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ABSTRACT A suitable solution for a nonlinear descriptor system with uncertainties is considered in this
paper by designing a fuzzy-modeled prescribed performance integral controller. The system with a parasitic
parameter ε is known as the descriptor system, and this parasitic parameter is used for specifying a fast
mode of such a system. Based on a linear matrix inequality (LMI) approach, the interaction of fast and slow
dynamic modes which causes ill-conditioned LMI result has normally occurred in the nonlinear descriptor
system with uncertainties. Therefore, with the design of the fuzzy-modeled prescribed performance integral
controller, such a system with parametric uncertainties is represented by a Takagi-Sugeno fuzzy model,
and the H∞ fuzzy state-feedback controller is designed to achieve an adequate condition for overcoming
the effects of the parasitic parameter, the uncertainties, and the exogenous input disturbance. Moreover, the
integral controller is added to increase the performances of stability. In summary, the design process of the
proposed controller and the numerical example serve to illustrate various performance results of the proposed
controller.

INDEX TERMS H∞ fuzzy controller, integral controller, linear matrix inequality (LMI), Takagi-Sugeno
fuzzy model, uncertain nonlinear descriptor system.

I. INTRODUCTION
For general engineering, the descriptor system has been an
active area of research for five decades. The descriptor sys-
tem is widely known as a reliable numerical algorithm for
complex systems that have a parasitic parameter. The para-
sitic parameter is normally a small value capable of causing
a number of problems that are unable to be controlled or
unsolvable in any system. For the control engineer, the most
pressing problem is that the system has high dimensionality,
so these problems can be alleviated by using themathematical
framework of the descriptor system, which is called a reduc-
tion technique. The concept of such a technique is defining
the parasitic parameter as the ε symbol to separate the fast
mode system from the slow mode system into the descriptor
system that is arranged as the state-space form. The so-called
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technique has been studied by many researchers in area of
control systems [1]–[11].

The descriptor system can be separated into a linear and
a nonlinear system that provide an advantage for solving
different characteristics of general systems. For the linear
descriptor system, a dynamic linear system sometimes cannot
avoid the variant parameters such as the internal disturbance,
external disturbance, variant temperature, and other uncer-
tainties; consequently, several successful studies have ana-
lyzed an approach to solving the problem of the existence of
variant parameters by anH∞ controlmethod over the past two
decades [6]–[9]. On the other hand, the nonlinear system has
become more complex characteristics compared to the linear
one. Therefore, the powerful tools known as the switching
controllers [12]–[14] have been employed to deal with the
nonlinear system with disturbances and uncertainties; how-
ever, the nonlinear descriptor system is more complex than
general nonlinear system because of the involved parameter
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of the state-space model that produces an interaction of fast
and slow dynamicmodes. However, while researchers can use
the H∞ control method to solve the effect of the nonlinearity,
this method can be only be designed for the slow dynamic
mode of the nonlinear descriptor system [15]–[18]. Thus, the
study of the H∞ control design for the nonlinearity of the
descriptor system requires more the development.

The method that is the most powerful tool for the nonlinear
descriptor system is the Takagi-Sugeno fuzzy model. The
concept of the Takagi-Sugeno fuzzy model relies on using the
linear system model, substituting it into the nonlinear model
by sublinear models, and combining it with IF-THEN rules
and fuzzy membership functions to approximate the non-
linearity [19]–[41]. Over the past two decades, the Takagi-
Sugeno fuzzy model has been used in combination with H∞
control design [17]–[24] and has been employed to describe
the nonlinear descriptor system for easy analysis by many
studies [35]–[39]. Moreover, the nonlinear descriptor sys-
tem with uncertain characteristics achieved by the robust
H∞ control design addresses both state-feedback and output-
feedback [36]. However, although the uncertain nonlinear
descriptor system has been applied in many applications, dif-
ferent applications always have different problems to address.

For improvement of in the control area, an integral con-
trol design has been developed for improving and achieving
performance in controlling various control field [42]–[51].
Based on the LMI approach, the asymptotic stability has been
ensured by using the integral sliding-mode control, such that
this method can remove a restrictive fuzzy assumption of
the integral sliding-mode control [48], [49]. Considering the
next application, the doubly fed induction generator (DFIG)
wind energy system has been guaranteed to have asymptotic
stability under the nonlinearity, uncertain parameters, and
the disturbance by employing the robust H∞ fuzzy integral
controller [50].Moreover, an H∞ fuzzy integral controller
has been considered for the case of the nonlinear descrip-
tor system [51]; however, an issue regarding the existence
of uncertain parameters remains to be considered in the
literature.

Briefly, the uncertain nonlinear descriptor system with dis-
turbance remains to be gently considered in points of various
methods which are mentioned above. So far, the combination
of three powerful methods; the robustH∞ control, the Takagi-
Sugeno fuzzy model, and the integral control, for such a
system has not yet been examined in the literature, so the
contributions of this study are concisely explained as follows:

1) The uncertain nonlinear descriptor system with dis-
turbance is described and approximated by Takagi-
Sugeno fuzzy model.

2) According to computational point of views, the design
of proposed controller for uncertain nonlinear descrip-
tor system has been examined by using the Lyapunov
function and has been described in terms of LMIs.

3) The proposed controller can overcome the uncertainty
and the disturbance effect, and also obtains the better

transient response of the system when compared with
[35] and [37], which is validated through an example.

