybrid approach based in Iterated Local Search and Inte-
ger Programming (IP) is presented in [16]. IP-RILS algorithm
considers specialized versions of the Shift and Swap opera-
tors. Shift Machine Load Sort is an implementation of Shift
that considers only a subset of machines previously sorted.
For this, processes of machines with higher values of Load
Cost are first re-assigned. The idea is to optimize the quality
of candidate solutions focused on reducing the Load Cost. On
the same line, authors consider that processes that demand
more resources are harder to be re-assigned. Swap in Service
operator is a variation of the typical Swap, considering pairs
of processes of machines only from the same services. The
idea is to improve the quality of candidate solutions, perform-
ing Swap perturbations without violate dependency, spread,
and conflict constraints. IP-RILS uses an IP-perturbation
component, to solve sub-problems using IP and Branch and
Bound. To evaluate IP-RILS, instances of sets B and X were
used. Results on instances from sets B and X showed that
IP-RILS reached zero best known solutions.

A Multi-Neighborhood Local Search (MNLS) approach
was proposed in [17]. Starting from the initial solution pro-
vided on the instances from the challenge, three operators are
sequentially used in order to explore different neighborhood
structures: Shift, Swap and (three processes) Swap. As the
instances consider several machines and processes, a neigh-
borhood partition technique is considered on MNLS in order
to reduce the execution time of the algorithm. As a conse-
quence, the operators are applied considering specific parts of
the neighborhood. During the local search phase, unfeasible
moves are accepted. For this, a repair strategy is included
that re-assigns processes when a machine violates capacity
or transient usage constraints, until feasibility is recovered.

88820

After the local search procedure, a perturbation operator is
performed to escape from local optimum solutions. Here,
one randomly selected operator (from the three previously
mentioned) is applied to produce a feasible candidate solution
and continue the search process. To evaluate the performance
of MNLS, instances from sets A, B and X were used. Results
showed that MNLS reached one actual best known solution
on set A.

In [18], an optimization-based heuristic technique was pro-
posed (OBH-S27). This technique requires the decomposi-
tion of the problem into a sequence of small-sized instances,
that are iteratively solved using a general Mixed Integer Pro-
gramming (MIP) solver. To create the sub-problems, a subset
of u machines is considered. The most loaded 1«/2 machines
and also, some lightly loaded machines are selected. The
objective is to balance the load excess in some machines.
Starting from the initial assignment s, four procedures are
used to improve assignments in a sub-problem: (1) Inter-
neighborhood procedure (reassign processes considering a
subset of machines), (2) Intra-neighborhood procedure (reas-
sign processes considering machines of the same neighbor-
hood), (3) Swap considering a sub-problem and (4) Intra-
service procedure (reassign processes from machines of
the same service). C-PLEX 12.4 is used for solving each
sub-problem. Authors denote that as the load cost largely
dominates the other cost components, OBH-S27 consider a
relaxation of the objective function, restricted to the load
cost. To evaluate the performance of OBH-S27, experiments
were performed considering instances of sets A, B and X.
Results showed that OBH-S27 reached one actual best known
solution in set A.

A neighborhood analysis is presented in [19], studying
the effect of three different operators. The objective is to
analyze the effect of performing a search process using Swap,
Shift or MoveBig (a large process is selected and moved)
to generate feasible candidate solutions. Each operator is
coupled to a Steepest Descent (SD) local search algorithm.
SD is a parameter-free algorithm that repeatedly replace the
current solution by the best newly generated solution until
there is no more improvement. Also, SD-Combined is stud-
ied, where any of these three operators is randomly selected
and applied in each step of the SD algorithm. Results in set A
instances showed that SD-Combined obtained the best results
and also, reached one actual best known solution. Authors
conclude that generating neighbors based on moving blocks
of processes seems more effective than that based on moving
single processes.

B. DIFFERENT EXPERIMENTAL SETUP

A Simulated Annealing (SA-GMRP) algorithm was proposed
in [20]. SA-GMRP considers two operators to perturb can-
didate solutions: Shift and Swap. The decision of which
operator will be applied is stochastically performed using a
probability parameter p. Considering that neighborhoods can
contain several candidate solutions, authors applied a sam-
pling strategy to reduce the execution time and also, evaluate

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

the feasibility of fewer solutions. For the Shift operator, con-
sidering a randomly selected machine m, a given process is
re-assigned to neighbor machines of m. On the Swap operator,
considering a machine and a process randomly selected, the
re-assignation is performed considering a second process
chosen from a particularly ordered list of processes. The
temperature value of SA-GMRP is decreased geometrically
by a factor r. With the objective of applying more significant
perturbations and to escape from local optima solutions, a
reheating procedure is included in SA-GMRP. Here, when
the rate of accepted moves is lower than 0.01%, the solution
is considered “frozen” and the temperature is incremented
in 1% (where t(is the initial temperature). SA-GMRP was
executed in a dual-core machine and evaluated considering
instances from sets A and B. Results showed that SA-GMRP
obtained one current best known solution in the A set.

Some improvements to LNS-CP were presented in [21].
First, considering that LNS requires the definition of some
parameter values (size of the neighborhood, when to change
the neighborhood size, among others), a parameter analy-
sis is presented. A two phase model for solving instances
was proposed (LNS — CP*). First, an offline phase is per-
formed, which consists in a clusterization process of instances
and a parameter tuning process per cluster. Instances were
grouped considering their problem definition features: num-
ber of machines, processes, resources, among others. Then,
during an online phase, a new incoming instance is solved
using the values for the parameters of the closest cluster.
Two algorithms were used for the parameter tuning process:
Gender-Based Genetic Algorithm (GGA) [22] and Instance-
Specific Algorithm Configuration (ISAC) [23]. Additionally,
LNS — CP* algorithm was parallelized and evaluated using
a time limit of 100 seconds and different number of cores.
To evaluate the algorithm, authors generate 1245 instances
based on instances of set B. Also, a subset of these instances
was used for the clusterization process on the offline phase.
Results on instances from set B show that using the obtained
parameter configurations produce improvements of a 19%,
31% and 42% using 1, 2 and 4 cores, respectively. Authors
confirm the importance of consume an amount of resources
defining a suitable set of parameter values for LNS — CP*.

