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ABSTRACT Dynamic complex-valued matrix inversion is often used in the field of mathematics and
engineering. Over the past years, many recurrent neural network models have been designed and researched
to analyse the process of matrix inversion without noises interference. However, there are many types of
uncertain noises in actual model design and analysis. In this article, a novel fully complex-valued and robust
Zeroing neural network (CVRZNN) is firstly proposed for calculating the dynamic complex matrix inversion
under the interference of external noise environment, and its robustness is analysed and demonstrated in the
presence of various types of external noises. Compared with the previous zeroing neural network (ZNN)
and the gradient neural network (GNN) for dynamic complex matrix inversion, this novel CVRZNN model
has good robustness under three kinds of external noises. Besides, the theoretical analysis shows that the
CVRZNN model can globally converge to zero under constant noise. Through comparative simulation
results, the excellent performance of the proposed CVRZNN model is obviously demonstrated, which is
much better than that of the previous GNN and ZNN models.

INDEX TERMS Zeroing neural network (ZNN), gradient neural network, dynamic complex-valued matrix
inversion, robustness, external noise.

I. INTRODUCTION
The dynamic complex matrix inversion is often emerged in
scientific research and widely applied in big data processing
[1], MIMO system [2]–[5], robotic arm tracking [6]–[9],
control engineering [10], [11], etc. For solving the problem
of matrix inversion, several scholars found many numerical
methods, such as Newton iterative method [12], Greville
recursive method [13], etc. These numerical iteration meth-
ods are the process of using previous data to produce large
amounts of new data. Nonetheless, it is easy to encounter
a matrix with a large number of dimensions due to the
development of big data, and thus the spatial complexity of
numerical iterative algorithms will increase greatly. To solve
the high spatial complexity, neural network methods are pro-
posed and studied because of its parallel-computation and
distributed-storage ability. For example, many neural network
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models are well developed in the actual calculation process,
such as optimal parallel computing [14]–[16], power elec-
tronics andmotor drives [17], which show better performance
than numerical iterative methods.

Recently, the gradient neural network (GNN)model is used
to solve the static matrix inversion. For example, in [18],
the GNN model with the activation function is used to find
static matrix inversion. Besides, in [19], a novel GNN model
is proposed to solve static complex matrix inversion, which
can achieve a superior performance. Thus we can know that
the GNNmodel has wide applications in solvingmatrix inver-
sion. But the research of GNN is often applied under time
invariant conditions. However, the static matrix cannot satisfy
the requirement of the increasingly developed engineering
techniques, so the time-varying matrix is proposed to be
studied.

To solve time-varying problems effectively, zeroing neural
network (ZNN) [20], [21] has been proposed. This neu-
ral network fully exploits time derivation information of
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time-varying problems, and is able to find the exact solu-
tions. In [22], Lv et al. propose a ZNN model for solving
dynamic linear equations, and this model can reach finite time
convergence if the sign-bi-power function is added. In [23],
Xiao et al. propose a complex-valued nonlinear recurrent
neural network model for solving matrix inversion, which
can get more accurate solution than the ZNN model in solv-
ing the same problems. Those mentioned neural models can
get accurate solutions under the ideal conditions. Besides,
the neural network model is also applied in the fuzzy sys-
tem that are related with time-varying parameter matrix. For
example, in [24], [25], it is concerned with nonfragile H∞
filtering of continuous-time and fuzzy peak-to-peak filtering
with multipath data packet dropouts in fuzzy systems, which
are based on dynamic matrix inversion.

It is worth pointing out that the above mentioned neural
models do not consider noise interference in the process of
solving matrix inversion, but in actual application scenarios,
there are various uncertain noises. Hence, many researchers
start to consider the design of noise-tolerant models in the
study of neural networks [26]–[30]. For example, in [29],
an integral-enhanced ZNN model is designed to solve the
matrix inversion in the real domain under the interference of
various external noises. The theoretical analysis and exper-
imental results show that the state solution can converge to
the theoretical solution under external noises. It must point
out that [29] focuses on matrix inversion in the real domain,
but the study on neural networks for matrix inversion in the
complex domain is also necessary. The main reason is to
expand the research fields of neural networks from the real
to complex domains, and this systematic approach will be
applied to solve a lot of scientific and engineering problems
encountered in the complex domain.

