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ABSTRACT Wireless information networks have become a necessity of our day-to-day life. Over a billion
Wi-Fi access points, hundreds of thousands of cell towers, and billions of IoT devices, using a variety of
wireless technologies, create the infrastructure that enables this technology to access everyone, everywhere.
The radio signal carrying the wireless information, propagates from antennas through the air and creates a
radio frequency (RF) cloud carrying a huge amount of data that is commonly accessible by anyone. The
big data of the RF cloud includes information about the transmitter type and addresses, embedded in the
information packets; as well as features of the RF signal carrying the message, such as received signal
strength (RSS), time of arrival (TOA), direction of arrival (DOA), channel impulse response (CIR), and
channel state information (CSI). We can benefit from the big data contents of the messages as well as the
temporal and spatial variations of their RF propagation characteristics to engineer intelligent cyberspace
applications. This paper provides a holistic vision of emerging cyberspace applications and explains how they
benefit from the RF cloud to operate.We begin by introducing the big data contents of the RF cloud. Then, we
explain how innovative cyberspace applications are emerging that benefit from this big data.We classify these
applications into three categories: wireless positioning systems, gesture and motion detection technologies,
and authentication and security techniques. We explain how Wi-Fi, cell-tower, and IoT wireless positioning
systems benefit from big data of the RF cloud. We discuss how researchers are studying applications of RF
cloud features for motion, activity and gesture detection for human-computer interaction, and we show how
authentication and security applications benefit from RF cloud characteristics.

INDEX TERMS Motion detection, gesture detection, authentication, security, cyberspace, smart world, RF
cloud.

I. INTRODUCTION
The holistic view of wireless data communications for office
information networking emerged in the mid-1980’s [1], [2]
and the IEEE 802.11 standardization activity for wireless
local area networking, commercially known as Wi-Fi, began
in late 1980s to address this industry. Today, when we arrive
at a hotel registration desk, the first fundamental questions we
ask related to our basic needs are: Where is my room?Where
is the restaurant? And how can I connect to the Wi-Fi? Over
a billion Wi-Fi access points deployed worldwide connect
our mobile, personal, and fixed devices to the Internet and
cyberspace. They have become an essential part of our lives
to the extent that some people take Wi-Fi as the foundation
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FIGURE 2. Density of Wi-Fi access points in Bay Area, Manhattan and
Seattle, and the RF cloud data generated around them, including
information packets and data embedded in features of RF signal
propagation.
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of human needs, where Maslow’s hierarchy of human needs
lands on (Figure 1, [3], [4]).1

In the late 1990s the IEEE 802.15 standardization
activities began and introduced Bluetooth, ZigBee, and Ultra-
Wideband (UWB) technologies for personal area network-
ing [5]. Radio Frequency Identification (RFID) technologies
have emerged as the icon of supply chainmanagement, inven-
tory control, and many other applications [6]. More recently,
with the emergence of millimeter wave (mmWave) technol-
ogy for Wi-Fi and cellular networks, leading manufacturers
such as Texas Instruments have introduced short range radar
sensor devices employing this technology [7]. Today, the
RF signal radiating from over a billion Wi-Fi access points,
several hundred thousands of cell towers, and trillions of
IoT devices using Bluetooth, ZigBee, UWB, mmWave, and
RFID technologies invites innovative opportunistic big data
application developments for cyberspace [8]. The RF signals
radiating from these devices create an RF cloud reachable
to any device with an RF front end to sense their signals.
The features of these RF signals such as received signal
strength (RSS), time of arrival (TOA), direction of arrival
(DOA), channel impulse response (CIR), and channel state
information (CSI), provide a fertile ground for numerous
innovative opportunistic cyberspace applications.

This paper provides a visionary overview of these emerg-
ing cyberspace applications and explains how they benefit
from RF cloud to operate. We first discuss the big data
contents of features of the RF cloud. Then, we explain how
innovative cyberspace applications are emerging to benefit
from the big data in these features. We begin with explaining
opportunistic wireless positioning benefitting from big data
from the RF cloud. Then, we explain how researchers are
studying applications of these features for motion, activity
and gesture detection as well as authentication and security
to open a new horizon for human-computer interaction.