Noisy Local Search (NLS) is presented in [24]. Similarly to
VNS, NLS is a multi-start local search algorithm that applies
three operators: Swap, Shift and BPR (Big Process Reassign-
ment). These operators are applied in a Round-Robin manner
to obtain feasible candidate solutions. Previously to the exe-
cution of NLS, a preprocessing step is performed to sort the
processes considering their size (the sum of its requirements
over all resources). Larger processes are re-assigned first and
a adaptive-size subset of processes is considered to be re-
assigned. Authors present a detailed analysis of the impor-
tance of using the BPR operator to improve the quality of
the obtained solutions in a subset of instances (A2_2, A2_3,
A2_5, B_1 and X_1). However, the usage of BPR operator
increases the execution time of NLS between 3 to 7 times.
During the BPR operator, all constraints except capacity

VOLUME 8, 2020

constraint (conflict, spread, dependency) are satisfied at any
time. A perturbation performed by BPR operator is accepted
when all constraints are satisfied and the solution cost has
been improved. To escape of local optima solutions a noising
strategy is included on NLS. For this, a modification of
the objective function is performed, increasing the load cost
weights for one or a subset of resources. NLS also includes a
mechanism to deal with random seeds. On the initial phase of
the search, the biggest processes are reassigned considering
different seeds. Then, considering the best seeds, the search
process is continued. To evaluate NLS, 100 independent runs
were performed considering instances from the three sets of
instances. Results showed that NLS reached 2 best known
solutions on the A set, zero on set B and 2 on set X.

Fast Machine Reassignment (FMR), a cooperative search
approach, was proposed in [25]. FMR is a parallel technique
that in each thread a set of different approaches can be exe-
cuted. The communication between threads only allows to
share the best known solution and the number of exchanges
is controlled. The first thread can execute the following
approaches:

o Greedy heuristic, to build alternate feasible initial solu-
tions different from sg,

« Shift operator,

« Ejection Chain operator, that tries to apply swap oper-
ators that minimize the total cost. Particularly, the idea
is to replace processes assignments, iteratively selecting
destination machines that produce a decrement in the
total cost,

« Adaptive Variable Neighborhood Search, that dynami-
cally changes the operator to be applied (swap, shift or
ejection chain) using a roulette wheel selection strategy
(based in a score per operator)

On the other hand, the second thread can apply:

« Extended Best Shift, that performs a shift moving a
process to the “best” available machine (which reduces
the total cost the most),

« Ejection Chain operator,

o Simulated Annealing Hyperheuristic, that combines
heuristic methods and acceptance criteria. The selection
strategies are Temperature Descent (using typical Simu-
lated Annealing acceptance criteria) and Fast Minimum
(accepts only improvements). Shift or swap operators
are used to perturb solutions.

To evaluate FMR, authors performed a comparison of using
the cooperative scheme or using both threads separately.
Results showed that the cooperative scheme outperforms the
independent approach. Moreover, results in sets B and X
showed that FMR obtained close results to the best team of
the competition.

A constraint-based Large Neighborhood Search
(CBLNS-J25) was proposed in [26]. This algorithm is a LN'S
that iteratively works with a sub-problem that consider a
subset of processes to be reassigned. Each sub-problem is
optimized using Constraint Programming as a depth first

88821

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

search. To explore different neighborhoods, different search
strategies can be applied:

« Random Search (process are reassigned randomly cho-
sen with a selection probability proportional to its con-
tribution to the overall cost function),

o Process Neighborhood Search (most expensive pro-
cesses and some randomly selected ones are reassigned),

o Target Move Search (big size processes are reassigned
to machines that have enough resources) and,

« Undo Move Search (undo the reassignment of a pro-
cess).

To allow expensive or big size processes to be reassigned,
Process Neighborhood Search and Move Search require to
move other subset of k processes. Only improvement pertur-
bations are allowed in these strategies. In order to analyze the
convergence of the algorithms, authors present an overview
of how the cost of the obtained solutions considering 1, 5
and 30 minutes. Results in instances from set A, B and X
showed that CBLNS-J25 is competitive to the first places of
the ROADEF/EURO competition.

In [27], an evolutionary parallel Late Acceptance Hill
Climbing (P-LAHC) algorithm was proposed. This algo-
rithm is a cooperative hybrid evolutionary approach where
an initial population of individuals is generated from the
provided initial solution. Each initial solution is assigned
to a Late Acceptance Hill Climbing (LAHC) [28], that is
executed to improve the solution randomly moving processes
across machines.”> LAHC is mostly focused in optimize the
total cost, maintaining the feasibility of obtained solutions.
A restart mechanism is used when no improvement has been
obtained during a certain number of iterations. For this, a
mutation operator is applied in order to modify the solutions
without improvement. These operators can be Swap, Double
Swap (same as single swap but with four processes from two
different machines), Shift or Double Shift (same as single
move but with two processes). Results in instances from sets
A and B showed that P-LAHC reached one actual best known
in set A and zero in set B. P-LAHC algorithm is executed in
parallel considering 4 threads.

An Evolutionary Simulated Annealing (ESA) algorithm
was proposed in [29]. ESA considers a population of can-
didate solutions, where each solution has its own Simulated
Annealing (SA) algorithm. Each SA algorithm is executed
in parallel, starting from a different initial solution obtained
randomly modifying so. The idea is to produce diverse solu-
tions and as a consequence, different local optima solutions.
ESA uses a mutation operator to escape from local optima
solutions. Each candidate solution considers its own muta-
tion operator, that can be one of the following operators:
Swap, Double Swap, Shift and Double Shift. Results in
instances from set A and B shows that ESA is competitive to

SLAHC is a Hill Climbing algorithm that its acceptance criteria is partic-
ularly defined. The algorithm contains a list L of the solutions generated in
the last iterations. A newly generated solution will be accepted if its quality:
(1) its higher than the quality of the current solution or, (2) its higher than
the quality of a solution on L.

88822

state-of-the-art algorithms. Moreover, ESA reaches one
actual best known in set A.

In [29], the Evolutionary Learning based Iterated Local
Search (EL-ILS) was proposed. EL-ILS is focused in per-
forming a learning process, in order to select the most suitable
technique for a problem that will be tackled. EL-ILS has three
main components: a meta-feature extraction, meta-learning
and classification. The two first steps are focused in generate
a multi-class classifier by training (considering a sub-set of
problem instances). The classifier, generated by a Genetic
Programming approach, selects the most suitable Iterated
Local Search algorithm to be applied. The idea is to learn
from the existing correlations between problem instances and
search techniques considering the following characteristics:
number of machines, number of resources, number of pro-
cesses, number of services, number of neighborhoods, num-
ber of dependencies, number of locations, number of balance
costs and number of resources needing transient usage. Each
Iterated Local Search approach has its own operator and
also its own perturbation operator. The possible operators
can be: Swap, Double Swap, Shift and Double Shift. On the
other hand, possible perturbation operators can be: random
perturbation (randomly swap some processes) or guided per-
turbation (large size processes are reassigned). Results on a
subset of problems of set A, B and X shows that EL-ILS is
competitive to the actual state-of-the-art algorithms.