Thus, this paper emphasizes designing the fuzzy-modeled
prescribed performance integral controller based on the LMI
approach for the case of the uncertain nonlinear descriptor
system. First, the nonlinear descriptor systemwith parametric
uncertainties is described in the mathematical framework of
the Takagi-Sugeno fuzzy model and thoroughly illustrated
in the problem statement and modeling section. Second, the
main findings of this paper are shown in the main results
section. The mathematical framework of the Takagi-Sugeno
fuzzy model describing the nonlinear descriptor system with
parametric uncertainties in the first section will be consid-
ered for designing a suitable controller that can overcome
the effect of the existence of parasitic parameters, nonlin-
earity, disturbances, and uncertainties. Based on the LMI
approach, the fuzzy-modeled prescribed performance inte-
gral controller must achieve a set of adequate conditions,
such that the L2-gain of mapping from the regulated output
energy to the exogenous input disturbance energy is less than
or equal to definable value γ . In Lemma 2, as established
by the concept of designing a conventional controller, the
ill-conditioned LMI occurs because of the interaction of fast
and slow dynamic modes, so Theorem 1 has been established
to show how to solve the ill-conditioned LMI by separating
the ε-independent LMI from the ε-dependent LMI. Third,
the numerical example has been simulated with the proposed
controller and the results are demonstrate with many exam-
ples in the example section. In summary, the results of the
examples will be further explained in brief in the conclusions
section.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. THE UNCERTAIN NONLINEAR DESCRIPTOR SYSTEM
In this study, the significant system is considered in the
following uncertain nonlinear descriptor system.

ẋ1(t) = f (x1(t), x2(t), u(t),w1(t)) (1)

εẋ2(t) = f (x1(t), x2(t), u(t),w2(t)) (2)

y(t) = f (x1(t), x2(t)) (3)

z(t) = f (x1(t), x2(t)) (4)

where x1(t) ∈ <a and x2(t) ∈ <b are the state vectors,
u(t) ∈ <c is the input, w1(t) ∈ <d and w2(t) ∈ <e are the
disturbances, y(t) ∈ <l is the measured output, z(t) ∈ <m

is the controlled output, and ε(ε > 0) is the parasitic
parameter.

Based on Takagi-Sugeno fuzzy modeling, the uncertain
nonlinear descriptor system (1)-(4) can be rewritten as
follows:

Plant Rule r:
IF s1(t) is Mr1 and , . . . and sp(t) is Mrp THEN

ẋ1(t) =
(
A11r +4A11r

)
x1(t)+

(
A12r +4A12r

)
x2(t)

+
(
B1r +4B1r

)
u(t)

+
(
Bw1r
+4Bw1r

)
w1(t) (5)
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εẋ2(t) =
(
A21r +4A21r

)
x1(t)+

(
A22r +4A22r

)
x2(t)

+
(
B2r +4B2r

)
u(t)

+
(
Bw2r
+4Bw2r

)
w2(t) (6)

y(t) =
(
Cy1r +4Cy1r

)
x1(t)

+
(
Cy2r +4Cy2r

)
x2(t) (7)

z(t) =
(
Cz1r +4Cz1r

)
x1(t)

+
(
Cz2r +4Cz2r

)
x2(t) (8)

where r = 1, 2, 3, . . . , j, j represents the IF-THEN
rules, Mio(o = 1, 2, 3, . . . , p) represents the fuzzy set,
s1(t), . . . , sp(t) are the premise variables, the matrices
A11r ,A12r ,A21r ,A22r ,B1r ,B2r , Bw1r

,Bw2r
,Cy1r ,Cy2r ,

Cz1r ,Cz2r are the appropriate matrices, and the matrices
4A11r ,4A12r ,4A21r ,4A22r ,4B1r ,4B2r ,4Bw1r

,

4Bw2r
,4Cy1r ,4Cy2r ,4Cz1r ,4Cz2r are the system uncer-

tainties which satisfy an assumption.
Then, the final outputs of Takagi-Sugeno fuzzy modeling

given a set of (x1(t), x2(t), u(t)) in (5)-(8) are expressed as
follows:

ẋ1(t) =
j∑

r=1

ρr (s(t))
(
(A11r +4A11r )x1(t)

+ (A12r +4A12r )x2(t)+ (B1r +4B1r )u(t)

+ (Bw1r
+4Bw1r

)w1(t)
)

(9)

εẋ2(t) =
j∑

r=1

ρr (s(t))
(
(A21r +4A21r )x1(t)

+ (A22r +4A22r )x2(t)+ (B2r +4B2r )u(t)

+ (Bw2r
+4Bw2r

)w2(t)
)

(10)

y(t) =
j∑

r=1

ρr (s(t))
(
(Cy1r +4Cy1r )x1(t)

+ (Cy2r +4Cy2r )x2(t)
)

(11)

z(t) =
j∑

r=1

ρr (s(t))
(
(Cz1r +4Cz1r )x1(t)

+ (Cz2r +4Cz2r )x2(t)
)

(12)

where

ρr (s(t)) =
ζr (s(t))
j∑

r=1
ζr (s(t))

,

ζr (s(t)) =
n∏

o=1

Mio(so(t)).

for all t .Mio(so(t)) is the grade of membership of so(t) inMio.
Let

j∑
r=1

ζr (s(t)) > 0, r = 1, 2, . . . , j;

ζi (s(t)) ≥ 0.

and

j∑
r=1

ρr (s(t)) = 1, r = 1, 2, . . . , j;

ρr (s(t)) ≥ 0.

for all t .

B. PROBLEM STATEMENT
Here, a novel controller for the system is considered in
this subsection. The fuzzy-modeled prescribed performance
integral controller for the nonlinear descriptor system with
uncertainties (9)-(12) is inferred as follows:

Controller Rule f :
IF s1(t) is Mf 1 and , . . . and sp(t) is Mfp THEN

u(t) =
(
K1f x1(t)+ K2f x2(t)+ KIf q(t)

)
(13)

where f = 1, 2, 3, . . . , j, j represents the IF-THEN rules, q(t)
is the integral-state vector, K1f and K2f are the gains of state-
feedback controllers, and KIf is the gain of the state feedback
of integral controller.