II. BIG DATA IN THE RF CLOUD
Figure 2 explains the concept of RF cloud for Wi-Fi access
points in a database of a Wi-Fi positioning system in the Bay

Area, Manhattan, and Seattle [9]. The big data embedded
inside the RF cloud are divided into two types: 1) the data
in the information packets to exchange information among
wireless devices, and 2) the data related to the multipath char-
acteristics of RF signals carrying this information. The data
embedded in RF propagation features reflects the structure
of the environment surrounding the source and destination
antennas of the RF devices.

We can also divide wireless devices into two gen-
eral classes, wireless communication devices and radars
(Figure 3). Wireless communication devices (Figure 3a)
transmit symbols, each carrying a limited number of bits
of information in binary format. The transmitted packet of
information consists of a bundle of these symbols carrying

1This paper is based on an invited keynote speech with the same title as
this paper, presented by the lead author at Cyberspace Congress (CyberCon),
Beijing, China, on Dec 17, 2019.

an information packet destined to a receiver with information
about the system and the devices, which are beneficial for
any receiver to gain cyber intelligence. These packets are
broadcast and they are accessible to all other devices in the
coverage area of the transmitter. In indoor and urban areas
where wireless communication devices operate, the received
signal arrives through different paths, bouncing off objects
between the transmitter and the receiver. As such, the signal
contains information related to the objects in the environ-
ment, embedded in the characteristics of the RF propagation
channel between the transmitter and the receiver. Modern
wireless devices measure these characteristics to enhance
the quality of the wireless communication link. That way,
characteristics of the RF propagation channel are available
to end-users. Radars (Figure 3b), similar to communication
devices, also transmit electronic waveforms. However, the
transmitter and receiver are located in the same location and
the received waveforms are compared with the transmitted
symbols to measure the characteristics of the paths reflected
from surrounding objects in the environment.

Receivers in both radars and wireless communication
devices can measure the magnitude, phase, and time of flight
of multiple paths reflected from surrounding objects in the
environment. As objects move in the environment, the data
associated with paths fluctuate and an intelligent receiver can
use this to design motion-related cyberspace applications for
positioning, tracking, motion and gesture detection, authenti-
cation, and security. In recent years, many cyber intelligent
applications have evolved benefitting from the contents of
data broadcast from wireless devices and the data associated
with RF channel characteristics measured by RF receivers.

A. DATA CONTENTS OF FLOATING PACKETS
Figure 4a shows typical fields in a packet used for wireless
communications. It consists of a preamble, starting delim-
iter (SD), destination/source addresses (DA/SA), control bits,
information data, and a checksum code. The length of the
packet depends on the information length and the rest of the
data is considered as the overhead of the packet. Figure 4b
shows the type of data contents in each field of a packet. The
header is different in different technologies and it contains
data on the type of technology used for the packet commu-
nication. Addresses contain data about the source and desti-
nation and can associate the packet to the physical location
of the source. In wireless communications, coverage of the
devices is limited. As a result, when we read a packet from a
transmitter, we knowwe are at a certain distance from its loca-
tion. Control data contains information on communication
links, and sometimes channel information that can be used for
environmental monitoring. The data itself and the checksum
code is aimed for communication applications. This data does
not contain any special information for intelligence, however,
they affect the length of the packet and variations of the length
contain information. For example, variation of the length
of data arriving from a specific device can reflect unique
behavior of the source as a measure for authenticity.
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FIGURE 1. Maslow’s hierarchy of human needs and its perceived relation to Wi-Fi [3], [4].

FIGURE 3. Two classes of wireless devices: (a) wireless communication
devices, with transmitter (Tx) and receiver (Rx) in different locations, and,
(b) Radars with integrated Tx and Rx.