The Multi-neighborhood Great Deluge (MNGD) was pro-
posed in [30]. Great Deluge is a single point algorithm that
uses the following acceptance criteria: (1) improvements
are always accepted and (2) non-improvement solutions are
accepted considering a defined threshold (the quality of sg
and a small amount € subtracted in each iteration). To perturb
solutions, four operators are used: single swap, double swap,
single shift and double shift. Results in the three benchmark
instances set show that MNGD reached one best known
solution in set A and one in set B.

Turky et al. proposed a strategy similar to P-LAHC named
CHSA, a cooperative hybrid Memetic Algorithm coupled
with Simulated Annealing (SA) [8]. CHSA is a population-
based algorithm that was designed to be executed in parallel.
Here, the evolution, perturbation and improvement of each
candidate solution is executed in a thread. The generation of
the initial population and the restart mechanism is equally
defined as in [27]. Then, each initial solution is assigned to
a Simulated Annealing algorithm and each one is executed
in parallel with a specifically defined configuration: a per-
turbation operator, an initial temperature value and a cooling
coefficient. Possible operators are: single swap, double swap,
single shift and double shift. A candidate solution is accepted
if its quality is better than the current solution or considering
a probabilistic decision. The probability P of acceptance of
new candidate solutions is defined as:

—(F6H=1)
P =exp ‘

@

where x is the current candidate solution, x’ is the new candi-
date solution and ¢ is the current temperature value. To ensure

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

TABLE 6. Experimental setup conditions used in all the reviewed approaches-N.P: Not provided.

Algorithm Experimental Setup # Seeds | Execution time | Parallel | Conversion Factor

Competition Configuration | Intel Core 2 Duo E8500 (3.16GHz, 64bits, 4GB of | 1 300 seconds No -
RAM)

VNS [7] Intel Core 17-920 (2.66 GHz, 64bits, 6GB of RAM) 100 300 seconds No 0.95

LNS-CP, LNS-MIP [9] N.P N.P 300 seconds No -

SA-GMRP [20] N.P N.P 300 seconds Yes -

MS-ILS [10] AMD Opteron 6378 (2.4 GHz, 64bits, 4 GB of RAM) | 40 300 seconds No 0.85

LNS — CP* [21] Intel Dual Quad Core Xeon (2.66GHz, 64 bits, 12 GB | N.P 100 seconds Yes 2.50
of RAM)

NLS [24] Intel Core 2 Duo E8500 (3.16 GHz, 64 bits, 4 GB of | 100 300 seconds Yes 1.00
RAM)

IP-RILS [16] Intel Core 2 Duo E8400 (3.0 GHz, 64 bits, 4 GB of | 25 300 seconds No 0.99
RAM)

HH-MRP [12] AMD Quad Core FX-4300 (3.8 GHz, 64 bits, 4GB of | 5 300 seconds No 1.13
RAM)

HC-LNSHC [15] Intel Core 17 950 (3.07 GHz, 64 bits, 6GB of RAM) 25 300 seconds No 1.06

CBLNS-J25 [26] 12-core AMD Opteron 6172 (2.1 GHz, 64bits, 256GB | 30 300 seconds Yes 4.35
of RAM)

FMR [25] Intel Core i7-2600 CPU (3.40GHz, 64bits) 1 300 seconds Yes 4.43

OBH-$25 [18] g::;/[)C()re 2 Duo E8500 (3.16GHz, 64bits, 4GB of 1 300 seconds No 1.00
Intel Core Quad 17-2600 (3.4Ghz, 64bits, I6GB of 1.35
RAM) - Only in instance A2_4

H-VBP [14] N.P 50 N.P No -

P-LAHC [27] N.P 31 300 seconds No -

MNLS [17] Intel Xeon E5-2609 (2.5 GHz, 64 bits, 32 GB of | 100 300 seconds No 1.00
RAM)

SD-Combined [19] N.P 30 300 seconds No -

ESA [29] N.P 31 300 seconds Yes -

EL-ILS [33] N.P 31 300 seconds No -

MNGD [30] N.P 31 300 seconds No -

CHSA [8] N.P 31 300 seconds Yes -

HH [31] N.P 31 300 seconds No -

Ant-HH [32] N.P 31 300 seconds No -

the cooperation between threads, at each generation, the solu-
tions of all the SAs will be compared and the best one will
be saved. Moreover, to provide a new initial solution for the
restart procedure, the best solution obtained from all the SA
approaches is used and modified by a particularly assigned
mutation operator. Considering the problem instances from
the challenge, CHSA obtained one best known results in set
A, one in set B and one in set X. CHSA was executed in
parallel considering 4 threads.

An evolutionary hyperheuristic local search approach was
proposed in [31]. Authors conclude that no single local search
algorithm can consistently perform well in all the instances
and also, considering a particular parameter configuration.
The proposed algorithm (HH) considers a two-stage struc-
ture: the first stage (HH-LS) is focused in selecting a local
search method (Simulated Annealing, Iterated Local Search,
Late Acceptance Hill Climbing, Great Deluge and Steepest
Descent) and the second stage (HH-OP) works with a set
of neighborhood operators (single Swap, double Swap, sin-
gle Shift, double Shift, Swap-Shift, Shift-Swap, BPR and
Swap-BPR). HH uses a population of solutions, randomly
initialized, to store the best solutions reached and to obtain
diverse solutions. To select the local search method in HH-
LS and to select a set of operators in HH-OP a roulette wheel
mechanism is used. In [32], a modified version of HH is pre-
sented. Here, to select a local search method, a Multi-Armed
Bandit (MAB) mechanism is used. Moreover, a learning

VOLUME 8, 2020

automation reinforcement learning approach is used in HH-
OP to select operators. The strategy defines a probability
distribution for all the operators and then, a roulette wheel
selection mechanism is used for selecting which operators
will be used. The available operators to be selected are stored
in a list, controlled by a ranking mechanism. This mechanism
is based on the diversity of solutions obtained during the
execution of HH-LS and HH-OP. Moreover, the mechanism
controls the size and diversity of the pool of operators. To
update the population, a bi-objective distance-based strategy
is used. For this, the quality (measured by the cost function)
and a distance metric (measured by the number of different
assignations) are considered to compare pairs of solutions.
Using Pareto dominance, non-dominated solutions are part
of the population of solutions.

To evaluate the performance of HH, authors performed 31
independent runs considering instances from sets A, B and
X. Results showed that HH reached 3 best known solutions
in set A and 2 in set B.