Based on the fuzzy-modeled design approach, the com-
plete form of the fuzzy-modeled prescribed performance inte-
gral controller is inferred as follows:

u(t) =
j∑

f=1

ρf (s(t))
(
K1f x1(t)+ K2f x2(t)+ KIf q(t)

)
(14)

Next, the uncertain nonlinear descriptor systems described
by the Takagi-Sugeno fuzzy model (9)-(12) with the fuzzy-
modeled prescribed performance integral controller (14), as
shown in Fig. 1, can be rewritten as follows:

Eε ˙̆x(t) =
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
(Ărf +4Ărf )x̆(t)

+ (B̆wr +4B̆wr )$ (t)
)

(15)

y̆(t) =
j∑

r=1

ρr (s(t))
(
(C̆yr +4C̆yr )x̆(t)

)
(16)

z̆(t) =
j∑

r=1

ρr (s(t))
(
(C̆zr +4C̆zr )x̆(t)]

)
(17)

with

Ărf =

A11r + B1rK1f A12r + B1rK2f B1rKIf
A21r + B2rK1f A22r + B2rK2f B2rKIf

Cy1r Cy2r 0

 ,
B̆wr =

Bw1r
0 0

0 Bw2r
0

0 0 I

 ,
C̆yr =

[
Cy1r Cy2r 0

]
,

C̆zr =
[
Cz1r Cz2r 0

]
,
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FIGURE 1. The block diagram of the fuzzy-modeled prescribed performance integral controller for the uncertain nonlinear
descriptor systems.

x̆(t) =

 x1(t)x2(t)
q(t)

 , $ (t) =

w1(t)
w2(t)
0

 ,
Eε =

 I 0 0
0 εI 0
0 0 I

 .
where the matrices 4Ărf ,4B̆wr ,4C̆yr , and 4C̆zr represent
the uncertainties of such a system that satisfies the following
assumption.
Assumption 1:

4Ărf = G(x̆(t), t)F1r ,4B̆wr = G(x̆(t), t)F2r ,

4C̆yr = G(x̆(t), t)F3r ,4C̆zr = G(x̆(t), t)F4r .

where Fkr , k = 1, 2, 3, 4 are matrix functions featuring the
structure of such uncertainties. In addition, the inequality of
such matrix functions holds as follows:

‖G(x̆(t), t)‖ ≤ β.

for any positive constant β. Subsequently, let us consider the
following definition.
Definition 1: H∞ performance can be guaranteed to over-

come disturbances and exhibit asymptotically robust stability
when the closed-loop systems (15)-(17) have been achieved,
such that the condition is met that the L2-gain must be less
than or equal to positive real number γ :∫ Tf

0
z̆T (t)z̆(t) dt ≤ γ 2

∫ Tf

0
$ T (t)$ (t)dt (18)

for all Tf ≥ 0 and$ (t) ∈ L2[0,Tf ].
Lemma 1 [53]:Considering in a normed vector space, the

triangle inequality is written as follow:

‖O+ U‖ ≤ ‖O‖ + ‖U‖ (19)

with

S̃ ≤ O+ U .

whereO,U , S̃ are the lengths of the sides of the triangle, with
no side being greater than S̃.

C. PRELIMINARIES
Using Assumption 1, the closed-loop of the nonlinear
descriptor system with uncertainties described by the Takagi-
Sugeno fuzzy model with the fuzzy-modeled prescribed per-
formance integral controller (15)-(17) can be expressed as
follows:

Eεχ̇ (t)=
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
Ărf χ (t)

)
+B́wr $́ (t) (20)

ý(t)=
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
C̆yrf χ (t)

)
(21)

ź(t)=
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
Ćzrf χ (t)

)
(22)

where B́wr and Ćzrq are the appropriate matrices defined for

Lemma 2 and Theorem 1, χ (t) =
[
x1(t) x2(t) q(t)

]T
, and

$́ (t) is the disturbance relating to Assumption 1 which is
defined as follows:

$́ (t) =

 1
δ
G(x̆(t), t)F1r x̆(t)
G(x̆(t), t)F2r$ (t)

$ (t)

 (23)

Based on the LMI approach, the process of designing the
fuzzy-modeled prescribed performance integral controller is
provided in this subsection. The Lyapunov function is used to
derive the adequate condition, which addresses the condition
of the fuzzy-modeled prescribed performance integral con-
troller, by achieving Definition 1. In the following lemma, the
symmetric terms that exist in the symmetric block matrices
are replaced by a symbol (∗).
Lemma 2: Given the prescribed scalars γ > 0 and δ > 0,

the closed-loop systems of the uncertain fuzzy descriptor
system (15)-(17) exhibit asymptotically robust stability and
guarantee the H∞ criterion (18) if there exist a matrix
Pε = PTε and matrices Y1f (ε),Y2f (ε),YIf (ε), f = 1, 2, . . . , j
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that satisfy the ε-dependent linear matrix inequalities as
follows:

Pε > 0 (24)

Θrr (ε) < 0, r = 1, 2, . . . , j (25)

Θrf (ε)+Θfr (ε) < 0, r < f ≤ j (26)

where

Θrf (ε) =


(
�rf (ε)+�T

rf (ε)
)

(∗)T (∗)T

E−1ε B́Twr −γ 2I (∗)T

Ćzrf Pε 0 −I


with

�rf (ε) =

 ϕrf1 (ε) ϕrf2 (ε) B1rYIf (ε)
ϕrf3 (ε) ϕrf4 (ε) B2rYIf (ε)
Cy1r Pε Cy2r Pε 0


ϕrf1 (ε) = A11rE

−1
ε Pε + B1rY1f (ε)

ϕrf2 (ε) = A12rE
−1
ε Pε + B1rY2f (ε)

ϕrf3 (ε) = A21rE
−1
ε Pε + B2rY1f (ε)

ϕrf4 (ε) = A22rE
−1
ε Pε + B2rY2f (ε)

B́wr =
[
δI I B̆wr

]
Ćzrf =

[
γβ
δ
FT1r 0

√
2βλFT4r

√
2λC̆T

zr

]T
λ =

1+ β2
j∑

r=1

[
‖FT2rF2r ‖

] 1
2

Remark 1: The proof of Lemma 2 is available in appendix.