FIGURE 4. (a) Typical fields in a wireless communication packets, (b)
typical common data in floating packets.

B. DATA CONTENTS IN FEATURES OF RF PROPAGATION
Motion in the environment affects RF propagation features
including the received signal strength (RSS), embedded in
the amplitude of the carrier of the received signal, and time
of flight or time of arrival (TOA), which is embedded in the
phase of the carrier of the received signal. The TOA can also
be measured using the envelope of the carrier signal but it is
much less reliable than that obtained from the measurement
of the phase of the signal. Using multiple antennas, we can
also extract direction of arrival (DOA) by utilizing the differ-
ences among the TOAs in antenna arrays. The quality of TOA
ranging for measuring the distance between a transmitter and
a receiver is superior to RSS based ranging. However, TOA-
based ranging is extremely sensitive to excessive multipath
propagation conditions and if it is not controlled, it may

performworse than RSS-based ranging.Multipath conditions
increase as we go into partitioned spaces: in open space areas
there is no multipath, in suburban areas we have some mul-
tipath, in dense urban areas multipath increases significantly,
and in indoor areas it is extensive. If the receiver is capable
of measuring the characteristics of the individual multipath
components, there is an opportunity to take care of multipath
effects using signal processing algorithms [10].

The Channel Impulse Response (CIR) for wireless devices
operating in multipath indoor and urban areas is commonly
represented by:

h(αi; τi; θi, ψi) =
N∑
i=1

αiejθiδ(t − τi)δ(ψ − ψi), (1)

where (αi; τi; θi;ψi) are the magnitude, TOA, phase, and
DOA of the i-th path. In this equation the TOA is related to
the phase of the arriving path by:

τi =
θi

2π fc
=
d
c
, (2)

where fc is the carrier frequency of the signal, d is the length
of the path, and c is the speed of light.

We can calculate the RSS of the received signal from:

RSS = Pr = |r(t)|2

=

∣∣∣∣∣
N∑
i=1

αiejθiδ(t − τi)δ(ψ − ψi)

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
i=1

αi

∣∣∣∣∣
2

(3)

We can easily measure the RSS from a transmitting wireless
device without any synchronization with the source, while
measurement of TOA needs tight synchronization between
the devices as well as some additional signal processing.

As the objects or the wireless devices move in the envi-
ronment or we change the frequency of operation, charac-
teristics of the multipath features fluctuate drastically and
cause fading in the received signal. In the wireless commu-
nication literature, this phenomenon is discussed under tem-
poral, frequency-selective and spatial fading [11]. By taking
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FIGURE 5. Overview of the TI’s mmWave Radar, (a) the physical
appearance, (b) abstraction of CIR. (c) A typical measure of
range-amplitude profile.

the Fourier Transform of these fluctuations we can measure
the speed of movement of the objects. Different wireless
devicesmeasure some of these parameters for enhancing their
communication quality and those measurements are available
for development of other cyberspace applications, which we
present in this paper.

1) RF DATA CONTENT OF RADARS
The popularity of millimeter Wave (mmWave) technology
operating at around 60GHz for the 5G and 6G cellular net-
works has enabled implementation of low-cost short-range
radars at these frequencies. The Texas Instruments mmWave
sensor radar device is a popular example of such devices
operating at 76-81 GHz [7]. This compact and low-cost radar,
shown in Figure 5, emits chirp signals to capture distance,
velocity and angle of objects surrounding the device. This
information includes the RSS, TOA, DOA and velocity of
motion of these objects. This mmWave radar features a flat
8×8Multiple-Input-Multiple-Output (MIMO) array antenna
enabling the device to capture refined spatial information
from detected objects. Operation at high GHz has enabled the
device to have a small array and advancements in microelec-
tronics has integrated this device in a finger-sized package.
Availability of this device in the market initiated a number
of interesting research projects in micro-gesture detection.
We will discuss more details on research on these topics in
section III.B.