A bi-level hyperheuristic approach based in Ant Colony
Optimization was presented in [32]. Ant-HH is a modified
version of HH that considers several improvements. Similarly
as in HH, Ant-HH is a bi-level technique: the upper-level
works with the local search methods and the lower-level
worked with operators. Here, an Ant Colony Optimization
algorithm manages both levels, combining the most appropri-
ate local search algorithm with sequences of operators. Ants

88823

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

TABLE 7. Best known solution per instance considering the same
experimental setup of the competition.

Instance BK | Algorithms

Al_1 44306501 | VNS [7], LNS-CP [9], LNS-
MIP [9], MS-ILS [10], MNLS [17],
SD-Combined [19], OBH-S25 [18]

Al_2 777 532896 | OBH-S25 [18]

Al_3 583005717 | MNLS [17], OBH-S25 [18]

Al_4 247 433 844 | HC-LNSHC [15]

Al_5 727578 309 | MNLS [17], OBH-S25 [18]

A2_1 167 | MS-ILS [10]

A2 2 720 671 548 | VNS [7]

A2_3 1190713414 | VNS [7]

A2 4 1680609218 | OBH-S25[18]

A2_5 309 714522 | VNS [7]

B_1 3307 124 603 | VNS [7]

B_2 1015517386 | VNS |[7]

B_3 156 519 816 | HC-LNSHC [15]

B_4 4677817475 | LNS-CP [9]

B 5 923312207 | HC-LNSHC [15]

B_6 9525421332 | HC-LNSHC [15]

B_7 14835031 813 | VNS [7]

B_8 1214086286 | HC-LNSHC [15]

B9 15885524 407 | HC-LNSHC [15]

B_10 18048499 616 | VNS [7]

X 1 3030246091 | VNS [7]

X 2 1010050981 | MNLS [17]

X_3 259 656 | VNS [7]

X 4 4721727496 | MNLS [17]

X_5 144768 | VNS [7]

X_6 9546958 474 | IP-RILS [16]

X_7 14253 133805 | VNS [7]

X_8 83711 | MNLS [17]

X 9 16 125675266 | MNLS [17]

X_10 17 815045320 | VNS [7]

perform walks in a bi-level weighted graph structure which
nodes are the local search methods (in first level) and the
operators (in the second level). The weights represents the
desirability of moving from one node to another. Pheromone
is deposited in edges related to non-dominated solutions con-
sidering quality and diversity as the objectives to improve.
The heuristic knowledge gives preference to pairs of local
search methods (or operators) that improve the convergence
of the algorithm. As in HH, Ant-HH uses a population of
high quality and diverse solutions. Iteratively, each ant selects
one candidate solution s from the population. Then, the local
search methods and the set of operators is modified in s, con-
sidering pheromone and heuristic knowledge information.
The population is updated considering the same distance-
based strategy from HH. Results in sets A, B and X show
that Ant-HH is one of the best algorithms of the state of the
art. Ant-HH reached 9 actual best known solutions in set A,
6 in set B and 8 in set X. Experiments considered a time limit
of 300 seconds and 31 independent runs.

IV. DISCUSSION

This section presents an analysis and discussion of the per-
formance of the reviewed algorithms. The idea is to pro-
vide useful information to new researchers that are interested
in evaluate and compare their approaches to the state-of-
the-art algorithms. As we mentioned, the ROADEF/EURO

88824

TABLE 8. Algorithms that reach each best known quality solution per

instance.

Instances | BK Algorithms

Al_1 44306 501 VNS [7], NLS [24], LNS-
CP [9], SA-GMRP [20], LNS-
MIP [91MS-ILS [10], P-
LAHC [27], OBH-S25 [18],
MNLS [17], OBH-S25 [18], SD-
Combined [19], MNGD [30],
ESA [29] CHSA [8], HH [31],
Ant-HH [32]

Al 2 777532 177 HH [31],Ant-HH [32]

Al 3 583 005 715 Ant-HH [32]

Al 4 244 875 200 HH [31],Ant-HH [32]

Al_5 727 578 306 Ant-HH [32]

A2_1 161 Ant-HH [32]

A2 2 720 671 511 Ant-HH [32]

A2 3 1182260 491 NLS [24]

A2 4 1 680 368 560 Ant-HH [32]

A2_5 307 150 821 Ant-HH [32]

B_1 3291 069 365 Ant-HH [32]

B_2 1010949 451 MNGD [30]

B_3 156 519 816 HC-LNSHC [15]

B_4 4677792 536 Ant-HH [32]

B_5 922944 510 CHSA [8], Ant-HH [32]

B_6 9525851 389 Ant-HH [32]

B_7 14 834 456 020 | HH [31]

B_8 1214291 129 HH [31]

B_9 15885437252 | Ant-HH [32]

B_10 18 048 187 105 | Ant-HH [32]

X_1 3030246 091 VNS [7], NLS [24]

X_2 1002379 317 CHSA [8], Ant-HH [32]

X_3 75 154 Ant-HH [32]

X_4 4721586 142 Ant-HH [32]

X_5 57973 Ant-HH [32]

X_6 9546936159 Ant-HH [32]

X_7 14252 476 500 | Ant-HH [32]

X_8 32014 Ant-HH [32]

X_9 16 125531 142 | Ant-HH [32]

X_10 17 815045320 | VNS [7], NLS [24]

Challenge 2012 defines some rules for the execution of the
proposed approaches. These rules are:

« Algorithms were executed sequentially

« An execution time limit of 300 seconds was considered

« Approaches were executed in an Intel Core 2 Duo E8500
(3.16GHz, 64bits, 4GB of RAM) machine.

However, different experimental setup and machine config-
urations were used to evaluate the reviewed approaches.
Table 6 presents the experimental setup of all the reviewed
approaches. For each approach, we provide details of the
hardware used to evaluate each algorithm, the number of
seeds used (independent executions), if it was executed in
parallel and a conversion factor. This factor is used to obtain
an execution time conversion between using a machine of the
same characteristics that the one used on the challenge with
each machine used to evaluate the reviewed approaches. For
example, considering a set of routines that are executed in
the Intel Core 2 Duo E8500 on 300 seconds, an Intel 17 920
(used to evaluate VNS [7]) needs 300/0.89 = 337 seconds to
perform the same set of routines.® Notice that in some cases,

SThis conversion factor is obtained using information available in
http://www.cpubenchmark.net.