III. FUZZY-MODELED PRESCRIBED PERFORMANCE
INTEGRAL CONTROLLER DESIGN
From the case of ε-dependent LMI in Lemma 2, the existence
of the parasitic parameter ε occurs because the LMI given
in Lemma 2 becomes ill-conditioned. In the uncertain non-
linear descriptor systems, this ill-conditioned LMI can occur
naturally, so this situation can be alleviated by the following
theorem.
Theorem 1: Given prescribed scalars γ > 0 and δ > 0, the

closed-loop systems of the uncertain fuzzy descriptor system
(15)-(17) have asymptotically robust stability and guarantee
the H∞ criterion (18) if there exist matrix P and matrices
Y1f ,Y2f ,YIf , f = 1, 2, . . . , j that satisfy the ε-independent
linear matrix inequalities as follows:

VPV +WPW + XPX > 0 (27)

Θrr < 0, r = 1, 2, . . . , j (28)

Θrf +Θfr < 0, r < f ≤ j (29)

where

Θrf =


�11rf (∗)T (∗)T

�21rf �22rf (∗)T

�31rf �32rf �33rf

 (∗)T (∗)T

B́Twr −γ 2I (∗)T

Ćzrf P 0 −I

 ,

VPV = VPTV ,

WPW = WPTW ,

XPX = XPTX .

with

P =

P1 0 P3
P2 P1 P2
P3 0 P1

 , V =

 I 0 0
0 0 0
0 0 0

 ,
W =

 0 0 0
0 I 0
0 0 0

 , X =

 0 0 0
0 0 0
0 0 I

 ,
�11rf = A11rP1 + P1A

T
11r + A12rP2 + P2A

T
12r + B1rY1f

+ Y T1f B
T
1r

�21rf = A21rP1 + P1A
T
12r + A22rP2 + B2rY1f + Y

T
2f B

T
1r

�22rf = A22rP1 + P1A
T
22r + B2rY2f + Y

T
2f B

T
2r

�31rf = Cy1r P1 + Cy2r P2 + P2A
T
12r + P3A

T
11r + Y

T
3f B

T
1r

�32rf = Cy2r P1 + P2A
T
22r + P3A

T
21r + Y

T
3f B

T
2r

�33rf = Cy2r P2 + P2C
T
y2r
+ Cy1r P3 + P3C

T
y1r

B́wr =
[
δI I B̆wr

]
Ćzrf =

[
γβ
δ
FT1r 0

√
2βλFT4r

√
2λC̆T

zr

]T
λ =

1+ β2
j∑

r=1

[
‖FT2rF2r ‖

] 1
2

Note that for the sufficiently small ε̂ > 0, the inequality (18)
holds for ε ∈

(
0, ε̂

]
, so the appropriate fuzzy controller for

the uncertain fuzzy descriptor system is as follows:

u(t) =
j∑

f=1

ρf (s(t))(K1f x1(t)+ K2f x2(t)+ KIf q(t)) (30)

where

Kf = Yf P−1

with

Kf =
[
K1f K2f KIf

]
Proof of Theorem 1. Define a matrix P that is the positive-
definite matrix (27) and holds for ε-independent linear matrix
inequalities (27)-(29) as follows:

P =

P1 0 P3
P2 P1 P2
P3 0 P1

 (31)

with P1 = PT1 > 0. Let

Pε = Eε(P+ εP̃) (32)

with

P̃ =

 0 P2 0
0 0 0
0 P2 0

 (33)
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Substituting (31) and (33) into (32) gains

Pε =

 P1 εP2 P3
εP2 εP1 εP2
P3 εP2 P1

 (34)

With respect to equality (34), the matrix Pε = PTε and there
is a sufficiently small ε̂ such that for ε ∈

(
0, ε̂

]
,Pε > 0.

Using thematrix inversion lemma, the obtained equalities that
support the existence of matrix Pε are

P−1ε =
(
P−1 + εZε

)
E−1ε (35)

where

Zε = −P−1P̃
(
I + εP−1P̃

)−1
P−1,

Eε =

 I 0 0
0 εI 0
0 0 I

 .
Using Assumption 1, the closed-loop fuzzy system (15)-(17)
can be expressed by (20)-(22). Let us consider the following
Lyapunov function

V (χ (t)) = χT (t)EεQεχ (t) (36)

where Qε =
(
P−1 + εZε

)
. Using the matrix inversion

lemma, it can be shown simply as EεQε = QTε Eε and there
is a sufficiently small ε̂ such that for ε ∈

(
0, ε̂

]
,Pε >

0,EεQε > 0. Differentiating V (χ (t)) along the nonlinear
descriptor system with uncertainties and the controller (30)
gains

V̇ (χ (t)) = χ̇T (t)EεQεχ (t)+ χT (t)EεQεχ̇ (t)

V̇ (χ (t)) = χ̇T (t)EεQεχ (t)+ χT (t)QTε Eεχ̇ (t)

V̇ (χ (t)) =
[
ẋT1 (t) εẋ

T
2 (t) q̇

T (t)
]
Qε

 x1(t)x2(t)
q(t)


+
[
xT1 (t) x

T
2 (t) q

T (t)
]
QTε

 ẋ1(t)
εẋ2(t)
q̇(t)


V̇ (χ (t)) =

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
χT (t)ĂTrfQεχ (t)

)

+

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))(χT (t)QTε Ărf χ (t)

+ $́ T (t)B́TwrQεχ (t)
+χT (t)QTε B́wr $́ (t)) (37)

Adding and subtracting −źT (t)ź(t)+ γ 2∑j
r=1

∑j
f=1

∑j
h=1∑j

g=1 ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))
[
$́ T (t)$́ (t)

]
to and

from (37), one obtains

V̇ (χ (t)) =
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))

×
[
χT (t) $́ T (t)

]

×

[
ĂTrfQε + Q

T
ε Ărf + ĆTzrf Ćzhg Q

T
ε B́wr

B́TwrQε −γ 2I

]

×

[
χ (t)
$́ (t)

]
− źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))

× ρg(s(t))
(
$́ T (t)$́ (t)

)
(38)

Using the fact Qε =
(
P−1 + εZε

)
, Q = P−1, and

Zε = −P−1P̃
(
I + εP−1P̃

)−1
P−1 equation (38) becomes

V̇ (χ (t)) =
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))