Generally speaking, when we encounter the complex-
valued problems, there are usually two approaches to solve
them. The first method is to separate the real part and
imaginary part, which divides a complex problem into two
real problems and it will increase the computation complex-
ity. For example, in [32], this method is adopted to trans-
form the complex matrix into two real matrices. The second
method is to adopt complex modulus conversion technique,
which can solve directly complex problems in the complex
domain without transformation. For example, in [33], this
method is adopted to solve complex Sylvester matrix equa-
tion in the complex domain. Furthermore, external noises
are considered in the complex-valued problems. For exam-
ple, in [34], Xiao et al. propose a noise tolerant ZNN
model for solving time-varying complex matrix problem
under various kinds of noises, which adopts the first method
to solve complex-valued problem and time complexity and
space complexity are increased. Therefore, in order to reduce
the computation complexity and suppress external distur-
bances, a fully complex-valued and robust zeroing neural
network (CVRZNN) model is designed by using the sec-
ond method to solve the complex-valued matrix inversion
problem under various external noises. Those external noises

mainly include constant noise, linear noise, random noise,
and hybrid noise, etc. In addition, the convergence and robust-
ness of the CVRZNN model are theoretically analyzed in the
presence of constant noise, linear noise, and random noise.
In simulation examples, the GNN model [35], [36] and the
ZNN model [37], [38] are applied to complex-valued matrix
inversion for comparative purpose. The simulation results
show that the state solution of the CVRZNN model can con-
verge to the theoretical inversion of dynamic complex-valued
matrix under external noises, while the ZNN model and the
GNN model can hardly converge to theoretical inversion
under the same conditions.

In the last part of this introduction, we list the contributions
of this work as follows.

• A novel fully complex-valued and robust zeroing neu-
ral network (CVRZNN) model is proposed to solve
dynamic matrix inversion with various types of noises.
The CVRZNN model can directly find the accurate
inversion of complex matrix without extra transforma-
tion, and greatly increase the computational efficiency,
as compared to the handling process of [34].

• The strict theoretical analysis is provided to ensure the
convergence and robustness of the CVRZNN model
simultaneously under noise interferences. It is proved
that the steady-state error of the CVRZNN model can
converge to 0 under constant noise, and can be bounded
by upper bounds under linear and random noises.

• Two different dimensional numerical examples are pre-
sented to illustrate the effectiveness and advantage
of the CVRZNN model, in comparison with existing
neural-network models.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this part, the solving problem and preliminary preparations
are described to lay the foundation for further investigation.
Matrix inversion in the complex domain is often formulated
as follows:

A(t)Z(t)− I = 0 ∈ Cn×n, (1)

where A(t) ∈ Cn×n is a known dynamic complex matrix,
Z(t) ∈ Cn×n is a matrix needed to be worked out in complex
domain, and I ∈ Cn×n is the unit matrix of the complex
domain. It is worth noting that A−1(t) ∈ Cn×n is used to
denote the theoretical solution of (1). In this article, the goal
is to solve Z(t) from (1) by proposing a fully complex-valued
and robust zeroing neural network (CVRZNN) model under
various kinds of external noises. Compared with the neu-
ral model proposed in [34], the CVRZNN model does not
process the real and imaginary parts of the complex matrix
separately, while the complex matrix is treated as a whole to
be discussed and analyzed.

III. DESIN OF CVRZNN MODEL
In this part, there will provide the design steps of the proposed
CVRZNNmodel. For comparison, the ZNNmodel and GNN

VOLUME 8, 2020 87479



S. Liu et al.: Fully Complex-Valued and Robust ZNN Model for Dynamic Complex Matrix Inversion Under External Noises

model are also introduced. The following matrix-valued error
function S(t) is first defined as

S(t) = A(t)Z(t)− I ∈ Cn×n. (2)

The advantage of adopting matrix-valued error function is
to primely monitor the process of solving (1) in complex
domain.

Then, inspired by [28]–[30], the following design formula
with an integral term is designed in the complex domain to
ensure that S(t) can converge to zero under various kinds of
external noises:

Ṡ(t) = −λS(t)− ξ
∫ t

0
S(x)dx ∈ Cn×n, (3)

where λ > 0 and ξ > 0 are scale factors which are used
to gauge the convergence rate of the CVRZNN model. Con-
sidering Eq. (2) and new design formula (3), the CVRZNN
model can be obtained as follows:

A(t)Ż(t) = −λ(A(t)Z(t)− I)− Ȧ(t)Z(t)

− ξ

∫ t

0
(A(x)Z(x)− I)dx. (4)

When it comes to the robustness of CVRZNN model (4),
the model disturbed by various external noise interference is
directly presented as follows:

A(t)Ż(t) = −λ(A(t)Z(t)− I)− Ȧ(t)Z(t)

− ξ

∫ t

0
(A(x)Z(x)− I)dx + φ(t), (5)

where φ(t) ∈ Cn×n represents uncertain noises with matrix-
form, and generally includes constant noise, linear noise,
random noise, and their hybrid noise.

In order to compare with CVRZNNmodel (4), the existing
ZNN and GNN models for complex matrix inversion (1) can
be developed by considering external noises. Specifically, the
ZNN model for computing dynamic complex matrix inver-
sion disturbed by external noise is directly given as below:

A(t)Ż(t) = −λ(A(t)Z(t)− I)− Ȧ(t)Z(t)+ φ(t), (6)

and the GNN model for computing dynamic complex matrix
inversion disturbed by external noise is

Ż(t) = −λAT(x)(A(t)Z(t)− I)+ φ(t), (7)

where λ > 0 and φ(t) ∈ Cn×n are defined the same as the
CVRZNN model.