FIGURE 6. Overview of DecaWave EVK100 UWB wireless communication
and ranging system, (a) physical appearance, (b) a typical Channel
Impulse response measurement, with abstraction of CIR.

Figure 5 shows the basics of TI’s radar characteristics.
Figure 5a shows the physical appearance of the device with
sizemetrics. Fig. 5b illustrates a sample range-amplitude pro-
file captured by the radar receiver from different surrounding
objects, representing the CIR. In this measurement, the first
peak associates with the gesture of a hand kept close to
the device and other major peaks are reflection from the
environment located at longer distances.

2) RF DATA CONTENT OF WIRELESS COMMUNICATIONS
The enormous success of the wireless communication indus-
try has nurtured a number of successful technologies that
include, Wi-Fi, cellular, Bluetooth, ZigBee and UWB [11].
In addition to the common data available in the floating
packets (Section II.B.1), devices using these technologies
also have access to data from features of RF propagation
reflecting motions in the environment. All of these devices
support measurement of the RSS. As a result, RSS of Wi-Fi,
Bluetooth and ZigBee have found their ways in a variety of
cyberspace applications.

Other devices measure the CIR with different levels of pre-
cision. UWB devices provide an accurate estimate of the CIR
suitable for opportunistic applications in human-computer
interfaces. The popularity of UWB technology operating at
around 3-10GHz for positioning and communication applica-
tions has enabled implementation of low-cost UWB devices.
The DecaWave’s EVK1000 UWB positioning system is a
good example of these devices [12]. This small size, low-cost
accurate indoor positioning system (Figure 6) uses UWB sig-
nals to measure the CIR between a transmitter and a receiver
and position a device in an unknown location using known
location of several reference devices. Figure 6a shows the
physical appearance of the device, Figure 6b illustrates a typi-
cal measurement of the CIR, and detected direct and reflected
paths. In addition to accurate positioning applications for a
system consisting of several reference points and a tag, the
CIR between any two transmitters and receivers provides
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FIGURE 7. A typical wireless communication scenario using MIMO and
multiple CIR and DOA information.

multi-channel data stream that is useful for human-computer
interaction and other cyberspace applications.

Today, orthogonal frequency division multiplexing
(OFDM) is the most popular wireless communication tech-
nology for Wi-Fi and cellular networks. An OFDM signal
consists of a large group of narrowband transmission systems
modulated over neighboring carrier frequencies. In theory,
if we have N-carriers, we have N-streams of magnitudes
and phases. However, unlike the CIR multiple data streams,
the multiple streams of OFDM data are highly correlated.
It is possible to obtain CIR from OFDM signals and most
OFDM receivers estimate the CIR to enhance the quality
of transmission [11]. However, users should notice that the
quality of CIR estimates is proportional to the bandwidth and
UWB systems provide a much better estimate of CIR.

Wireless communication systems with MIMO antennas,
shown in Figure 7, are commonly used in Wi-Fi and cellu-
lar networking technologies. These systems are capable of
providing for multiple streams of CIR and DOAs. MIMO
antenna systems transmit multiple streams through different
paths at different arrival angles, each carrying the magnitude
and phase of the signal. In theMIMO literature, these streams
of information are referred to as Channel State Information
(CSI) [13]. The CSI is another rich signal space with multi-
ple streams, which has been popular in recent literature for
motion related cyberspace application development. Table 1
summarizes the features of signals embedded in the RF cloud
of wireless devices.

3) RF DATA CONTENT OF COMMUNICATION DEVICES
Digital wireless communications take place through symbol
transmissions, each symbol carrying a group of informa-
tion bits. As shown in Figure 8a, transmitted symbols are
represented by a signal constellation. Due to the thermal
noise, carrier synchronization error, and nonlinearities of the
receiver amplifiers, the received symbols arrive around the
targeted transmitted symbol and the signal constellation has

TABLE 1. Summary of signals and features in RF cloud.