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

TABLE 9. Classification of GMRP algorithms - Local Search (LS): (A)Only LS or (B) Collaborative approach - Use of preprocessing step: (C) Yes or (D) No -
Weighted sum: (E) Original or (F) Modified - Experimental setup conditions: (G) Same of the competition or (H) Different scenario.

Algorithms Local Search (LS)

Use of Preprocessing

Weighted Sum Experimental Setup Condititions

@A) B) ©

D)

E)) G (H)

VNS [7] X X

X X

LNS-CP, LNS-MIP [9] X

X

X

SA-GMRP [20]

X

MS-ILS [10]

X

LNS — CP*[21]

X

| > > >
>

| >

NLS [24]

| >

IP-RILS [16]

o I e I e I

HH-MRP [12]

HC-LNSHC [15]

| > >

ol I e I

OBH-S25 [18]

H-VBP [14]

| > > > >

FMR [25]

M| PR PR > <

| >

CBLNS-J25 [26]

e

P-LAHC [27]

MNLS [17]

| >

X

SD-Combined [19]

ESA [29]

EL-ILS [33]

MNGD [30]

| >

CHSA [8]

HH [31]

ol el el Rl Rl Rl R R e B e I

Ant-HH [32]

M| PR PR| L PR) | | PR| <] | | <

X DL <[| | <

information of the experimental setup was not provided on
some related articles (‘N.P’ on Table 6).

A. BEST KNOWN SOLUTIONS AND STATE-OF-THE-ART
ALGORITHMS

To the best of our knowledge, we present the best known
quality solutions for each instance of the three benchmark sets
A, B and X. Moreover, we present which algorithms are able
to reach each solution. Table 7 shows the best known qual-
ity solution per instance considering the same experimental
setup of the challenge (execution time limit and sequential
execution). Here, the algorithms that obtained at least one best
known quality solution are VNS [7], LNS-CP [9], LNS-MIP
[9], MS-ILS [10], HC-LNSHC [15], MNLS [17], OBH-S25
[18], SD-Combined [19] and IP-RILS [16]. The algorithms
that obtained the highest number of best known solutions are
VNS [7] (12 instances), followed by MNLS [17] (7 instances)
and HC-LNSHC [15] (6 instances).

Table 8 shows the best known quality solution per instance
considering any experimental setup. Here, in most cases, the
total cost for each instance is lower than when the experi-
mental setup of the challenge is considered. The algorithms
VNS [7], SA-GMRP [20], LNS-CP [9], LNS-MIP [9], MS-
ILS [10], NLS [24], HC-LNSHC [15], P-LAHC [27], MNLS
[17], OBH-S25 [18], SD-Combined [19], MNGD [30],
ESA [29], CHSA [8], HH [31] and Ant-HH [32] obtained
at least one best known quality solution. Moreover, the algo-
rithms that reached the highest number of best known solu-
tions are Ant-HH [32] (23 instances), HH [31] (5 instances),
NLS [24] (4 instances) and VNS [7] (3 instances).

V. CLASSIFICATION AND TAXONOMY
This section presents a classification of the reviewed tech-
niques. We considered different features related to the design

VOLUME 8, 2020

of each algorithm. First, we observed some common charac-
teristics:

1) All the algorithms here reviewed considered local
search procedures. Mostly, we observed that the opera-
tors used to perturb candidate solutions were designed
to improve the quality of the obtained solutions. More-
over, in most cases, only feasible perturbations were
accepted.

We observed a feature related to how neigh-
borhoods of candidate solutions are constructed.
As the problem instances of the GMRP consider
several machines/processes, the neighborhoods are
huge. In most of these algorithms, subsets of
machines/processes are considered in order to reduce
the execution time and to evaluate a fewer number
of candidate solutions. These subsets are created con-
sidering some criteria (e.g. the total requirements of
each process, remaining capacity of machines, among
others) or are randomly constructed. On the other hand,
when no subsets are strictly implemented, algorithms
consider a First Improvement criteria to accept new
candidate solutions. The objective is similar: avoid to
visit and evaluate the full neighborhood of solutions.

To classify the reviewed algorithms we considered the

following features:

o All the reviewed approaches consider Local Search
(LS) procedures. However, there are Collaborative
Approaches that also consider Exhaustive Search com-
ponents for solving sub-problems. In order to ana-
lyze the type of techniques used to tackle the GMRP
instances, we classified the reviewed approaches consid-
ering if they are Only LS or Collaborative Approach.

« In some approaches, a filter or a pre-processing step is
performed. We observed that these steps were included

2)

88825

IEEE Access

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

ALGORITHMS FOR GMRP

ONLY LOCAL
SEARCH

USE OF
PREPROCESSING

ORIGINAL
WEIGHTED SUM

MODIFIED
WEIGHTED SUM

|

COLLABORATIVE
APPROACH

USE OF
PREPROCESSING

SAME EXPERIMENTAL
SETUP

DIFFERENT
EXPERIMENTAL SETUP

SAME EXPERIMENTAL
SETUP

NO

DIFFERENT
EXPERIMENTAL SETUP

PREPROCESSING

NO
PREPROCESSING

SAME EXPERIMENTAL
SETUP

DIFFERENT
EXPERIMENTAL SETUP

FIGURE 3. Taxonomy of the reviewed GMRP algorithms.

to discriminate between the size of processes, to con-
struct subsets of processes, among others. For example,
some approaches perform a procedure to calculate the
total cost of each process, in order to discriminate which
processes consume higher amounts of resources. Here,
we classified the reviewed approaches considering if
they Use Preprocessing or No Preprocessing. The idea is
to visualize how the information provided from the prob-
lem instance is considered in the design of the reviewed
approaches.

« We observed that some approaches consider a modified
objective function, in order to improve some aspects
of their search process. For example, some approaches
give a higher priority to an specific cost modifying their
weight to evaluate candidate solutions. For this, we clas-
sified the reviewed approaches in: Original Weighted
Sum or Modified Weighted sum.

o We classified the reviewed algorithms in which were
evaluated the Same Experimental Setup of the challenge
or a Different Experimental Setup were used. The idea

88826

SAME EXPERIMENTAL
SETUP

DIFFERENT
EXPERIMENTAL SETUP

is to visualize the algorithmic design trend to solve this
complex problem, considering different experimental
scenarios and different use of the hardware resources.
Table 9 presents the classification of the reviewed
techniques. The classification shows that most of these
approaches are local search techniques (without using
Exhaustive Search). Moreover, to tackle the GMRP, most
designers consider the use of a pre-processing or a filter strat-
egy and the original weighted sum to evaluate their candidate
solutions. Finally, most algorithms were evaluated using a
different experimental setup to the rules defined on the chal-
lenge. We propose a taxonomy considering the same features
we used on the classification of the reviewed approaches.
Figure 3 presents the proposed taxonomy.

