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ABSTRACT Air pollution and its harm to human health has become a serious problem in many cities around
the world. In recent years, research interests in measuring and predicting the quality of air around people has
spiked. Since the Internet of Things (IoT) has been widely used in different domains to improve the quality
life for people by connecting multiple sensors in different places, it also makes the air pollution monitoring
more easier than before. Traditional way of using fixed sensors cannot effectively provide a comprehensive
view of air pollution in people’s immediate surroundings, since the closest sensors can be possibly miles
away. Our research focuses on modeling the air quality pattern in a given region by adopting both fixed and
moving IoT sensors, which are placed on vehicles patrolling around the region. With our approach, a full
spectrum of how air quality varies in nearby regions can be analyzed. We demonstrate the feasibility of our
approach in effectivelymeasuring and predicting air quality using different machine learning algorithmswith
real world data. Our evaluation shows a promising result for effective air quality monitoring and prediction
for a smart city application.

INDEX TERMS Time-series prediction, air quality measurement, machine learning.

I. INTRODUCTION
Due to rapid urbanization and industrialization, many coun-
tries around the world are facing a critical crisis of air pol-
lution. Air pollution has become a threat to public health
and a heavy influential factor on citizen’s daily activity.
In metropolitan cities in developing countries bothered by
problems of air pollution, such as Beijing and Delhi, people
usually need to wear a mask before going out [1]. Besides,
outdoor activities are also constrained by the intra-day air
quality.

Air pollution is caused by the presence of different air pol-
lutants. The primary air pollutant gases are nitrogen dioxide
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(NO2), carbon monoxide (CO), ozone (O3) and sulphur diox-
ide (SO2) [2]. Another type of air pollutants is air particulate
matter (PM). Among them, PM2.5 and PM10 are of particular
concerns to people, which refers to atmospheric particulate
matter that have a diameter of less than 2.5 µm and 10 µm.
These particles can cause many respiratory or cardiovascular
diseases [3]. Thus, many cities have built their own air quality
monitoring stations and publish the real-time air quality infor-
mation every hour. As the concern for air pollution increases,
its becoming increasingly critical to measure the air quality
around people [4], [5], which inform people about when is
safe to perform outside activities and help them plan better
routes to reach their destinations. Typically, monitoring sta-
tions at fixed locations is the conventional approach for atmo-
spheric factor monitoring for a large geographical district.
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While it is not difficult to implement such fixed sensor based
monitoring system, it faces several challenges. First, huge
investment is involved in building and deploying monitoring
units to cover a large area. Also, it is highly dependent on
neighboring environments and tends to be less accurate for
farther areas. In areas close to the roads, even small distances
can make a huge difference in air quality data measurement
from car pollutions. Hence, new ways to collect air quality
information in a cheaper and more flexible way and provide
detailed air quality prediction is in demand.

To address these issues, one possible solution is tomake the
sensors mobile using Internet-of-Things(IoT). For example,
attaching sensors on moving cars or drones proved to be
a feasible method [6]. In this work, we developed the IoT
devices to monitor air quality. We collected air pollution
data by mounting a sensor to a car and moved around the
city of Incheon, Republic of Korea. This data is then pre-
processed and stored in our server. One major advantage of
using a mobile sensor is that it provides the very first hand air
pollution information for an area at a particular time, when
the car was moving through there. we can also cover more
geographical regions and have more accurate localized infor-
mation with mobile IoT sensors. While a static fixed sensor
can provide continuous feed of information about a particular
area, it is not easy with a mobile sensor. However, this can be
minimized by having multiple mobile sensors or assigning
smaller coverage area to a mobile sensor.

In this work, we propose a hybrid approach, where we
deploymultiple static sensors as well as IoTmobile sensors to
effectively monitor air quality. The static sensors can provide
a holistic view by providing a continuous feed of information.
On the other hand, mobile sensors can provide more accu-
rate data about specific areas to reduce the error from static
sensors. In this paper, we build a prediction model to utilize
the collected data and provide rapid information about the air
quality around people. We also developed a visualization tool
to better analyze and forecast air quality and provide insights
to both professional researchers and ordinary users. The main
contributions of our work are summarized as follows:

• We proposed a hybrid approach to integrate fixed and
mobile IoT sensors to measure and predict air quality
data.