×
[
χT (t) $́ T (t)

]
×

[
ĂTrfQ+ Q

T Ărf + ĆTzrf Ćzhg Q
T B́wr

B́TwrQ −γ 2I

]

×

[
χ (t)
$́ (t)

]
+ ε1Θrf − źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))

× ρg(s(t))
(
$́ T (t)$́ (t)

)
(39)

where

ε1Θrf =

[
ĂTrf Zε +M

T
ε Ărf ZεB́wr

B́TwrZε 0

]
(40)

For ε-multiplying, the term variable (40) will disappear when
the parasitic parameter (ε) tends to zero. Next, recall Theorem
1 and by substituting Kf = Yf P−1 into (28) and (29), the
linear matrix inequalities are rewritten as follows:

Θrr < 0, r = 1, 2, . . . , j (41)

Θrf +Θfr < 0, r < f ≤ j (42)

where

Θrf =


�11rf (∗)T (∗)T

�21rf �22rf (∗)T

�31rf �32rf �33rf

 (∗)T (∗)T

B́Twr −γ 2I (∗)T

Ćzrf P 0 −I


(43)

with

�11rf = A11rP1 + P1A
T
11r + A12rP2 + P2A

T
12r

+B1r (K1f P1 + K2f P2 + KIf P3)

+ (P1K1f + P2K2f + P3KIf )B
T
1r

�21rf = A21rP1 + P1A
T
12r + A22rP2

+B2r (K1f P1 + K2f P2 + KIf P3)+ P1K2f B
T
1r
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�22rf = A22rP1 + P1A
T
22r + B2rK2f P1 + P1K2f B

T
2r

�31rf = Cy1r P1 + Cy2r P2 + P2A
T
12r + P3A

T
11r

+ (P3K1f + P2K2f + P1KIf )B
T
1r

�32rf = Cy2r P1 + P2A
T
22r + P3A

T
21r

+ (P3K1f + P2K2f + P1KIf )B
T
2r

�33rf = Cy2r P2 + P2C
T
y2r
+ Cy1r P3 + P3C

T
y1r

B́wr =
[
δI I B̆wr

]
Ćzrf =

[
γβ
δ
FT1r 0

√
2βλFT4r

√
2λC̆zr

T
]T

λ =

1+ β2
j∑

r=1

[
‖FT2rF2r ‖

] 1
2

Pre- and post-multiplying (41)-(42) by

Q 0 0
0 I 0
0 0 I

 and using

the fact Q = P−1 gains ĂTrrQ+ QT Ărr (∗)T (∗)T

B́TwrQ −γ 2I (∗)T

Ćzrr 0 −I

 < 0 (44)

and ĂTrfQ+ QT Ărf (∗)T (∗)T

B́TwrQ −γ 2I (∗)T

Ćzrf 0 −I


+

 Ă
T
frQ+ Q

T Ăfr (∗)T (∗)T

B́Twf Q −γ 2I (∗)T

Ćzfr 0 −I

 < 0 (45)

Applying the Schur complement to (44)-(45) and rewriting
the equation as follows:[

ĂTrrQ+ Q
T Ărr + ĆTzrr Ćzrr (∗)T

B́TwrQ −γ 2I

]
< 0 (46)

and[
ĂTrfQ+ Q

T Ărf + ĆTzrf Ćzrf (∗)T

B́TwrQ −γ 2I

]

+

[
ĂTfrQ+ Q

T Ăfr + ĆTzfr Ćzfr (∗)T

B́Twf Q −γ 2I

]
< 0 (47)

Applying (46)-(47) with the following fact

j∑
r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))

×

(
Hrf T Shg

)
≤

1
2

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
Hrf THrf + Srf T Srf

)
(48)

The result is[
ĂTrfQ+ Q

T Ărf + ĆTzrf Ćzrf (∗)T

B́TwrQ −γ 2I

]
< 0 (49)

Accordingly, (49) is less than zero; then, using the fact that
ρr (s(t)) ≥ 0 and

∑j
r=1 ρr (s(t)) = 1, (39) becomes

V̇ (χ (t)) ≤ −źT (t)ź(t)+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))
(
$́ T (t)$́ (t)

)
(50)

Integrating both sides of (50) yields∫ Tf

0
V̇ (χ (t))dt ≤

∫ Tf

0
(−źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
)dt (51)

V
(
χ
(
Tf
))
− V (χ (0)) ≤

∫ Tf

0
(−źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
)dt (52)

Using the fact that χ (0) = 0 and V (χ (Tf )) ≥ 0 for all Tf 6= 0,
then (50) becomes∫ Tf

0
źT (t)ź(t)dt ≤ γ 2

∫ Tf

0

j∑
r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
dt (53)

Substituting ź(t) and $́ (t) given in (22) and (23), respec-
tively, into (53) and using the fact that ‖G(x̆(t), t)‖ ≤ β,

$ (t) =

w1(t)
w2(t)
0

, χ =
 x1(t)x2(t)
q(t)

, and inequality (48) yields
∫ Tf

0

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))

×

(
2λ2β2x̆T (t)FT4rF4r x̆(t)+ 2λ2x̆T (t)ĆTzrf Ćzrf x̆(t)

)
dt

≤ γ 2λ2
∫ Tf

0
$ T (t)$ (t)dt (54)
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Adding and subtracting

λ2z̆T (t)z̆(t) = λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))

×

(
x̆T (t)

(
C̆zr + G(x̆(t), t)F4r

)
×

(
C̆zr + G(x̆(t), t)F4r

)
x̆(t)

)
to and from (54), one has

γ 2λ2
∫ Tf

0
$ T (t)$ (t)dt ≥

∫ Tf

0
λ2z̆T (t)z̆(t)

+

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))

× (2λ2β2x̆T (t)FT4rF4r x̆(t)

+ 2λ2x̆T (t)ĆTzrf Ćzrf x̆(t))

− λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))

× (x̆T (t)

×

(
C̆zr + G(x̆(t), t)F4r

)T
×

(
C̆zr + G(x̆(t), t)F4r

)
× x̆(t)) (55)

Employing the triangle inequality (19) and the fact that
‖G(x̆(t), t)‖ ≤ β, one obtains

2λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
β2x̆T (t)FT4rF4r x̆(t)

+ x̆T (t)ĆTzrf Ćzrf x̆(t)
)

≤ λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))

×

(
x̆T (t)

(
C̆zr + G(x̆(t), t)F4r

)
×

(
C̆zr + G(x̆(t), t)F4r

)
x̆(t)

)
(56)

Using (56) on (55), one obtains∫ Tf

0
z̆T (t)z̆(t)dt ≤ γ 2

∫ Tf

0
$ T (t)$ (t)dt (57)

Finally, inequality (18) holds for ε ∈
(
0, ε̂

]
. This completes

the proof.