IV. THEORETICAL ANALYSIS AND RESULTS
In this section, the detailed theoretical analysis of the newly
proposed CVRZNN model will be divided into the follow-
ing two parts. The first is to analyze the global exponential
convergence of CVRZNN model (4), and the second is to
analyze the robustness of CVRZNN model (4) when facing
with various kinds of external noises.

A. CONVERGENCE OF CVRZNN MODEL
In this subsection, the convergence performance of CVRZNN
model (4) in a noiseless environment is proved through two
theories.
Theorem 1: Given a fully complex-valued time-varying

invertible matrix A(t) ∈ Cn×n defined in (1), the state matrix
Z (t) ∈ Cn×n generated by CVRZNN model (4), from any
initial value Z(0) ∈ Cn×n, is globally convergent to the
theoretical inversion A−1(t) of (1).

Proof 1: As for CVRZNN model (4), it can be derived
from the simplified design formula Ṡ(t) = −λS(t) −
ξ
∫ t
0 S(x)dx, which can be equivalently rewritten as the fol-

lowing set of n ∗ n neuron’s dynamic systems:

ṡpq(t) = −λspq(t)− ξ
∫ t

0
spq(x)dx

∀p ∈ {1, 2, · · · , n}, ∀q ∈ {1, 2, · · · , n}, (8)

where spq(t) ∈ C represents the pqth element of S(t). For
showing the stability of Eq. (8), the Lyapunov function can
be defined as follows:

Vpq(t) = |spq(t)|2 + ξ |
∫ t

0
spq(x)dx|2, (9)

where |spq(t)| represents the modulus of the complex variable
spq(t). In complex domain, we have |spq(t)|2 = spq(t)spq(t)
with spq(t) denoting the conjugate of spq(t). As the same rea-

son, we can know |
∫ t
0 spq(x)dx|

2
=
∫ t
0 spq(x)dx

∫ t
0 spq(x)dx

with
∫ t
0 spq(x)dx denoting the conjugate of

∫ t
0 spq(x)dx. Addi-

tionally, it is evident to see the Lyapunov function Vpq(t)
is constantly positive, i.e., Vpq(t) > 0 for any spq(t) 6= 0
or
∫ t
0 spq(x)dx 6= 0, and Vpq(t) = 0 just for spq(t) =∫ t

0 spq(x)dx = 0. Based on Eqs. (8) and (9), we can obtain

V̇pq(t) = ṡpq(t)spq(t)+ spq(t)
˙spq(t)

+ ξspq(t)
∫ t

0
spq(x)dx + ξspq(t)

∫ t

0
spq(x)dx

= −2λspq(t)spq(t)

= −2λ|spq(t)|2 ≤ 0.

According to the Lyapunov stability theory, we can come to
the conclusion that the pqth subsystem (8) is stable and can
globally converge to zero for any p ∈ {1, 2, · · · , n} and q ∈
{1, 2, · · · , n}. Hence, it can be inferred that S(t) can globally
converge to 0. That is, CVRZNN model (4) converges to
the theoretical inversion of dynamic matrix inversion prob-
lem (1). The testimony about the newly proposed CVRZNN
model on global convergence is accomplished.

In order to further investigate the convergence rate of the
newly proposed CVRZNN model (4), we will provide the
following theorem.
Theorem 2: Given a fully complex-valued time-varying

invertible matrix A(t) ∈ Cn×n defined in (1), the state
solution Z(t) obtained by the CVRZNN model (4), from
any initial value Z(0), will exponentially converge to the
theoretical inversion A−1(t) of (1).
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Proof 2: Defining ε(t) =
∫ t
0 S(x)dx, its first-order time

derivative and second-order time derivative are as ε̇(t) = S(t)
and ε̈(t) = Ṡ(t). The noise-tolerant formula Ṡ(t) = −λS(t)−
ξ
∫ t
0 S(x)dx can be rewritten as the following second-order

dynamic system:

ε̈(t) = −λε̇(t)− ξε(t). (10)

Let εpq(t), ε̇pq(t), and ε̈pq(t) denote the pqth item of ε(t),
ε̇(t), and ε̈(t) respectively. The pqth subsystem of (10) can
be depicted as

ε̈pq(t) = −λε̇pq(t)− ξεpq(t). (11)

Obviously, this a second-order linear dynamic system with
scalar-valued, and thus we can analyze its characteristic roots
to show the stability. Let ζ1 and ζ2 be the two solutions of the
above equation (11). Then, we can compute ζ1 = 0.5(−λ +√
λ2 − 4ξ ) and ζ2 = 0.5(−λ −

√
λ2 − 4ξ ). In view of the

initial values εpq(0) = 0, and ε̇pq(0) = spq(0), the solution
to (11) belongs to one of the following three situations.
• If λ2 > 4ξ , ζ1, ζ2 are real number and ζ1 6= ζ2. We have

εpq(t) =
spq(0)(exp(ζ1t)− exp(ζ2t))√

λ2 − 4ξ
,

and further available

spq(t) = ε̇pq(t)

=
spq(0)(ζ1 exp(ζ1t)− ζ2 exp(ζ2t))√

λ2 − 4ξ
.