• We demonstrated the feasibility and effectiveness of our
approach by analysing the prediction result with differ-
ent machine models.

• We developed a visualization tool to show the relative
distribution of the air pollutants with a focus on PM10
and PM2.5, where it provides an intuitive understanding
of the air quality around people.

The rest of our paper is organized as follows: Section 2.
presents the relatedwork on different air qualitymeasurement
and prediction methods. Section 3 describes the development
of IoT sensors and data processing. Section 4 explains our
models and algorithms. The experimental setup and results
are reported in Section 5, and an analysis of the results is

provided in Section 6. We summarize our work and offer
conclusion in Section 7 and Section 8.

II. RELATED WORK
To measure the air quality, several monitoring methods have
been proposed and utilized. In Zheng et al.’s research [7],
they use public and private web services as well as a list of
public websites to provide real-time meteorological, weather
forecasts and air quality data for their forecasting. Small
unmanned aerial vehicles are used in the work of Alvarado
et al. [8] as a methodology to monitor PM10 dust particles,
where they can calculate the emission rate of a source. With
the development of smart city technologies, IoT devices have
been shown to be an effective option to collect real time
weather, road traffic, pollution and traffic information. Thus,
IoT devices are also considered to enable air quality analysis
[9].

In addition to the fixed sensors, public transportation
infrastructure such as buses has been used to collect air
quality data [10]. Also, there is one project [11] engaged the
entire community members in collecting data and developed
an online air quality monitoring system based on it, which
is also called crowdsourcing. Hasenfratz et al. [12] utilized
sensor nodes to build a thousand models targeting at different
time periods. All these aforementioned methods are either
costly or time consuming. In our work, we explore the use
of fixed and mobile IoT sensors together to improve the
prediction performance, which has not been researched much
yet.

To meet the increasing query frequency of air quality
in real time and also to enable citizens to react instantly
to the pollution, there has been a large body of work on
building connected monitoring sensor networks to share the
current air quality information with them [13]. Garzon et.al
presented in [14] an air quality alert service. Their service
continuously determines the areas, where the level of certain
matter concentration exceeds the preset threshold, and notify
users if they entered them. Maag et al. [15] proposed a
multi-pollutant monitoring platform using wearable low-cost
sensors. Compared with abovemethods, our system can serve
the similar functions to end users practically with either fewer
sensors or less demand for computation.

For prediction, regression models are commonly used in
the area of air quality prediction. A multivariate linear regres-
sion model for predicting PM2.5 of short-period time is
proposed in Zhao’s work [16], which includes other gaseous
pollutants such as SO2, NO2, CO and O3. As deep learning
emerged as an effective method in many applications, time
series data of air pollution based on different network models
have been also extensively studied and developed. Novel
models such as Long Short-TermMemory (LSTM) andGated
Recurrent Unit Network (GRU) have been proved to be a
powerful sequential structures in predicting future values of
air quality [9], [17] . Yi et al. [18] proposed a deep distributed
fusion network to learn the characteristics of spatial disper-
sion and capture all the influential factors that may have a
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FIGURE 1. The structure of proposed system for monitoring and prediction of air pollution.

direct or indirect effect on air quality. These aforementioned
technologies fits non-linear models flexibly but usually being
short of offering insight to the hidden mechanism. In addi-
tion, they have not shown to necessarily outperform classical
regression models in many scenarios [19]. There are also a
lot of researches concentrate on approaches to model and
simulate the pollutants for prediction [20]. With a small
amount of data set oriented in our project, we decided to
take conventional regression models as our baseline methods
because of computation efficiency, while yielding favorable
results.

III. IMPLEMENTATION
In this section, we first describe the design and implemen-
tation of IoT sensor device deployed in our research. Our
deployment and data collection are performed in Songdo
[21], South Korea, which is envisioned to be developed as a
smart city. Next, we explain the preliminary processing of the
acquired raw data and describe how we store and transmit the
collected and cleaned data. Then, we further present the user
interface to check the collected data for our analysis. Figure 1
describes the overall architecture of our proposed system.