IV. NUMERICAL EXAMPLE
This section illustrates how to apply the proposed controller
with the application of the uncertain nonlinear descriptor
system. A circuit of the separately excited dc motor with
parametric uncertainties [52] is shown in Fig. 2, and the
equations of such a system are characterized as follows:

J
dω(t)
dt
= −Dω(t)+ KmLf i2(t)− τL(t) (58)

FIGURE 2. The separately excited dc motor circuit.

TABLE 1. Parameters of the Separately Excited DC Motor.

L
di(t)
dt
= −

(
KmLf i

)
ω(t)− (R±4R) i(t)+ v(t) (59)

where the parameters in Fig. 2 including Lf ,La,Rf ,Ra, if , ia
are the field inductance, the armature inductance, the field
resistance, the armature resistance, the field current, and
the armature current respectively, so some parameters in
(58)-(59) related to [52] can be defined as L 1

= Lf + La,

R 1
= Rf + Ra, and i = if = ia. The state equation variables

are defined as follows: the state vectors x1(t) and x2(t) replace
the angular speed ω(t) and the electric current i(t), respec-
tively; the controlled input u(t) replaces the voltage v(t);
the disturbance w(t) replaces the load torque τL(t); and the
parasitic parameter ε replaces the inductance L. Therefore,
the state equation of the separately excited dc motor circuit
(58)-(59) can be rewritten as follows:

ẋ1(t) = −
D
J
x1(t)+

KmLf
J

x22 (t)−
w(t)
J

(60)

εẋ2(t) = −
(
KmLf x2(t)

)
x1(t)

− (R±4R) x2(t)+ u(t) (61)

y(t) = x2(t) (62)

z1(t) = x1(t) (63)

z2(t) = x2(t) (64)

Given the parameters in the separately excited dc
motor circuit with their values defined in Table 1, the
equation (60)-(64) can be rewritten as follows:

ẋ1(t) = −6x1(t)+ 1.753x22 (t)− 1.42w(t) (65)

εẋ2(t) = − (1.236x2(t)) x1(t)

− (7.2±4R) x2(t)+ u(t) (66)

y(t) = x2(t) (67)

z1(t) = x1(t) (68)

z2(t) = x2(t) (69)

The uncertain nonlinear descriptor systems that are formed
in the Takagi-Sugeno fuzzy model can be used to describe
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equations (65)-(69). The Takagi-Sugeno fuzzy model of the
separately excited dc motor circuit can be described as
follows:
Plant rule 1:

IF s1(t) is M1(s1(t)) and s2(t) is N1(s2(t)) THEN

Eε ˙̃x(t) = (A1 +4A1) x̃(t)+ B1u(t)+ Bww(t)

z̃(t) = Czx̃(t)

ỹ(t) = Cyx̃(t)

Plant rule 2:
IF s1(t) is M1(s1(t)) and s2(t) is N2(s2(t)) THEN

Eε ˙̃x(t) = (A2 +4A2) x̃(t)+ B2u(t)+ Bww(t)

z̃(t) = Czx̃(t)

ỹ(t) = Cyx̃(t)

Plant rule 3:
IF s1(t) is M2(s1(t)) and s2(t) is N1(s2(t)) THEN

Eε ˙̃x(t) = (A3 +4A3) x̃(t)+ B3u(t)+ Bww(t)

z̃(t) = Czx̃(t)

ỹ(t) = Cyx̃(t)

Plant rule 4:
IF s1(t) is M2(s1(t)) and s2(t) is N2(s2(t)) THEN

Eε ˙̃x(t) = (A4 +4A4) x̃(t)+ B4u(t)+ Bww(t)

z̃(t) = Czx̃(t)

ỹ(t) = Cyx̃(t)

where

A1=
[
−6 1.753
−1.236 7.2

]
, A2=

[
−6 1.753
1.236 7.2

]
,

A3=
[
−6 −1.753
−1.236 7.2

]
, A4=

[
−6 −1.753
1.236 7.2

]
,

B1 = B2 = B3 = B4 =
[
0
1

]
, Bw =

[
−1.42

0

]
,

Cy =
[
0 1

]
, Cz =

[
1 0
0 1

]
,

x̃(t) =
[
x1(t)
x2(t)

]
, x̃0(t) =

[
1
0

]
,Eε =

[
I 0
0 ε

]
,

4A1 = G(x̃(t), t)F11 , 4A2 = G(x̃(t), t)F12 ,

4A3 = G(x̃(t), t)F13 , 4A4 = G(x̃(t), t)F14

Assuming that ‖G(x̃(t), t)‖ ≤ β, β = 1 and the values of
R are uncertain and bounded within 30% of their nominal
values, then

F11 = F12 = F13 = F14 =
[
0 0
0 0.3

]
Next, such a nonlinear system can be defined by the

Takagi-Sugeno fuzzy model, so the membership functions
can be defined as in Fig. 3 and 4. Let the X-axis be the state
s1(t) and s2(t), the solid line and dashed line are the first fuzzy
setM1(s1(t)) and the second fuzzy setM2(s1(t)), respectively,

FIGURE 3. Membership function M1(s1(t)) and M2(s1(t)).

FIGURE 4. Membership function N1(s2(t)) and N2(s2(t)).