VI. CONCLUSION

This survey presents an overview of the latest advances
in solving the Google Machine Reassignment Problem
(GMRP). To review these approaches we mostly consid-
ered algorithmic features, presenting their components, the

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

IEEE Access

objective of each one and the performance of each algorithm.
The increasing number of papers published about the GMRP,
during the last years in journal and international confer-
ences, makes very difficult the task to clearly understand
the existing approaches. For new interested researchers, in
order to make easier the evaluation of their algorithms, we
presented an updated list of the best known solutions for
the three most used benchmark instances of this problem.
Moreover, we reported an updated list of the state-of-the-art
algorithms for each instance of these three sets of instances
in two scenarios: considering the same experimental setup
of the ROADEF/EURO challenge 2012 or considering any
experimental setup.

We presented a classification and a taxonomy of the
reviewed approaches. First, we observed some similar fea-
tures related to how the search process is performed: (1) in
order to reduce the execution time of each algorithm, subset
of processes or first-improvement criteria were considered on
the local search procedures and (2) operators were mostly
designed to improve the quality of the candidate solutions.
On the other hand, we classified the approaches considering
which type of technique is used to tackle the GMRP (only
Local Search or a Collaborative approach), the design of
the strategy to tackle the GMRP and how the evaluation
function is considered during their search process. Mostly,
the reviewed algorithms are pure local search techniques
and also, a pre-processing step is used to (mostly) discrim-
inate different types of processes. This situation shows that
algorithms are designed considering the difficulty and the
size of some problem instances of the GMRP. Also, most
of the reviewed algorithms were evaluated considering a
experimental setup different to the one used on the challenge
and also, most approaches use the original weighted sum to
evaluate the obtained candidate solutions.

Comparing the design of strategies, we observed that
recently proposed approaches are algorithms that are focused
in selecting suitable techniques to be applied. As GMRP
instances have different features and characteristics, it is
impossible to obtain one specifically designed strategy to
solve all the problem instances. The newest approaches are
hyperheuristics that manage existing operators, heuristics and
techniques to solve GMRP instances. Moreover, both tech-
niques (HH and Ant-HH) are the ones that reach the highest
number of actual best known solutions and are the state-of-
the-art for the GMRP.

Our future research will be focused on designing inexpen-
sive methods and improving existing ones to solve GMRP.
For example, techniques to deal with inter-task distribution
can be promising [34]. One of the major challenge is to be
able to solve large problems that are part of the hardest ones.

APPENDIX A

MATHEMATICAL MODEL

In this section, we present the mathematical formulation
proposed by ROADEF/EURO in [6]. We consider a set of
machines M, which have a set of resources R that can be

VOLUME 8, 2020

used by a set of processes P. Some of these resources need
transient usage, meaning that they will remain used even
after a process is removed from the corresponding machine.
The set of transient resources is denoted by 7R C R. The
processes p € P are grouped into a set of services S, while
machines m € M are grouped into a set of locations £ and a
set of neighborhoods . S, £ and NV, are all disjoint sets.

A. INPUT PARAMETERS

e C(m,r): Capacity on each machine m € M for a
resource r € R.

e R(p, r): Resource r € R capacity required by the pro-
cessp € P.

o SpreadMin(s): Minimum number of different locations
[€ L where the processes of each service s € S have to
be distributed.

e SC(m, r): Safety capacity for a resource » € R on each
machine m € M.

e PMC(p): Cost of moving each process p € P from its
initial machine My(p) to any other one.

o MMC(mo(p), m1(p)): Cost of moving a process p € P
from machine myg to another machine m;.

o target, r,: Proportional relationship between resources
r1 and rp, belonging to a triple from the balance cost.
Each triple has the form {Resourcei, Resourcez, N},
where N is a proportion between both resources.

o weightipadcoes:(r): Weight of load cost for a specific
resource r.

o weightpaiancecos:(b): Weight of balance cost for a spe-
cific balance triple b.

o weightyrocessMoveCost: Weight of the total process move

cost.

o WweightserviceMoveCost: Weight of the total service move
cost.

o weightyachineMoveCost: Weight of the total machine move
cost.

B. DECISION VARIABLES
o M(p) = m: represents the assignment of the process p to
the machine m, where M : [1, p] — [1, m].
o U(m, r): is the usage of resource » € R on the machine
me M, where U : [1,m][1, r] — R*. Formally:

Umry= Y Rp.r) 3)

pePIM(p)=m

C. CONSTRAINTS
The following constraints have to be satisfied.
« Capacity constraints: The resource requirement of all
processes p € P assigned to machine m € M must not

exceed the capacity of each resource on that machine,
C(m, r).
U(m,r) < C(m,r), VmeM,reR 4)

« Transient usage constraints: Ensure the capacity con-
straints are satisfied, considering the transient resources

88827

I E E E ACC@SS D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP

that are not available on the machine.

> R(p, r)

PEPIMo(p)=mV M(p)=m
<C@m,r), Vme M, reTR

&)

o Conflict constraints: Processes p € P belonging to a
service s € S cannot be assigned to the same machine.

i) €55 pi #pj = M@p) #M@p), Y¥seS (6)

o Spread constraints: Processes p € P belonging to a
service s € S must be assigned to at least a minimum
number of different locations [€ £, determined by the
spreadMin value of the service.

> min(1,[{pes | Mp) € 1}))

lel

> spreadMin(s), Vs € S
@)

« Dependency constraints: If a service s, € S depends
on service s, € S, then each process of s, must be
assigned to a neighborhood n € N used by a process
of Sp.