A. IoT SENSOR INSTRUMENT DESIGN
We assembled two types of sensing devices from off-the-
shelf parts, one for fixed locations and the other type for
moving cars. In total, we developed six IoT sensor devices,
where three of them are deployed in three different fixed
locations and the other three are mounted on data collection
cars. The subsystems of the air quality monitoring modules
are presented in Fig. 3, and the functions of the sensors are
described as following:

• Temperature and humidity sensor: We have a single
sensor that can measure both temperature and humid-
ity. The humidity sensor provides an accuracy of 2%,
whereas the temperature sensor has an accuracy of
0.5◦C . They have measurement ranges of 0 ∼ 100%
and −40 ∼ 80◦C , respectively.

• Micro Dust sensor: This sensor measures both PM2.5
and PM10. The range of these measurements is from
0 ∼ 999.9µg/m3. The Government of Korea considers
PM2.5 andPM10 values of over 35µg/m3 and 100µg/m3

averaged through a day to be dangerous for human

FIGURE 2. Two types of air quality monitoring IoT sensor modules.

health. Thus, our micro dust sensor covers the entire
range that is relevant for human health.

• Carbon Dioxide sensor: Our carbon dioxide sensor can
measure CO2 within a range of 0 ∼ 10000ppm, with
an accuracy of 5ppm(0 ∼ 2000ppm), 10ppm(2000 ∼
5000ppm), and 20ppm(5000 ∼ 10000ppm). Note that
since in a natural scenario, the proportion of CO2 is
around 0.03%, this level of accuracy is sufficient for our
purpose.

• Raspberry Pi 3B+: The Raspberry Pi is connected to
LTE using a dongle. Its main function is to process the

89586 VOLUME 8, 2020



D. Zhang, S. S. Woo: Real Time Localized Air Quality Monitoring and Prediction Through Mobile and Fixed IoT Sensing Network

FIGURE 3. Deployment at fixed as well as moving scenario. The first
deployment is on the window of a building. The second deployment is on
top of a car.

sensor data and send it over the internet to the cloud
server.

• Arduino mega: This implements the protocol for send-
ing data over the VoLTE network.

• GPS sensor: This GPS sensor is connected to the
Arduino, and provides an accuracy of close to 1 m.

• Battery: We use a power bank with a capacity
of 7,000 mAh. The overall power consumption of our
setup is close to 1A. Thus, our setup can run continu-
ously for around 7 hours without a single charge.

B. SOFTWARE DEVELOPMENT AND PRE-PROCESSING OF
ACQUIRED DATA
In this section, we describe the software systems that we
designed, which run on top of the IoT sensors and transmit
collect data back to our system. Also, we present other soft-
ware and database components needed in our system to pre-
process acquired data.
• Communication Software: We constructed a wireless
communication and GPS system to transmit acquired
data back to databases for analysis. The geo-tagged data
which is stored in Raspberry Pi is transmit over Voice
over Long-Term Evolution(VoLTE) once per second to
our central server in Songdo area.

• Database: We design the database to store the collected
real time sensor values from fixed as well as mobile
IoT sensors. The data fields are: 1) time, 2) GPS loca-
tion, 3) temperature, 4) humidity, 5) CO2, 6) PM10, and
7) PM2.5, where all the collected values are stored in
database as shown in Fig. 5. (a). In the areas with weak
GPS signals, such as indoors and tunnels, we approxi-
mate the value according to the latest neighboring data.
Further, we discard out-of-range data during the pre-
processing.

• Cloud Server and Data Mapping: We use a cloud
server for our system, where the server manages the
data and provides an interface for analyzers to check

FIGURE 4. User Interface of our developed application WeAir.

the details of the collected real air pollution value by
using a DatePicker Dialog. It allows us to choose sensor
number and other fields such as dates. There are two
main functions of our web portal: (1) Time flow of the
real data of different categories with marked min and
max values, and (2) Google Map API is integrated in the
website to visualize the traces of the moving cars during
the chosen time period as shown in Fig. 5(b). All the cars
followed different paths randomly but tried to cover the
entire area as much as possible. All the stored data can
be downloaded in the form of Excel spreadsheet for later
analysis.

• User Interface (UI): In addition, we developed the User
Interface (UI) App so that users can log in our developed
APP using their own account and check the air quality
data around them immediately. The example of user
interface is provided in Fig. 4, where APP can measure
the real time air quality measurements and display those.