FIGURE 5. The disturbance input signal w(t).

and the dotted line and dot-dashed line are the third fuzzy set
N1(s2(t)) and the last fuzzy set N2(s2(t)), respectively.

M1(s1(t)) =
s1(t)+ 1.753

3.506
, M2(s1(t)) =

1.753− s1(t)
3.506

N1(s2(t)) =
s2(t)+ 1.236

2.472
, N2(s2(t)) =

1.236− s2(t)
2.472

The example, which applies Theorem 1, has been specified
employing the MATLAB LMI solver, and the results of the
LMI optimization with ε = 0.01 and γ = 1 are shown as
follows:

P =

 2.893 0 0.258
−2.299 2.893 −2.299
0.258 0 2.893

 ,
Y1 =

[
20.085 −21.092 16.849

]
,

Y2 =
[
12.934 −21.092 16.212

]
,

Y3 =
[
20.186 −21.092 16.849

]
,

Y4 =
[
13.035 −21.092 16.213

]
,

K1 =
[
1.155 −7.291 −0.073

]
,

K2 =
[
−1.317 −7.291 −0.073

]
,

K3 =
[
1.190 −7.291 −0.076

]
,

K4 =
[
−1.282 −7.291 −0.076

]
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FIGURE 6. The ratio of the regulated output energy to the disturbance
energy (ε = 0.01).

The result of the proposed controller is

u(t) =
4∑

f=1

ρf (s(t))(K1f x1(t)+ K2f x2(t)+ KIf q(t)) (70)

where

ρ1(s(t)) = M1(s1(t)), ρ2(s(t)) = M2(s1(t)),

ρ3(s(t)) = N1(s2(t)), ρ4(s(t)) = N2(s2(t)),

Remark 2: Regarding the simulation part, Fig. 5 was used
as the system disturbance signal w(t), and the ratio of the
regulated output energy to the exogenous input disturbance
energy of the example, which was simulated by the proposed
controller with ε = 0.01, is shown in Fig. 6. First, the result
of Fig. 6 shows that the value of the ratio tends to a constant

TABLE 2. The different values of ε that can be controlled by the proposed
controller.

value γ of 0.256 after 0.5 sec, so the square root of the con-
stant value γ is 0.506, which is less than the prescribed value.

Moreover, the proposed controller can achieve the H∞
condition based on the LMI approach with different values
of the small parameter ε by reaching the positive-definite
condition of matrix P, which is shown in Table 2. The value
of ε at 0.44 makes the ill-conditioned LMI that cannot obtain
the positive-definite condition of matrix Pε based on Lemma
2, whereas the proposed controller related to ε-independent
LMI according to Theorem 1 can reach the positive-definite
condition of matrix P. In addition, the advantages of the pro-
posed controller related to integral controller can reduce both
the steady-state error and the overshoot for such a system.
Fig. 7 and Fig. 8 are shown that the response performances of
the proposed controller quickly tend to reach the equilibrium

FIGURE 7. The response of the motor’s controlled angular speed x1(t) (ε = 0.01).

FIGURE 8. The response of the motor’s controlled current x2(t) (ε = 0.01).
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point without the steady-state error and the overshoot when
compared with the other methods [35] and [37].
Remark 3: According to Theorem 1, if the higher order

nonlinear system which exists widely in many engineering
descriptor systems, is considered, it may take time to obtain
the result due to the complexity of the calculation and it
is sometimes difficult to obtain the feasible solution. The
high dimension of the ε-independent LMI may be a cause of
this situation. In addition, if the nonlinear descriptor system
with stochastic disturbance and time-delay is examined, this
control problem will not be solved in our proposed technique
and is also the limitation of the proposed control method. This
problem is still an open problem.

V. CONCLUSIONS
The aim of this paper is to present the fuzzy-modeled pre-
scribed performance integral controller for the uncertain non-
linear descriptor system described by the Takagi-Sugeno
fuzzy model. Based on the LMI approach, the adequate
condition of this proposed controller is given to guarantee
the L2-gain and the stability of H∞ performance under the
existence of the parasitic parameter, parametric uncertainties,
and the disturbance in such a system. The Lyapunov func-
tion is employed to prove the achieved condition of such
a controller, and the ill-conditioned LMI can be alleviated
by separating the ε-independent LMI from the ε-dependent
LMI, such that when ε tends to zero, the ε-dependent LMI
also tends to zero. In addition, numerous simulation results of
an example show that the proposed controller can overcome
many important factors; namely, the proposed controller can
reduce the steady-state error, the overshoot, the robust effect,
and the equilibrium point’s time. Thus, the fuzzy-modeled
prescribed performance integral controller is an efficient and
suitable controller for the uncertain nonlinear descriptor sys-
tem. Due to the complexity of the calculation, it may be
difficult to obtain the feasible solution. However, to reduce
the computational complexity and the number of variables,
these problems are interesting and important, and can be
considered under this scheme of the existing research results
in our future research work. In addition, the unknown external
disturbances and the time-varying delay may increase the
complexity of the descriptor control problem which can be
also investigated in our future research work.

APPENDIX
PROOF OF LEMMA 2
Consider the following Lyapunov function

V (χ (t)) = χT (t)Qεχ (t) (71)

whereQε = P−1ε . Differentiating V (χ (t)) along the nonlinear
descriptor system with uncertainties and the controller (14)
yields

V̇ (χ (t))= χ̇T (t)Qεχ (t)+ χT (t)QTε χ̇ (t)

V̇ (χ (t))=
[
ẋT1 (t) ẋT2 (t) q̇T (t)

]
Qε

 x1(t)x2(t)
q(t)



+
[
xT1 (t) xT2 (t) qT (t)

]
QTε

 ẋ1(t)ẋ2(t)
q̇(t)


V̇ (χ (t))=

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
χT (t)E−1ε ĂTrfQεχ (t)

)

+

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))(χT (t)QTε Ărf E
−1
ε χ (t)