Vpa € Sq, Ipp €sp AneN |
M@psenAM(pp)en
3)

D. OBJECTIVES

The objective function is composed by a set of cost functions,
aiming to improve the process distribution on the machines.

o Load cost: Sum of the costs for exceeding the safety
capacity SC(m, r) of aresource r € R on each machine
m € M. The total usage of the resource r € R on
machine m € M is U(m, r).

loadCost(r) = Z max (0, U(m, r) — SC(m, r)) (9)
meM

« Balance cost: Sum of the costs for using the resources
of a machine unevenly, with the purpose of finding a
balanced assignment, allowing the addition of new pro-
cesses in the future. This is done by ensuring an available
ratio of two different resources, represented as a triple
b = {r1, ry, target}. The set of triples for all pairs of
resources is 3. The available capacity of the resource
r € R on the machine m € M is A(m, r).

balanceCost(b)
= Z max (0, target - A(m, r1) — A(m, r2))
meM
with A(m,r) = C(m,r) — U(m, r) (10)

« Process move cost: Sum of the costs for moving pro-
cesses from their initial machine My(p). The cost of

88828

moving process p is PMC(p).

processMoveCost = Z PMC(p) (11)
PEP\M(p)#Mo(p)

Service cost move: Maximum amount of moved pro-
cesses among all services.

serviceMoveCost = may (|{p € s\M(p) # Mo(p)}|)
(12)

Machine move cost: Sum of the costs for moving
any process between two specific machines. The cost
of moving a process from mgyurce 1O Myestination 15
MM C (Msource Mdestination)-

machineMoveCost = Z MMC(Moy(p), M(p)) (13)
peP

Objective function: The total objective cost function is
the minimization of the weighted sum of all the men-
tioned costs.

minimize totalCost

= Z weightipaacos:(r) - loadCost(r)
reR

—G—Z weightpaianceCost(b) - balanceCost(b)
beBB
+weightyrocessMoveCost - processMoveCost

+weightserviceMoveCost - ServiceMoveCost

+weightmachineMoveCost - machineMoveCost ~ (14)

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]
[71

[8]

[9]

(10]

0. Edenhofer, Climate Change 2014: Mitigation of Climate Change, vol. 3.
Cambridge, U.K.: Cambridge Univ. Press, 2015.

United Nations. (May 2016). Framework Convention on Climate
Change. [Online]. Available: http://bigpicture.unfccc.int/#content-the-
paris-agreemen

EPA: US Environmental Protection Agency. (Apr. 2017). Sources
of Greenhouse Gas Emissions. [Online]. Available: https://www.epa.
gov/ghgemissions/sources-greenhouse-gas-emissions

G. M. Portal, M. Ritt, L. M. Borba, and L. S. Buriol, ““Simulated annealing
for the machine reassignment problem,” Ann. Oper. Res., vol. 242, no. 1,
pp. 93-114, Jul. 2016.

H. M. Afsar, C. Artigues, E. Bourreau, and S. Kedad-Sidhoum, ‘“Machine
reassignment problem: The ROADEF/EURO challenge 2012, Ann. Oper:
Res., vol. 242, no. 1, pp. 1-17, Jul. 2016.

2011-2012: Machine Reassignment Problem. Accessed: May 11, 2020.
[Online]. Available: http://challenge.roadef.org/2012/en/

H. Gavranovié, M. Buljubasic, and E. Demirovic, ‘“Variable neighborhood
search for Google machine reassignment problem,” Electron. Notes Dis-
crete Math., vol. 39, pp. 209-216, Dec. 2012.

A. Turky, N. R. Sabar, and A. Song, “Cooperative evolutionary het-
erogeneous simulated annealing algorithm for Google machine reassign-
ment problem,” Genetic Program. Evolvable Mach., vol. 19, nos. 1-2,
pp. 183-210, Jun. 2018.

D. Mehta, B. O’Sullivan, and H. Simonis, “Comparing solution meth-
ods for the machine reassignment problem,” in Principles and Prac-
tice of Constraint Programming (Lecture Notes in Computer Science),
vol. 7514, M. Milano, Ed. Québec City, QC, Canada: Springer, Oct. 2012,
pp. 782-797.

R. Masson, T. Vidal, J. Michallet, P. H. V. Penna, V. Petrucci,
A. Subramanian, and H. Dubedout, “An iterated local search heuristic for
multi-capacity bin packing and machine reassignment problems,” Expert
Syst. Appl., vol. 40, no. 13, pp. 5266-5275, Oct. 2013.

VOLUME 8, 2020

D. Canales et al.: Survey and a Classification of Recent Approaches to Solve the GMRP I E E E ACC@SS

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

H. R. Lourengo, O. C. Martin, and T. Stiitzle, “Iterated local search:
Framework and applications,” in Handbook of Metaheuristics. Cham,
Switzerland: Springer, 2010, pp. 363-397.

R. Hoffmann, M.-C. Riff, E. Montero, and N. Rojas, “Google challenge:
A hyperheuristic for the machine reassignment problem,” in Proc. IEEE
Congr. Evol. Comput. (CEC), Sendai, Japan, May 2015, pp. 846-853,
doi: 10.1109/CEC.2015.7256979.

F. Hutter, H. Hoos, and T. Stiitzle, “Automatic algorithm configuration
based on local search,” in Proc. 22nd AAAI Conf. Artif. Intell. Vancouver,
BC, Canada: AAAI Press, Jul. 2007, pp. 1152-1157.

M. Gabay and S. Zaourar, “Vector bin packing with heterogeneous bins:
Application to the machine reassignment problem,” Ann. Oper. Res.,
vol. 242, no. 1, pp. 161-194, Jul. 2016.

W. Jaskowski, M. Szubert, and P. Gawron, “A hybrid MIP-based large
neighborhood search heuristic for solving the machine reassignment prob-
lem,” Ann. Oper. Res., vol. 242, no. 1, pp. 33-62, Jul. 2016.

R. Lopes, V. W. C. Morais, T. F. Noronha, and V. A. A. Souza, ‘“Heuristics
and matheuristics for a real-life machine reassignment problem,” Int.
Trans. Oper. Res., vol. 22, no. 1, pp. 77-95, Jan. 2015.

Z. Wang, Z. Lii, and T. Ye, “Multi-neighborhood local search optimiza-
tion for machine reassignment problem,” Comput. Oper. Res., vol. 68,
pp. 16-29, Apr. 2016.

M. Mrad, A. Gharbi, M. Haouari, and M. Kharbeche, ““An optimization-
based heuristic for the machine reassignment problem,” Ann. Oper. Res.,
vol. 242, no. 1, pp. 115-132, Jul. 2016.

A. Turky, N. R. Sabar, and A. Song, “Neighbourhood analysis: A case
study on Google machine reassignment problem,” in Artificial Life and
Computational Intelligence, M. Wagner, X. Li, and T. Hendtlass, Eds.
Cham: Springer, 2017, pp. 228-237.

G. M. Portal, “An algorithmic study of the machine reassignment
problem,” M.S. thesis, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil, 2012.

Y. Malitsky, D. Mehta, B. O’Sullivan, and H. Simonis, “Tuning parameters
of large neighborhood search for the machine reassignment problem,” in
Integration of Al and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (Lecture Notes in Computer Science),
vol. 7874, C. P. Gomes and M. Sellmann, Eds. Berlin, Germany: Springer,
2013, pp. 176-192.