C. PRE-PROCESSING OF ACQUIRED DATA
Since the acquired data would contain noise, missing values,
etc, we need to pre-process the acquired data to develop a
robust predictionmodel.We employ the following techniques
to pre-process data:
• Outlier detection: Since sudden changes in the col-
lected data usually means an outlier, we calculated the
discrete differences of measured sensor values along the
timeline to detect the outliers. That is, measured samples
with a discrete difference beyond the interval [−0.5, 2]
are removed from our data set.

• Interpolation: We choose Gaussian Process Regression
(GPR) [22] as our interpolationmethod because it assists
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FIGURE 5. Interface for analyzers to check the details of the collected air pollution values on cloud server.

in reaching the best prediction accuracy in our experi-
ments, and the effect of different interpolation methods
will be discussed in Section 6.

• Data normalization: Since data are measured at dif-
ferent scale, we normalize the sensor measurement
between 0 and 1 using Eq. 1. Thus, we can use nor-
malized dataset for developing the air quality prediction
models:

x∗ =
x − min
max − min

, (1)

where max and min are the maximum and minimum
value of the whole dataset and x∗ is the data value after
the normalization.

IV. PREDICTION ALGORITHMS AND MODEL
DEVELOPMENT
In this section, we introduce our prediction model and briefly
discuss algorithms we used. Since random forest (RF) [23],
support vector machine (SVM) [24], and gradient boosting
machine (GBM) [25] are commonly recognized as the most
powerful algorithms in many machine learning applications
[26], [27], we deployed random forest regressor (RFR) [28],
support vector regressor (SVR) [29] and gradient boosting
regressor (GBR) [30] for predicting air quality. We initially
considered these approaches and explain more details in the
following sections.

A. SUPPORT VECTOR REGRESSOR (SVR)
The objective of SVR is to determine a hyper-plane in the
space generated by mapping training data in its original space
to a higher dimensional feature space, and the hyper-plane
can minimize the deviation of all sample points from it. Con-
sider the training data set {(x1, y1), (x2, y2), . . . , (xm, ym)},

where x ∈ Rn, y ∈ R where m corresponds to the number of
training data, then the regression problem can be formulated
as:

min
w,b

1
2
‖w‖2 + C

m∑
i=1

lε(f (xi)− yi). (2)

Here C is a constant, f (x) is the hyper-plane represented as
f (x) = w·x+b, and lε is the cost function which is minimized
in Eq. 2:

lε(z) =

{
0 if |z| ≤ ε,
|z| − ε otherwise,

(3)

where ε is the deviation which we can bear with at the
most. Basically, the equations build a interval-zone with the
width of 2ε centered on f (x). In our research, feature vector
x consists of the properties of time, longitude, and latitude
information collected from sensors, and y represents a col-
lected value from air pollutants set CO2, PM2.5 and PM10.

B. RANDOM FOREST REGRESSOR (RFR)
RFR is fast in learning, and is capable of handling a large
number of input variables yet yielding high accuracy. RFR
randomly draws samples from the original dataset with
replacement, which is also called bootstrap, and grows an
unpruned regression tree for each of the samples, then aver-
age the unweighted outputs of multiple decision trees to
obtain the final result as follows:

h̄(x) =
1
K

K∑
k=1

h(x; θk ), (4)

where h(x; θk ) is a collection of tree predictors with k =
1, . . .K , θk is random vector, which characterizes the kth
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TABLE 1. Details of the dataset collected from our three mobile IoT sensor boxes.

RF tree, x represents the observed input which are assumed
to be independently drawn from the joint distribution (x, y).
Similarly, x represents time, longitude, and latitude informa-
tion collected from sensors, and y represents a collected value
from air pollutants set CO2, PM2.5 and PM10.