FIGURE 8. (a) Transmitted and, (b) received signal constellation reflecting
frequency offset and nonlinearities of the device.

a frequency offset (Figure 8b) [11]. The statistical pattern of
the noise around the transmitted symbol changes with non-
linearity of the receiver electronic that is unique to any device.
We can benefit from these unique electronic features of the
communication devices obtained from statistical behavior of
the received symbols in the signal constellation to identify a
device type.

III. OPPORTUNISTIC CYBERSPACE APPLICATIONS
OF RF CLOUD
Section II described the RF cloud and its big data con-
tents. We showed that the RF cloud radiating from wireless
devices surrounding is a valuable source of information.
Each wireless device has a unique address and if fixed, a
unique location, and it radiates an RF signal with different
coverage, which changes its features with motions. One can
create a database of these addresses and the available signal
features (RSS, TOA, DOA, CIR and CSI) associated with the
addresses to develop opportunistic cyberspace applications.

Section III describes examples of these cyberspace applica-
tions, which have evolved around the RF cloud from wireless
devices. The most widespread cyberspace applications of RF
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cloud are related to indoor positioning using wireless sig-
nals of opportunity [10]. Other applications using RF cloud
include gesture and motion detection and using signals of
opportunity for authentication and security. We provide an
overview of these three categories of RF cloud applications
in the next three subsections.

A. WIRELESS POSITIONING WITH RF CLOUD DATA
In late 1990s, indoor geolocation science and technology
began to evolve to extend the coverage of Global Positioning
System (GPS) to indoor areas [14], [15]. The high cost of
dense infrastructure, needed for proper operation of these sys-
tems, moved this industry towards opportunistic positioning
using RF cloud data from the existing Wi-Fi access point
infrastructure [16], [17]. A Real Time Localization System
(RTLS) industry, with a limited vertical market, evolved
around this idea for applications in specific areas, such as
museums, warehouses, and hospitals. Fingerprinting of the
RF cloud for RTLS systems are done manually by surveying
inside the building for the site of application. Manual sight
survey is expensive and that restricts scaling to large areas of
coverage. In the mid-2000s the Wireless Positioning System
(WPS) industry evolved around the same idea with a new
method for fingerprinting. In WPS, the RF cloud finger-
printing takes place by driving in the streets and tagging the
collected data using a GPS receiver. This automated process
enabled WPS systems to scale to metropolitan areas. For
that reason, WPS was adopted for the original iPhone and it
became integrated in all smart phones and smart devices since
[9]. In the remainder of this section, we explain how WPS
works and how it is evolving to enhance the opportunistic
wireless positioning industry.

1) WI-FI RSS POSITIONING AND WPS
Today, the most popular positioning system is WPS, which
is the main positioning engine for hundreds of thousands of
applications on smart devices. Skyhook, Google, and Apple
own the three majorWi-Fi location databases of access points
(APs) for these systems. The database of Skyhook, the pio-
neer of the technology, receives over a billion hits per day and
includes close to a billion Wi-Fi access point addresses with
their estimated locations. In the original WPS systems, cars
driving in the streets of a city collected the RSS fingerprint
of Wi-Fi devices identified by their MAC addresses provided
in the floating beacon packets and tags them with the GPS
readings of the locations. Intelligent algorithms process the
big database of these readings to estimate the location of
any device from its Wi-Fi readings in an unknown location.
Therefore, WPS relies on GPS because it is a database asso-
ciating Wi-Fi addresses with GPS readings in the streets. The
advantage of WPS is that it works indoors, where GPS does
not work.

Initially cars driving in the streets of different cities col-
lected the database. Then, organic RSS reading data from
devices searching for their unknown location augmented the
database of access point addresses and locations. The accu-

racy of WPS systems are typically around 10-15 meters [9],
which is on the order of the average coverage of Wi-Fi. This
accuracy is adequate for turn-by-turn navigation of cars in
streets to differentiate building addresses from each other in
urban areas. To increase the precision of WPS for indoor
positioning applications, demanding a few meter accuracy
to differentiate different rooms from each other, we need
indoor manual fingerprinting, similar to RTLS, and that is
expensive.