Then, the error matrix can be derived as follows:

S(t) =
S(0)(ζ1 exp(ζ1t)− ζ2 exp(ζ2t))√

λ2 − 4ξ
.

• If λ2 = 4ξ , ζ1, ζ2 are real number and ζ1 = ζ2. We have

εpq(t) = spq(0)t exp(ζ1t),

and further available

spq(t) = ε̇pq(t)

= spq(0) exp(ζ1t)+ spq(0)ζ1t exp(ζ1t)

= spq(0) exp(ζ1t)(1+ ζ1t).

Then, the error matrix can be derived as follows:

S(t) = S(0) exp(ζ1t)+ S(0)ζ1t exp(ζ1t)

= S(0) exp(ζ1t)(1+ ζ1t).

• If λ2 < 4ξ , ζ1 = x + yi and ζ2 = x − yi are conjugate
complex numbers. Then we have

εpq(t) =
spq(0) sin(yt) exp(xt)

y
,

and further available

spq(t) = spq(0) exp(xt)
(
x sin(yt)

y
+ cos(yt)

)
.

Then, the error matrix can be derived as follows:

S(t) = S(0) exp(xt)
(
x sin(yt)

y
+ cos(yt)

)
.

According to the above three situations and Theorem 1
in [39], we can come to the conclusion that for a fully
complex-valued time-varying invertible matrix A(t) ∈ Cn×n

defined in (1), the state solution Z(t) obtained by the
CVRZNN model (4), from any initial value Z(0), will expo-
nentially converge to the theoretical inversion A−1(t) of (1).

B. ROBUSTNESS OF CVRZNN MODEL WITH NOISES
This part offers three theorems to demonstrate the robustness
performance of the newly proposed CVRZNN model (5)
under three kinds of external noises (i.e., constant noise,
linear time-varying noise and random noise).

1) CONSTANT NOISE
The first type of noise to be discussed is constant noise. In this
situation, the steady-state error of CVRZNN model (5) is
proved to be convergent to zero.
Theorem 3: Given a fully complex-valued time-varying

invertible matrix A(t) ∈ Cn×n defined in (1), while constant
noise φ(t) = φ is added, the state solution Z(t) obtained
by CVRZNN model (5) from any initial value Z(0) globally
converges to the theoretical inversion A−1(t) of (1).

Proof 3: For the pqth subsystem of the proposed
CVRZNN model (5), while the constant noise φ is injected,
according to the Laplace transform [43], we can obtain

µspq(µ) = spq(0)− λspq(µ)−
ξ

µ
spq(µ)+ φpq(µ),

from which we further have

spq(µ) =
µ(spq(0)+ φpq(µ))
µ2 + µλ+ ξ

. (12)

Obviously, µ/(µ2
+ µλ + ξ ) is the transfer function and its

poles are µ1 = 0.5(−λ +
√
λ2 − 4ξ ) and µ2 = 0.5(−λ −√

λ2 − 4ξ ). For λ > 0 and ξ > 0, it is obvious that the
system is stable because its two poles are situated in the left
half plane. Through the Laplace transform, it can be written
as φpq(µ) = φpq/µ. For system (12), using the final value
theorem [43], we can obtain

lim
t→∞

spq(t) = lim
µ→0

µspq(µ)

= lim
µ→0

µ2(spq(0)+ φpq/µ)
µ2 + µλ+ ξ

= 0.

Thus we can come to the conclusion that limt→∞ ‖S(t)‖F =
0. The testimony about constant noise part is accomplished.

2) LINEAR TIME-VARYING NOISE
Because linear time-varying noise is often emerged in
actual applications, it is necessary to discuss the robustness
of the newly proposed CVRZNN model (5) under linear
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time-varying noise. The strict theoretical analysis is given to
prove the superior robustness of CVRZNN model (5) under
linear time-varying noise interference.
Theorem 4: Given a fully complex-valued time-varying

invertible matrix A(t) ∈ Cn×n defined in (1), while linear
time-varying noise φ(t) = Bt is added, the steady-state error
generated by the CVRZNN model (5) is bounded by a finite
upper bound, which is derived as

lim
t→∞
‖S(t)‖F =

‖B‖F
ξ

,

where B denotes a constant matrix.
Proof 4: For each pqth element of CVRZNNmodel (5),

while linear time-varying noise φ(t) = Bt is inject, according
to the Laplace transform [43], we can obtain

µspq(µ) = spq(0)− λspq(µ)−
ξ

µ
spq(µ)+

bpq
µ2 ,

where bpq denotes the pq element of constant matrix B. Then,
we have

spq(µ) =
µ(spq(0)+ bpq/µ2)
µ2 + µλ+ ξ

. (13)

For (13), applying the final value theorem [43], we can obtain

lim
t→∞

spq(t) = lim
µ→0

µspq(µ)

= lim
µ→0

µ2(spq(0)+ bpq/µ2)
µ2 + µλ+ ξ

=
bpq
ξ
.