C. GRADIENT BOOSTING REGRESSOR (GBR)
Gradient descent tries to minimize a function by moving in
the opposite direction of the gradient, and it is a fundamen-
tal optimization algorithm in the area of machine learning.
Boosting is known as an ensemble method that can improve
the prediction performance of classification or regression
[27]. It constructs additive regression models by iteratively
adding basis functions which can further reduce the designed
cost function:

f (x) =
M∑
m=1

βmh(x; am), (5)

where the function h(x; am) is the basis function that are
usually chosen to be simple representation of x with param-
eters a = {a1, a2, . . .}, and βm are the expansion coefficients
with m = 1, 2, . . . ,M . Regression trees are used as a basic
function in our model. With our dataset, the features used in
x and y are the same as described in previous models.

V. EXPERIMENT
We have chosen the geographic region of Songdo, Incheon,
Korea as a location for conducting our experimental study,
where Songdo has been developed as one of the smart cities
in South Korea. In the experiment, Songdo region is spatially
segmented into 100 zones, 10 × 10 grids as shown in Fig. 6
in the latitude range 126.616◦ to 126.700◦ and the longitude
range 37.348◦ to 37.401◦, where the red dots represents data
collection points by mobile and fixed sensors. With more
sensors operating in the future, we can divide the area into
more grids which enables a higher resolution service to the
public. Three fixed sensors are marked with a yellow star
respectively in the map. As we can observe, the density of

data collecting points are higher at the fixed sensors’ posi-
tion. In order to cover the entire Songdo area as much as
possible, three cars are mounted with our mobile IoT box and
navigated the road from Dec. 10th to Dec. 14th, 2018 and
from Dec. 17th to Dec. 19th, 2018. Each day all the sensors
are calibrated at both pre-deployment and post-deployment
stage. The details, such as time intervals and the number
of collected data instances are provided in Table 1, and we
use the name Car0, Car1 and Car2 to differentiate the three
mobile IoT sensors.

A. DATASET
Both the fixed and mobile sensors collect the same format of
dataset. The fixed sensors collect air quality data everyminute
from the three chosen locations in Songdo area shown as yel-
low stars in Fig. 6. For each fixed sensor, the data collection
time periods span all day, basically from morning to night.
The mobile sensors, however, collect the air pollution data
only a few hours per day, but the whole dataset in general
also covers all hours of a day.

The geographical locations of these sensors are presented
in Fig. 6, where each icon stands for a sensor. The horizontal
and vertical lines of the grids are cut according to latitude
and longitude, and spaced evenly to grant same size grids.
Each collected data instance consists of the sensor box’s
longitude and latitude, timestamp, temperature, humidity, and
concentration value of CO2, PM2.5 and PM10.

The observed time series data of PM2.5 and PM10 collected
from the moving sensors for the entire region are depicted
in Fig. 7. We averaged the data collected from all the moving
sensors at each moment. Along the X axis is the timeline
and Y axis represents the pollutants’ observed value, and the
quantity unit for PM10 and PM2.5 is µg/m3 .

B. PERFORMANCE METRIC
Based on the previous day’s ground truth yi from mobile
sensors, we evaluate the prediction ŷi and the model’s perfor-
mance according to Root Mean Square Error (RMSE), which
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FIGURE 6. Illustration of the geographical grids for Songdo on Google
Map, where the red dots are sensor measurement location and three
yellow stars indicate the fixed sensor locations.

is adopted as an error criteria and defined by Eq. 6 as follows:

RMSE =

√√√√1
n

n∑
i=1

(
∣∣yi − ŷi∣∣)2. (6)

VI. RESULTS
In total, three fixed sensors and three mobile sensors gener-
ated 13,128measurements fromDec. 12th, 2018 to Dec. 19th,
2018. The entire dataset is divided into non-overlapping two
parts for training and test, while the time intervals in the
training and test datasets varies from task to task.

A. OVERALL PERFORMANCE COMPARISONS WITH
DIFFERENT PREDICTION ALGORITHMS
In this section, we used RFR, SVR and GBR to validate the
overall performance of our proposed air quality prediction
model. We split the entire dataset into 8 non-overlapping
training and test pairs, where each individual day from
Dec. 12th to Dec. 19th is a test dataset and all the prior
date forms the training dataset, respectively. Table 2 presents
the overall performance of different regression algorithms
across various test days. Values in bold indicates the best
prediction in a specific testing day.We can see that in general,
GB regressor achieved the highest prediction accuracy as
shown in Table 2, while RFR and SVR has marginally better
performance in one or two days.