2) LOCATION INTELLIGENCE: AN OUTCOME OF WPS
GPS is a physical real time system providing position infor-
mation based on current readings of TOA from satellites.
WPS is a cyberspace information system built on a big
database and an intelligent search engine with intelligent
algorithms.

Each time we agree that an application on our smart device
can use our location address, we send a packet to the WPS
database and WPS knows our device location. With around
one billion hits per day, WPS service providers can extract
cyberspace intelligence about our location. We can use this
new outcome ofWPS technology to implement location-time
traffic analysis, geo-fencing (for supporting elderly people,
animals, prisoners, and suspicious people), real-world con-
sumer behavior analysis, location certification for security
and privacy, positioning IP addresses, and customizing con-
tent and experiences [10]. These are secondary outcomes of
WPS technology, enabling other cyberspace applications for
location intelligence.

3) FUTURE DIRECTIONS OF WPS
As wementioned in section III.A.1, the current state of the art
WPS technology without indoor fingerprinting has 10-15m
accuracy. For accuracy in the range of meters, we need expen-
sive indoor site surveys and fingerprinting. Typical smart
devices carry a number of other sensors such as accelerom-
eter, gyroscope, magnetometer, barometer, step counter and
compass. These devices provide information on speed and
direction of movements of the device. Using hybrid AI algo-
rithms, we can integrate these motions related information
with the absolute position estimate from the WPS to enhance
the positioning and to refine the tracking in indoor areas [10],
[18]–[20].

Wi-Fi access points are installed in office buildings approx-
imately 30 meters apart. In a typical office building such as
Atwater Kent Laboratory at the Worcester Polytechnic Insti-
tute (approximately 50mX100m), each floor is covered only
with 3-7 Wi-Fi access points. That is why we need finger-
printing to increase the precision to a few meters to differen-
tiate rooms from each other. With the increase in ‘smartness’
of office buildings, every room of this building has at least
two IoT devices controlling the light and the temperature. IoT
devices use Bluetooth Low Energy (BLE), ZigBee or other
active RFID technologies, which have smaller coverage than
Wi-Fi. Smaller coverage indeed helps the precision. Imagine
we have an RFID with coverage of one meter, if we read its
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signal, we know our location with one-meter accuracy. With
such density of deployment of small coverage IoT devices, we
may not need indoor fingerprinting anymore. It can be shown
that the precision of Wi-Fi positioning in a typical building
(e.g. WPI’s Atwater Kent Laboratory), with three Wi-Fi APs
in 90% of locations is better than 15 meters, while with only
eight randomly distributed IoT devices in that floor this preci-
sion comes close to two meters [21], [22]. In practice, design
of such systems is practical because all devices measure their
RSS and they are connected to the Internet, therefore they can
pass that information to a positioning database to enhance the
precision of positioning.

4) CELL TOWER RSS POSITIONING
RSS based Wi-Fi positioning is a device-based positioning
system. The metric data used for positioning is collected
by the device independent from the communication network
provider. We can apply this technology to cell tower posi-
tioning using fingerprinting of cell towers [23]. The advan-
tage of this approach for cell tower positioning is that the
positioning system takes advantage of cell towers from all
cellular providers without any specific coordination. The
positioning service provider drives in the streets to identify
cell towers and develop a database of their fingerprints tagged
with the GPS location. Then using the RSS readings of the
cell towers around a device, the service provider can come
up with a position estimate for the device. The device needs
to have a cellular chipset to read the RSS values of the cell
towers.

As comparedwithWi-Fi positioning, the density of cellular
networks is far less: we have billions ofWi-Fi access points as
compared with hundreds of thousands of cell towers world-
wide. Therefore, the accuracy of these RSS based cell-tower
positioning systems (CPS) is around 100-250 meters, which
is significantly lower than WPS [9], [23]. However, CPS has
a more comprehensive coverage, which includes highways as
well as urban areas. The original iPhone did not include GPS
and it used CPS as a backup for WPS for these areas. With
the increase in density of deployment in 5G and 6G cellular
networks, the gap between precision of WPS and CPS should
reduce significantly. This intuitive observation needs to be
justified by empirical research data.