Obviously, we can come to the conclusion that

lim
t→∞
‖S(t)‖F =

‖B‖F
ξ

.

Especially, we have limt→∞ ‖S(t)‖F → 0 if ξ →∞. The
testimony with linear time-varying noise is accomplished.

3) BOUNDED RANDOM NOISE
Compared with the previous constant noise and linear
time-varying noise, in this part, the robustness of the newly
proposed CVRZNNmodel (5) in the case of bounded random
noise is discussed and analyzed.
Theorem 5: Given a fully complex-valued time-varying

invertible matrix A(t) ∈ Cn×n defined in (1), while
bounded random noise φ(t) = σ (t) < +∞ is added,
the steady-state error generated by CVRZNN model (5)
is bounded by 2

√
2n sup0≤x≤t |σij(x)|/

√
λ2 − 4ξ for λ2 >

4ξ , or 4
√
2nξ sup0≤x≤t |σij(x)|/(λ

√
4ξ − λ2) for λ2 < 4ξ ,

where σij(t) represents the ijth item of σ (t). Besides,
limt→∞ ‖S(t)‖F can be random small for large enough λ and
an appropriate value of ξ .

Proof 5: While a bounded random noise φ(t) = σ (t) is
added, CVRZNN model (5) can be transformed as follows:

Ṡ(t) = −λS(t)− ξ
∫ t

0
S(x)dx + σ (t),

of which its pqth subsystem can be depicted as

ṡpq(t) = −λspq(t)− ξ
∫ t

0
spq(x)dx + σpq(t). (14)

For different λ and ξ , we can consider three situations to be
discussed.
• If λ2 > 4ξ , for (14), we can obtain

spq(t) =
spq(0)(ζ1 exp(ζ1t)− ζ2 exp(ζ2t))

(ζ1 − ζ2)

+

( ∫ t

0

(
ζ1 exp(ζ1(t − x))− ζ2 exp(ζ2(t − x))

)
× σpq(x)dx

) 1
(ζ1 − ζ2)

,

where ζ1 and ζ2 have been defined as before, i.e., ζ1,2 =
(−λ ±

√
λ2 − 4ξ )/2. Through the triangle inequality,

it can obtain

|spq(t)| ≤
|spq(0)(ζ1 exp(ζ1t)− ζ2 exp(ζ2t))|

(ζ1 − ζ2)

+

∫ t
0 |ζ1 exp(ζ1(t − x))| · |σpq(x)|dx

(ζ1 − ζ2)

+

∫ t
0 |ζ2 exp(ζ2(t − x))| · |σpq(x)|dx

(ζ1 − ζ2)
.

Furthermore, it can obtain

|spq(t)| ≤
|spq(0)(ζ1 exp(ζ1t)− ζ2 exp(ζ2t))|

(ζ1 − ζ2)

+
2

(ζ1 − ζ2)
max
0≤x≤t

|σpq(x)|

=
|spq(0)(ζ1 exp(ζ1 t)− ζ2 exp(ζ2t))|

(ζ1 − ζ2)

+
2√

λ2 − 4ξ
max
0≤x≤t

|σpq(x)|.

Finally,

lim
t→∞
‖S(t)‖F ≤

2
√
2n√

λ2 − 4ξ
sup

0≤x≤t
|σpq(x)|.

• When λ2 = 4ξ , for (14), we can obtain

spq(t) = spq(0)tζ1 exp(ζ1t)+ spq(0) exp(ζ1t)

+

∫ t

0
((t − x)ζ1 exp(ζ1(t − x)))σpq(x)dx

+

∫ t

0
exp(ζ1(t − x))σpq(x)dx,

where ζ1 is defined as before, i.e., ζ1 = (λ +√
λ2 − 4ξ )/2 = −λ/2. For ζ1 = −λ/2, λ > 0, |ζ1| > 0

and t >= 0, there exist τ > 0 and ν > 0 such
that

|ζ1|t exp(ζ1t) ≤ τ exp(−νt). (15)
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Based on the foundations of the inequality (15) and the
triangle inequality, we have

|spq(t)| ≤ |spq(0)(ζ1t exp(ζ1t)+ exp(ζ1t))|

+

∫ t

0
|τ exp(−ν(t − x))| · |σpq(x)|dx

+

∫ t

0
| exp(ζ1(t − x))| · |σpq(x)|dx

≤ |spq(0)(ζ1t exp(ζ1t)+ exp(ζ1t))|

+
(τ
ν
−

1
ζ1

)
max
0≤x≤t

|σpq(x)|.

Finally,

lim
t→∞
‖S(t)‖F ≤

(τ
ν
−

1
ζ1

)√
2n sup

0≤x≤t
|σpq(x)|.