We provided sample prediction results in Fig. 8 across
different time periods. A few trends are visible in the results.
First, we find that the values of PM10 is greater than that
of PM2.5, as shown in Fig. 7. As expected, there is usually
less PM2.5 content in the environment for PM2.5 than PM10.
Second, we find that predictions for the good air quality
days are much better than the polluted days. For example,
the fine particles’ real value in Fig. 8(c) and Fig. 8(d) are
much higher than other days. In addition, the RMSE value
of the same day, Dec. 16th, is also higher than other days,

FIGURE 7. Observed real micro dust data from our three mobile sensors
at Songdo, Incheon and the values are averaged when there is more than
one sensor working at each moment.

where they are 21.6 for PM10 and 15.8 for PM2.5 as shown
in Table 2, respectively. Finally, we find that the Gradient
Boosting (GB) technique is the most responsive to sudden
changes in patterns. While SVR and RFR are effective in
finding the overall trends, they do not provide good prediction
in the short term.

B. ACCURACY PERFORMANCE WITH DIFFERENT
NUMBER OF GRIDS
For evaluation, we select Dec. 19th, 2018 as the test data
and data from Dec. 10th, 2018 to Dec. 18th, 2018 as the
training data. Since PM2.5 and PM10 are our major interest,
we focus on the prediction accuracy comparison on PM2.5
and PM10, and we chose GBR as our prediction algorithm,
as it outperforms the other two methods in the previous eval-
uation section in general. As shown in Table 3, we counted
the number of samples in each of the 100 grids and divide the
number of samples into 6 intervals based on its distribution:
0 ∼ 10, 11 ∼ 20, 20 ∼ 50, 50 ∼ 100, 100 ∼ 200
and above 200. Then, we calculated the number of grids
in each category and all these grids’ RMSE of prediction.
At last, we averaged the RMSE of all the grids in that specific
category.

We can observe that an increase in the number of training
samples in a grid leads to lower RMSE, and thus higher pre-
diction accuracy. It demonstrates the validity of our methods
and indicates that air quality prediction can be improved with
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TABLE 2. Comparison of the prediction results with different regression algorithms.

collecting more data in the future. We observed a similar
result for carbon dioxide as well.

C. PERFORMANCE WITH DIFFERENT INTERPOLATION
METHODS
As discussed before, the collected data is very sparse on the
geographical grids in a specific time point and the dispersion
characteristics of the fine particles are complex to model.
Therefore, different interpolation techniques are examined
in our model to fill the missing air pollution data in all
the other grids. In order to check whether the interpolation
strengthens our prediction, we compare three different inter-
polation methods with our baseline (no interpolation). Since
conventional interpolation method Kriging [4], [31] shares
the same mean value and confident interval with Gaussian
Process Regression (GPR), we choose linear interpolation
and GPR with different kernels (Gaussian and Cauchy) for
our investigation. We used the same training and test dataset
as described in the previous section.

Table 4 presents the overall prediction results comparing
different interpolation methods (Linear interpolation, GPR+
Cauchy kernel, and GPR+Gaussian kernel) with the original
baseline without interpolation. A clear improvement on the
accuracy can be observed as shown in Table 4 across all
training time intervals. GPR + Gaussian kernel outperforms
both Cauchy kernel and linear interpolation in the final results
for PM10 and PM2.5.

D. PERFORMANCE ON INTEGRATING MOVING IoT
SENSORS
To demonstrate the effectiveness of our hybrid approach in
air quality prediction, we compared the performance between
using 1) fixed sensors only vs. 2) both fixed sensors and
mobile sensors (our approach). In this evaluation, we also
use GBR as the analysis tool, and tested on 4 different days
chosen from the entire dataset. In each test, data collected
from the previous two days ahead of the test date is utilized as
the training data. We calculated and compared the prediction
RMSE from all the grids for bothPM2.5 andPM10 using GBR
in all the four test days and averaged it to obtain the final
RMSE as shown in Table 5.
Details of the training and testing set splits and the final

results are presented in Table 5, where the prediction with
hybrid fixed and mobile sensors outperformed the one with
only fixed sensors in all the test days. With the value of
hybrid method marked in bold, it is clear to observe that

hybrid sensors method can improve the overall prediction
accuracy, compare to using only fixed sensors by 7.0% for
PM10 and 6.5% for PM2.5 on average. Thus, our proposed
method enhanced the performance of air quality prediction.