5) CELL TOWER TOA POSITIONING
WPS, CPS and GPS are device-based positioning systems,
in which the device measures the features of the RF cloud
for positioning. Another approach to positioning is network-
based positioning, where cell towers or access points measure
the features of RF signals from the device and send that
to a central computational server to locate the device. The
first popular application of this approach was the Uplink-
Time Difference of Arrival (U-TDOA) positioning systems,
designed in 2G cellular networks to comply with FCC regula-
tions for E911 services for cell phones [10]. These TOAbased
systems utilize the difference between arriving signals from
a cell phone to locate the device. One of the advantages of

this approach is that we can locate a device without its active
participation in the positioning process.

The U-TDOA provides for approximately 100m precision
for E-911 service using existing cell tower signals [24]. This
level of precision is not adequate for many popular indoor
and urban area positioning and navigation applications, but it
has a comprehensive coverage, which makes it appealing for
emergency response.

The U-TDOA was a patch solution to position because
2G standard organizations had not included positioning in
their agenda. If we consider positioning as a part of the
standardization of communication protocols, we should be
able to achieve higher precisions using TOA and DOA tech-
nologies. The fundamental challenge for TOA based systems
are sensitivity to multipath effects and need for atomic clock
synchronization to achieve sub-meter precision. By integrat-
ingGPS clockwith the cellular system standards, we can have
a practical solution for synchronization, but multipath effects
are serious, in particular with indoor areas [12].

Ultra-wideband transmission controls the effects of mul-
tipath arrivals by isolating them from one another, antenna
beamforming focuses the transmission to a single path, and
we can design algorithms for positioning in the absence
of direct path [25]. The emerging 5G and 6G cellular sys-
tem with massive MIMO and mmWave technologies ben-
efit from ultra-wide band transmission as well. In theory,
these characteristics of 5G/6G technologies can enable high
precision TOA based positioning. However, implementation
of these systems to make it available for precision sen-
sitive positioning applications needs algorithm and system
design with focus on performance evaluation in realistic
positioning application scenarios. In general, standards orga-
nizations are focused on the increase in capacity, which
directly affect the user experience. They need to increase
their attention to positioning and navigation as a fundamen-
tal enabling technology for millions of applications. More
details on design and performance evaluation of positioning
systems are available in the lead author’s recent book in this
area [10].

B. MOTION, ACTIVITY & GESTURE DETECTION
WITH RF CLOUD
Motions of the wireless device or objects close to the antennas
of the wireless devices cause temporal fluctuations of charac-
teristic of RF cloud features measured at the receiver anten-
nas. Recently, a number of researchers have studied these
characteristics of RF cloud from wireless devices for activity,
motion and gesture detection. This area of research expects
to revolutionize human-computer interaction and introduce a
variety of other cyber space applications by taking advantage
of the variations in RF cloud features due to motions in the
environment.

1) DETECTION OF RF FEATURES DUE TO MOTION
Wireless communication receiversmeasure features of the RF
cloud reflecting motions in the environment. Signal process-
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FIGURE 9. The temporal variations of RSS for a receiver antenna in
proximity of a transmitting antenna and its Doppler Spectrum and
Spectrogram (a) with no-motion, (b) with a hand with natural motions, (c)
with a moving hand between the antennas.

ing techniques help detect these motions and prepare them for
cyberspace application development. Figure 9 illustrates the
temporal variations of RSS of a receiver antenna in proximity
of a transmitting antenna. The figure also shows the Fourier
transform of the signal representing the Doppler spectrum
and the short-term Fourier transform representing its spectro-
gram. Figure 9a shows a situation with no-motion, Figure 9b
shows a situation with a hand held between the two anten-
nas, and Figure 9c shows the results when the hand moves
between the antennas. As the speed of motions increases, the
bandwidth of the Doppler spectrum and the contrast of colors
in the spectrogram increases.We can benefit from this change
in depiction of the RSS characteristics, to develop hand
motion related applications. All modern wireless devices
measure RSS andmany other features of the RF cloud that are
available and accessible with software, opening an interesting
area for motion related cyberspace applications.