• When λ2 < 4ξ , for (14), we can obtain

spq(t) = spq(0) exp(αt)(α sin(βt)/β + cos(βt))

+

∫ t

0

(
α sin(β(t − x)) exp(α(t − x))/β

+ cos(β(t − x)) exp(α(t − x))
)
σpq(x)dx,

where α and β are defined as α = −λ/2 and β =√
4ξ − λ2)/2. According to the foundations of the tri-

angle inequality, in the similar way, it can obtain

|spq(t)| ≤ |spq(0) exp(αt)(α sin(βt)/β + cos(βt)))|

−

√
α2 + β2

αβ
max
0≤x≤t

|σpq(x)|

= |spq(0) exp(αt)(α sin(βt)/β + cos(βt))|

+
4ξ

λ
√
4ξ − λ2

max
0≤x≤t

|σpq(x)|.

Finally,

lim
t→∞
‖S(t)‖F ≤

4
√
2ξn

λ
√
4ξ − λ2

sup
0≤x≤t

|σpq(x)|.

Thus the testimony with bounded random noise is accom-
plished.
Remark 1: It is worth noting that the proof of (15) can

be found in Appendix 1 of [39], and the main derivative
process is shown as below. From the given conditions with
the inequality (15), it can be converted as

0 ≤ t ≤ 2τ (exp((λ/2)− ν)t)/λ. (16)

When t = 0, for any τ > 0 and ν > 0, the inequality (16) as
well as (15) are true. Then, we just need to prove the situation
of t > 0. For insuring the inequality (15) being always true,
we should keep (λ/2 − ν) > 0. By taking the logarithm of
the inequality (16), we can obtain

ln t ≤ ln(2τ/λ)+ ((λ/2)− ν)t.

That is,

ln(2τ/λ) ≥ ln t − ((λ/2)− ν)t. (17)

It is evident that if ln(2τ/λ) is lager than or equal to the
maximum value of ln t − ((λ/2) − ν)t , the equality of (17)
will always be true. That is, the equalities (16) and (15) will
always be true. The following steps will find the maximum
value of ln t − ((λ/2) − ν)t . We can find the maximum
value of ln t − ((λ/2) − ν)t by taking the derivative of the
function, finding the stationary point of the function and then
determining the maximum value. Through the computation,
we can obtain the stationary point t = 2/(λ − 2ν). Taking
t = 2/(λ − 2ν) into ln(2τ/λ) = ln t − ((λ/2) − ν)t ,
we can obtain (2τ/λ)(λ/2) − ν exp(1) = 1, which is the
condition for the quality in (15). Then, we can discuss the
right-hand side of (17) with the maximum value for insuring
the inequality (15) always true in any others cases. Taking
t = 2/(λ− 2ν) into (15), we can obtain

(2τ/λ)(λ/2− ν) exp(1) ≥ 1. (18)

Setting τ = λ/2 in (18), we can get 0 ≤ ν ≤ λ/2− exp(−1).
And then the equality of (15) can be proved by discussing
formula λ/2− exp(−1).

V. ILLUSTRATIVE EXAMPLES
In the previous sections, it has been analysed and demon-
strated to possess the convergence and robustness of
CVRZNN model (5) under different kinds of external noises.
In this section, two examples on complex-valued matrix
inversion will be presented to illustrate the superior perfor-
mance of CVRZNN model (5) as compared with existing
GNN and ZNN models.

A. EXAMPLE I
In order to further verify the globally convergence and
the robustness of CVRZNN model(5), we can consider the
following example for complex-valued time-varying matrix
A(t):

A(t) =
[
cos(8t)+ i − sin(8t)+ i
sin(8t)+ i cos(8t)+ i

]
∈ C2×2. (19)

For verifying the accuracy of the state solutions gener-
ated by CVRZNN model (5), ZNN model (6), and GNN
model (7), the theoretical inversion of this time-varying com-
plex matrix (19) is computed as follows:

A−1(t) =
[
cos(8t)+ i sin(8t)+ i
− sin(8t)+ i cos(8t)+ i

]
∈ C2×2.

Besides, four different noise-disturbed cases are respec-
tively discussed when CVRZNN model (5), ZNN model (6),
and GNNmodel (7) are applied to find complex-valued time-
varying matrix inversion of (19).

1) Noiseless: By setting λ = ξ = 10, and from any
initial states Z (0) generated from [−1, 1]2×2, simula-
tion output results of CVRZNN model (5) for solv-
ing the complex-valued matrix inverse problem (19)
are shown in Figs. 1 and 2. As depicted in Fig. 1
where the red curves represent the theoretical solu-
tion A−1(t) of (19), and the blue curves represent the
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FIGURE 1. State trajectory of the newly proposed CVRZNN model (5) for complex matrix inversion (19) with
λ = ξ = 10 under no noise.