E. VISUALIZATION
It is challenging to visualize the air quality data because
there are multiple sensors data which are moving around.
Common method for visualizing air quality data [32] is to
overlay a contour map on the geographical map. The pattern
in the contour map is simple, where only limited polluted
locations are identified and presented as point sources. In this
way, the surrounding area’s air quality value is roughly esti-
mated without considering the integrated impact of different
pollution sources. We studied the relative distribution of the
pollutants in Songdo area and drew a heatmap to visualize the
hidden relationship of air quality in the whole area.

The map of our experimental area is shown in Fig. 9,
whose shape is very close to a rectangle. Thus, we defined
the heatmap as a 1,000 × 1,000 pixel image. Since each
pixel in the generated visualization graph corresponds to a
geographically position on map in Fig. 9, we assign a color
value to each pixel according to the air pollution factor value
at that geographical location. This task is implemented in
the following three steps: First, we can obtain the air quality
prediction result in each grid through our proposed prediction
method using the ground truth data form the fixed sensors.
Then the linear regression is used to calculate the air qual-
ity value of each pixel in the 1,000 pixel × 1,000 pixel
image. Lastly, each pixel is assigned a color by mapping
the air quality data to the pre-set color range. Our visual-
ization highlighted the variability across different regions
rather than focusing on the absolute value, which means the
colors on the map represent relative values and enable us
to easily and directly understand the surrounding air quality
conditions.

Figure 9(b) is an example of our visualization showing the
pollutants distribution of PM2.5 at 19/12/2018 19 : 00 : 00
in our divided 100 grids. The color bar at the right hand side
represents the value range on map. The star, round face and
triangle marks on the graph are where the fixed sensors being
installed. Observing the visualization results, we find that the
upper right area has higher concentration of the air pollutant
factors and the center part is less polluted in general. This
is because the upper area is closer to a factory area and the
center region has several green parks and residential areas.
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FIGURE 8. Our prediction using Random Forest Regressor (RFR), Gaussian Boosting (GB) and Support Vector Regressor (SVR) against ground
truths. We show the predictions with different ranges of granularity. We find that GB performs the best among the other prediction methods.
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TABLE 3. Relationship between the number of training samples in a grid vs. the prediction accuracy.

TABLE 4. Results of comparison among different interpolation methods.

TABLE 5. Results of comparison between our method and only using fixed sensors vs. hybrid fixed + IoT sensors.

FIGURE 9. A visualization example of PM2.5 at Songdo, Incheon. The air quality visualization on the right is based on the experiment
area on the left. Areas in blue color means lower content of PM2.5 and red indicates heavier pollution.

VII. DISCUSSIONS AND LIMITATIONS
It is interesting to observe that the errors are much higher in
the last column in Table 4 and 5. The reason is that in our
data set from Dec. 10th – Dec. 14th consists of weekdays and
Dec. 15th is a Saturday, whichmeans the air pollution patterns
in the selected area are different betweenweekdays andweek-
ends. The similar pattern can be also observed on Dec. 16th
in Table 2, which is Sunday. By looking into the data sheet,
the ground-truth data shows that in general weekends have
heavier air pollution. Therefore, weekday or weekend is an
important factor to consider in designing a better air pollution
prediction model.

These days, deep learning techniques are widely used
for classification and regression tasks. However, our initial
results show that deep learning models did not perform well

because of small amount of data and simple classical model
performed better. For future work, after collecting more data,
we plan to experiment extensively with deep learning algo-
rithms and further incorporate different features to improve
the prediction performance.

VIII. CONCLUSION
In this paper, we explored a new way to predict immediate
air quality around people, by combining fixed and mobile
sensors. Our experimental results show that our proposed
hybrid distributed fixed and IoT sensor system is effective
in predicting air quality around the people. In addition, our
proposed system can be practically realizable by leveraging
public transportation system such as buses as well as taxis
to be equipped with IoT sensor devices to measure different
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areas. The predicted air quality data from our system can
be served in various scenarios, such as planing for outdoor
activities.
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