+ $́ T (t)E−1ε B́TwrQεχ (t)
+χT (t)QTε B́wrE−1ε $́ (t)) (72)

Adding and subtracting −źT (t)ź(t)+ γ 2∑j
r=1

∑j
f=1

∑j
h=1∑j

g=1 ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))
[
$́ T (t)$́ (t)

]
to and

from (72), one obtains

V̇ (χ (t)) =
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))

×
[
χT (t) $́ T (t)

]
×


 E−1ε ĂTrfQε
+QTε Ărf E

−1
ε

+ĆTzrf Ćzhg

 QTε B́wrE−1ε

E−1ε B́TwrQε −γ 2I


×

[
χ (t)
$́ (t)

]
− źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))

× ρg(s(t))
(
$́ T (t)$́ (t)

)
(73)

Pre- and post-multiplying (25)-(26) by

Qε 0 0
0 I 0
0 0 I

 on gains

E−1ε ĂTrrQε + Q
T
ε ĂrrE

−1
ε (∗)T (∗)T

E−1ε B́TwrQε −γ 2I (∗)T

Ćzrr 0 −I

 < 0 (74)

andE−1ε ĂTrfQε + Q
T
ε Ărf E

−1
ε (∗)T (∗)T

E−1ε B́TwrQε −γ 2I (∗)T

Ćzrf 0 −I


+

E
−1
ε ĂTfrQε+Q

T
ε ĂfrE

−1
ε (∗)T (∗)T

E−1ε B́Twf Qε −γ 2I (∗)T

Ćzfr 0 −I

 < 0 (75)

Using the Schur complement applied to (74)-(75) and rewrit-
ing the equation as follows:

 E−1ε ĂTrrQε
+QTε ĂrrE

−1
ε

+ĆTzrr Ćzrr

 (∗)T

E−1ε B́TwrQε −γ 2I

 < 0 (76)
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and
 E−1ε ĂTrfQε
+QTε Ărf E

−1
ε

+ĆTzrf Ćzrf

 (∗)T

E−1ε B́TwrQε −γ 2I



+


 E−1ε ĂTfrQε
+QTε ĂfrE

−1
ε

+ĆTzfr Ćzfr

 (∗)T

E−1ε B́Twf Qε −γ 2I

 < 0 (77)

Applying (76)-(77) with the following fact
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))ρf (s(t))ρh(s(t))ρg(s(t))

×

(
Hrf T Shg

)
≤

1
2

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
Hrf THrf + Srf T Srf

)
(78)

The result is[
E−1ε ĂTrfQε + Q

T
ε Ărf E

−1
ε +ĆTzrf Ćzrf (∗)T

E−1ε B́TwrQε −γ 2I

]
< 0 (79)

Accordingly, (79) is less than zero; then, using the fact that
ρr (s(t)) ≥ 0 and

∑j
r=1 ρr (s(t)) = 1, (73) becomes

V̇ (χ (t)) ≤ −źT (t)ź(t)+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))
(
$́ T (t)$́ (t)

)
(80)

Integrating both sides of (80) yields∫ Tf

0
V̇ (χ (t))dt ≤

∫ Tf

0
(−źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
)dt (81)

V
(
χ
(
Tf
))
− V (χ (0)) ≤

∫ Tf

0
(−źT (t)ź(t)

+ γ 2
j∑

r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
)dt (82)

Using the fact that χ (0) = 0 and V (χ (Tf )) ≥ 0 for all Tf 6= 0,
then (82) becomes∫ Tf

0
źT (t)ź(t)dt ≤ γ 2

∫ Tf

0

j∑
r=1

j∑
f=1

j∑
h=1

j∑
g=1

ρr (s(t))

× ρf (s(t))ρh(s(t))ρg(s(t))

×

(
$́ T (t)$́ (t)

)
dt (83)

Substituting ź(t) and $́ (t) given in (22) and (23), respec-
tively, into (83) and using the fact that ‖G(x̆(t), t)‖ ≤ β,

$ (t) =

w1(t)
w2(t)
0

, χ =
 x1(t)x2(t)
q(t)

, and inequality (78) yields
∫ Tf

0

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))

×

(
2λ2β2x̆T (t)FT4rF4r x̆(t)+ 2λ2x̆T (t)ĆTzrf Ćzrf x̆(t)

)
dt

≤ γ 2λ2
∫ Tf

0
$ T (t)$ (t)dt (84)

Adding and subtracting

λ2z̆T (t)z̆(t) = λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))

×

(
x̆T (t)

(
C̆zr + G(x̆(t), t)F4r

)
×

(
C̆zr + G(x̆(t), t)F4r

)
x̆(t)

)
to and from (84), one has

γ 2λ2
∫ Tf

0
$ T (t)$ (t)dt ≥

∫ Tf

0
λ2z̆T (t)z̆(t)

+

j∑
r=1

j∑
f=1

ρr (s(t))ρf (s(t))

× (2λ2β2x̆T (t)FT4rF4r x̆(t)

+ 2λ2x̆T (t)ĆTzrf Ćzrf x̆(t))

− λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))

× (x̆T (t)

×

(
C̆zr + G(x̆(t), t)F4r

)T
×

(
C̆zr + G(x̆(t), t)F4r

)
× x̆(t)) (85)

Employing the triangle inequality (19) and the fact that
‖G(x̆(t), t)‖ ≤ β, one obtains

2λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
β2x̆T (t)FT4rF4r x̆(t)

+ x̆T (t)ĆTzrf Ćzrf x̆(t)
)
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≤ λ2
j∑

r=1

j∑
f=1

ρr (s(t))ρf (s(t))
(
x̆T (t)

(
C̆zr+G(x̆(t), t)F4r

)T
×

(
C̆zr + G(x̆(t), t)F4r

)
x̆(t)

)
(86)

Using (86) on (85), one obtains∫ Tf

0
z̆T (t)z̆(t)dt ≤ γ 2

∫ Tf

0
$ T (t)$ (t)dt (87)

Finally, the inequality (18) holds for ε ∈
(
0, ε̂

]
. This com-

pletes the proof.
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