FIGURE 2. Error norm results of the newly proposed CVRZNN model (5) for complex matrix inversion (19)
with different values of λ and ξ under no noise.

state solution of CVRZNN model (5), the state matrix
Z (t) ∈ C2×2 obtained by CVRZNNmodel (5) can con-
verge to the time-varying theoretical inversion A−1(t)
accurately. The corresponding error norm ‖S(t)‖F is
shown in Fig. 2(a) for clearly demonstrating the con-
vergence process of CVRZNN model (5). As seen
in Fig. 2(a), the error norm ‖S(t)‖F synthesized by
CVRZNN model (5) can descend to zero within about
2.5 s. In addition, through expanding the values of
design parameters λ and ξ from λ = ξ = 10
to λ = ξ = 100, the corresponding error norm
‖S(t)‖F is shown in Fig. 2(b), and it only takes about
1.0 s to decrease to 0. The above computer simulation
results verify the previous theoretical analysis results in
Theorem 1.

2) Constant noise: In actually applications, there will exist
noise interference. When constant noise φ(t) = 10 is
injected into CVRZNN model (5), with λ = ξ = 10,
the computer simulation results are depicted in Fig. 3.
It is easy to conclude that the state matrix Z (t) ∈
C2×2 obtained by CVRZNN model (5) converges to
the time-varying theoretical inversion A−1(t) accu-
rately. The corresponding error norm ‖S(t)‖F shown
in Fig. 4(a) needs about 4.5 s to decrease to zero
even in the presence of constant noise φ(t) = 10.
For comparative purposes, ZNN model (6) and GNN
model (7) are applied to compute the complex-valued
matrix inverse of (19) under the same noise-disturbed
environment. Due to similarity, state solution trajecto-
ries of ZNNmodel (6) and GNNmodel (7) are deleted,
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FIGURE 3. State trajectory of the newly proposed CVRZNN model (5) for complex matrix inversion (19) with
λ = ξ = 10 under constant noise φ(t) = 10.

FIGURE 4. Error norm results of the newly proposed CVRZNN model (5) for complex matrix inversion (19)
with different values of λ and ξ under constant noise φ(t) = 10.

and the error norm results are shown in Fig. 4(a).
From this figure, we can conclude that the error
norms of ZNN model (6) and GNN model (7) cannot
converge to zero in the presence of constant noise
φ(t) = 10. Through expanding the values of design
parameters λ and ξ from λ = ξ = 10 to λ =
ξ = 100, it can be conferred from Fig. 4(b) that the
error norms of ZNN (6) and GNN model (7) become
smaller, but still cannot converge to zero. As for
CVRZNN model (5), the convergence time of the error
norm is decreased from about 4.5 s to about 2.0 s.
Through these comparative simulation results, we can
come to the conclusion that CVRZNN model (5)
has the excellent robustness performance for count-
ing complex-valued time-varying matrix inverse in
constant-noise situation.

3) Linear noise: The linear time-varying noise in this
item is discussed and computer simulation results are
depicted in Fig. 5. With λ = ξ = 10, it can be
seen from Fig. 5(a) that the error norm ‖S(t)‖F of
CVRZNN model (5) needs about 2.5 s to decrease
to zero even in the presence of linear time-varying
noise φ(t) = 0.5t . For comparative purposes, ZNN
model (6) and GNN model (7) are applied to com-
pute the complex-valued matrix inverse of (19) under
the same noise-disturbed environment. From Fig. 5(a),
we can conclude that the error norms of ZNNmodel (6)
and GNN model (7) cannot converge to zero. Through
expanding the values of design parameters λ and ξ from
λ = ξ = 10 to λ = ξ = 100, it can be conferred from
Fig. 5(b) that error norms of ZNN model (6) and GNN
model (7) become smaller, but still cannot converge
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FIGURE 5. Error norm results of CVRZNN model (5), ZNN model (6), and GNN model (7) for complex matrix
inversion (19) with different values of λ and ξ under linear time-varying noise φ(t) = 0.5t .

FIGURE 6. Error norm results of CVRZNN model (5), ZNN model (6), and GNN model (7) for complex matrix
inversion (19) with different values of λ and ξ under random noise σpq(t) = 0.5(rand(4,1)− 0.5ones(4,1)).

to zero. As for CVRZNN model (5), the convergence
time of the error norm is decreased from about 2.5 s
to about 1.5 s. Through these comparative simulation
results, we can come to the conclusion that CVRZNN
model (5) has the excellent robustness performance for
counting complex-valued time-varying matrix inverse
under linear time-varying noise situation.

4) Bounded random noise: In this item, the bounded ran-
dom noise σpq(t) = 0.5(rand(4, 1) − 0.5ones(4, 1))
is injected into such three neural models, the error
norms ‖S(t)‖F are shown in Fig. 6 under different
values of design parameters. In Fig. 6(a), with λ =
ξ = 10, it can be seen that the error norm ‖S(t)‖F of
CVRZNN model (5) needs about 4.0 s to decrease to
zero under random noise σpq(t) = 0.5(rand(4, 1) −
0.5ones(4, 1)). In contrast, the error norms of ZNN
model (6) and GNN model (7) cannot converge to zero
under the same noise-disturbed environment. Through
expanding the values of design parameters λ and ξ
from λ = ξ = 10 to λ = ξ = 100, it can be
conferred from Fig. 6(b) that the error norms of ZNN
model (6) and GNN model (7) still cannot converge
to zero. As for CVRZNN model (5), the convergence
time of the error norm is decreased from about 4.0 s
to about 2.0 s. Through these comparative simulation
results, we can come to the conclusion that CVRZNN

model (5) has the excellent robustness performance for
counting complex-valued time-varying matrix inverse
in the random noise situation.