C. Ansétegui, M. Sellmann, and K. Tierney, “A gender-based genetic
algorithm for the automatic configuration of algorithms,” in Principles
and Practice of Constraint Programming—CP 2009. Berlin, Germany:
Springer, 2009, pp. 142-157.

S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘Isac—
instance-specific algorithm configuration,” in Proc. Conf. 19th Eur.
Conf. Artif. Intell. Amsterdam, The Netherlands, The Netherlands: 10S
Press, 2010, pp. 751-756. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1860967.1861114

H Gavranovic and M. Buljubasic, “An efficient local search with noising
strategy for Google machine reassignment problem,” Ann. Oper. Res.,
vol. 242, no. 1, pp. 19-31, 2016.

F. Butelle, L. Alfandari, C. Coti, L. Finta, L. Létocart, G. Plateau,
F. Roupin, A. Rozenknop, and R. W. Calvo, ‘‘Fast machine reassignment,”
Ann. Oper. Res., vol. 242, no. 1, pp. 133-160, 2016.

F. Brandt, J. Speck, and M. Volker, “Constraint-based large neighbor-
hood search for machine reassignment—A solution approach to the
ROADEF/EURO challenge 2012,” Ann. Oper. Res., vol. 242, no. 1,
pp. 63-91, 2016.

A. Turky, N. R. Sabar, A. Sattar, and A. Song, “Parallel late acceptance
hill-climbing algorithm for the Google machine reassignment problem,”
in Al 2016: Advances in Artificial Intelligence, B. H. Kang and Q. Bai,
Eds. Cham: Springer, 2016, pp. 163-174.

E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing
for exam timetabling problems,” in Proc. PATAT Conf., Montreal, QC,
Canada, 2008, pp. 1-7.

A. Turky, N. R. Sabar, and A. Song, “‘An evolutionary simulating annealing
algorithm for Google machine reassignment problem,” in Intelligent and
Evolutionary Systems. Cham, Switzerland: Springer, 2017, pp. 431-442.
A. Turky, N. R. Sabar, A. Sattar, and A. Song, ‘“Multi-neighbourhood great
deluge for Google machine reassignment problem,” in Simulated Evolu-
tion and Learning (Lecture Notes in Computer Science), vol. 10593, Y. Shi,
K. C. Tan, M. Zhang, K. Tang, X. Li, Q. Zhang, Y. Tan, M. Middendorf,
and Y. Jin, Eds. Cham, Switzerland: Springer, 2017, pp. 706-715.

VOLUME 8, 2020

[31] A. Turky, N. R. Sabar, S. Dunstall, and A. Song, ‘“Hyper-heuristic
based local search for combinatorial optimisation problems,” in A7 2018:
Advances in Artificial Intelligence (Lecture Notes in Computer Science),
vol. 11320, T. Mitrovic, B. Xue, and X. Li, Eds. Cham, Switzerland:
Springer, 2018, pp. 312-317.

[32] A. Turky, “Bi-level hyper-heuristic approaches for combinatorial optimi-
sation problems,” Ph.D. dissertation, School Sci., RMIT Univ., Melbourne
VIC, Australia, 2019.

[33] A. Turky, N. R. Sabar, A. Sattar, and A. Song, “Evolutionary learning
based iterated local search for Google machine reassignment problems,” in
Simulated Evolution and Learning (Lecture Notes in Computer Science),
vol. 10593, Y. Shi, K. C. Tan, M. Zhang, K. Tang, X. Li, Q. Zhang,
Y. Tan, M. Middendorf, and Y. Jin, Eds. Cham, Switzerland: Springer,
2017, pp. 409-421.

[34] T. Zhang, G. Su, C. Qing, X. Xu, B. Cai, and X. Xing, “Hierarchical
lifelong learning by sharing representations and integrating hypothesis,”
IEEE Trans. Syst., Man, Cybern. Syst., early access, Feb. 27, 2019, doi: 10.
1109/TSMC.2018.2884996.

DARIO CANALES received the bachelor’s and
master’s degrees in computer science from Uni-
versidad Técnica Federico Santa Maria (UTFSM),
Valparaiso, Chile, in 2015 and 2018, respectively.
After graduation, he started to work with the
National Institute of Industrial Property, Chile, as
a Software Architect and Developer. His current
major areas of interest are related to software
architectural design and artificial intelligence.

NICOLAS ROJAS-MORALES (Member, IEEE)
received the Ph.D. degree from Universidad Téc-
nica Federico Santa Maria (UTFSM), Chile,
in 2018. He is currently a Young Researcher
in computing science with the Department of
Computer Science, UTFSM. He has published
technical articles in high-level heuristics search
conferences such as GECCO, ANTS, and CEC.
His current research interests include the founda-
tions and applications of heuristic search methods,
opposition-inspired learning strategies, parameter setting problems, and the
applications to combinatorial optimization. He has also served as a reviewer
of different conferences in evolutionary computation.

MARIA-CRISTINA RIFF received the Engineer-
ing degree in computer science from Universidad
Técnica Federico Santa Maria (UTFSM), Chile, in
1988, the Ph.D. degree in computer science and
mathematics from the Ecole Nationale des Ponts et
Chaussées, in 1997, and the Habilitation to Direct
Research (HDR) degree in computer science from
the University of Paris-Sud XI, Orsay, France,
in 2014. She was with INRIA Sophia-Antipolis,
France. She supervised many master’s and Ph.D.
degrees students. She is currently an Adjunct Professor with the UTFSM.
Her research efforts have been culminated in many refereed journals and
conference publications. Her research interest includes artificial intelligence
for problem solving.

88829

http://dx.doi.org/10.1109/CEC.2015.7256979
http://dx.doi.org/10.1109/TSMC.2018.2884996
http://dx.doi.org/10.1109/TSMC.2018.2884996

	INTRODUCTION
	MACHINE REASSIGNMENT PROBLEM
	COMPONENTS
	EXAMPLES

	DETAILS OF THE COMPETITION
	EXPERIMENTAL SETUP OF THE CHALLENGE
	INSTANCES
	SCORE AND PHASES

	REVIEW OF APPROACHES
	SAME EXPERIMENTAL SETUP
	DIFFERENT EXPERIMENTAL SETUP

	DISCUSSION
	BEST KNOWN SOLUTIONS AND STATE-OF-THE-ART ALGORITHMS

	CLASSIFICATION AND TAXONOMY

	CONCLUSION
	MATHEMATICAL MODEL
	INPUT PARAMETERS
	DECISION VARIABLES
	CONSTRAINTS
	OBJECTIVES

	REFERENCES
	Biographies
	DARIO CANALES
	NICOLÁS ROJAS-MORALES
	MARÍA-CRISTINA RIFF