5) In addition to the above three kinds of noise,
we have added another time-varying noise σpq(t) =
0.5(exp(0.2t)) into such three neural models. The error
norms ‖S(t)‖F are shown in Fig. 7 under different val-
ues of design parameters. From Fig. 7(a) and Fig. 7(b),
they have the same results as the previous noises.
Through expanding the values of design parameters λ
and ξ from λ = ξ = 10 to λ = ξ = 100, it can
accelerate the convergence rate of CVRZNNmodel (5).
However, ZNN model (6) and GNN model (7) still
cannot converge to 0. Additional experimental results
also suggest that CVRZNNmodel (5) has the excellent
robustness performance for counting complex-valued
time-varying matrix inverse with the time-varying
noise interference.

In general, experimental results show that the CVRZNN
model has superior performance for solving the inverse of
dynamic complex matrix with noise interference.

B. EXAMPLE II
In order to further verify the global convergence and the
robustness of CVRZNN model (5), we can transform the
2-dimensional complex matrix into a 4-dimensional complex
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FIGURE 7. Error norm results of CVRZNN model (5), ZNN model (6), and GNN model (7) for complex matrix
inversion (19) with different values of λ and ξ under noise σpq(t) = 0.5(exp(0.2t)).

FIGURE 8. Error norm results of CVRZNN model (5) for complex matrix inversion (20) with the same λ
[i .e., λ = 6] and diverse ξ [i .e., ξ = 5,9,15] under different external noises.

matrix as follows:

B(t)=


cos(8t) − sin(8t)+i − sin(8t) cos(8t)+ i
sin(8t) cos(8t)+i cos(8t) sin(8t)+ i
sin(8t) − cos(8t)+i cos(8t) − sin(8t)+ i
− cos(8t) − sin(8t)+i sin(8t) cos(8t)+ i



C(t) =


i 0 i 0
i 0 i 0
i 0 i 0
i 0 i 0

 ∈ C4×4,

A(t) = B(t)+ C(t) ∈ C4×4. (20)

In this example, we study different values of design param-
eters λ and ξ to discuss CVRZNN model (5) in the presence
of four kinds of external noises. Specifically, λ is always

set as 6, and ξ is set as 5, 9 and 15, which represent the
situations of λ2 − 4ξ > 0, λ2 − 4ξ = 0 and λ2 −
4ξ < 0 separately. The simulation results of error norm
‖S(t)‖F = ‖A(t)Z (t)−I‖F generated by CVRZNNmodel (5)
are demonstrated in Fig. 8. Due to the noise interference,
the comparison results of ZNNmodel (6) and GNNmodel (7)
will lead to large errors, and thus their simulations are ignored
in this example. As depicted in Fig. 8(a), the steady-state error
norm of CVRZNNmodel (5) can converge to zero accurately
with no noise interference. In addition, as the value of ξ
is increased from 5 to 9 and to 15, the convergence speed
of CVRZNN model (5) is continuously accelerated. At the
same time, when a constant noise, time-varying noise or
random noise is injected into CVRZNN model (5), as shown
in Fig. 8(b), (c) and (d) respectively, the steady-state error
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norm of CVRZNN model (5) can still converge to zero
quickly. In addition, the convergence speed of CVRZNN
model (5) can be accelerated with the value of ξ is increased,
which illustrates efficacy of CVRZNN model (5) for solv-
ing dynamic complex-valued matrix inversion problem under
external noise interference.

VI. CONCLUSION
For solving dynamic complex-valued matrix inversion
problem under external noise interference, a novel
fully complex-valued and robust zeroing neural net-
work (CVRZNN) model (5) has been represented and anal-
ysed. Through theoretical proof, it can be seen that the
steady-state error of CVRZNN model (5) can globally and
exponentially converge to 0 with three kinds of external
noises, which has demonstrated the solution obtained by
CVRZNN model (5) can converge to the theoretical solution
of the dynamic matrix inversion problem. For experimental
comparison, ZNN model (6) and GNN model (7) have been
introduced to solve the same problem in the complex domain.
The comprehensive results show that CVRZNN model (5)
has superior performance to ZNN model (6) and GNN
model (7) for solving the dynamic complex-valued matrix
inversion problem. Besides, due to the uncertainty of noise
in industry, the design formula with integral term cannot
satisfy the finite-time convergence. So in the future work,
several activation functions will be considered to accelerate
the convergence rate of the model to achieve finite-time
convergence and improve the noise-disturbance capacity of
the model.
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