ThemmWave radar development environment (Fig. 5) also
supports other aspects helpful in classification of motions.
Figure 10 shows the range-velocity profile of the device
illustrating motions of the finger in different directions. The
mmWave sensor extracts velocity information, and consoli-
dates it with the range data to form the range-velocity pro-
file. Figure 10a shows a hand, which is a strong reflector,
at close distance from the radar and its corresponding pro-
file. Figure 10b and 10c demonstrate that the finger move-
ment creates radical velocities relative to the radar, and thus
mirrored in the profile below. These depictions of motions
open an opportunity for micro-gesture detection from finger
motions.

2) MOTION RELATED CYBERSPACE APPLICATIONS
In recent years, a number of researchers have benefited
from RF cloud features to introduce innovative cyberspace
applications. As a simple example, using an algorithm mea-
suring variations of the RSS above its average value, one
could detect the number of people attending a class [26], or

FIGURE 10. Range-velocity Profile of TI’s mmWave Radar with (a) the
hand staying still in front of the radar device (b) a finger tilting backward
(c) a finger tilting forward.

monitor newborn babies in a hospital [27]. More complex
cyberspace applications using opportunistic signals available
in the RF cloud is achievable by using artificial intelligence
algorithms and taking advantage of more complex features of
the signal, such as CIR, CSI, TOA, and DOA. In recent years,
a number of research laboratories have pursued this idea.

At the Worcester Polytechnic Institute, variations of the
RSS of body-mounted sensors is used for activity monitoring
of first responders to find out if a fire fighter carrying a device
is standing, walking, laying down, crawling, or running
[28]–[30]. These states of motion reflect the temporal behav-
ior of the fire fighter, revealing the seriousness of the situation
she or he is facing. The work in [28] uses traditional charac-
teristics of the fading, such as coherence time, rms Doppler
spread, and threshold crossing rate of the RSS of simple
devices such as Bluetooth, to differentiate different motions
and the work presented in [29] integrates AI algorithms into
the motion detection process. The work presented in [30]
benefits from more complex CSI signals of Wi-Fi devices
along with more complex AI algorithms such as Long-short-
term-memory Regressive Neural Network (LSTM-RNN), to
increase the capacity of the system in differentiating different
motions on a flat floor or when climbing the stairs. As we
explained in section II.B.2, CSI provides multiple streams of
RSS and more diversified variations of the signal. In [31],
the research group demonstrates the use of mmWave radar
in tracking the motion of a finger, opening up further study
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in gesture-based application controls in the human-computer
interaction (HCI) research area.

Researchers at the University of Washington [32] have
used Wi-Fi signals for hand gesture recognition to differen-
tiate nine different hand motions. Multiple RSS stream from
different channels of the OFDM signal of Wi-Fi are depicted
by a spectrogram to generate frequency-time characteristics
color images. The AI algorithm classifies the image to detect
the nine gestures of the hand motion. At Michigan State
University [33], the CSI of a Wi-Fi signal is use for keystroke
detection. When typing a certain key, the hands and fingers
move in a unique formation and direction, there is a unique
pattern of CSI RF fingerprint. By training an AI algorithm,
they have detected the keystrokes of the keyboard user. At
the Massachusetts Institute of Technology [34], researchers
have used radar signals similar to the Wi-Fi signals with
multiple antennas, for human pose estimation through walls
and occlusions. They demonstrated detection of multiple
human postures through the walls using the RF signal and a
neural network algorithm. They used visual data captured by
a camera during the training period for the AI algorithm. At
Stanford University [35], commodity Wi-Fi signals are used
for tracking hand motion for virtual reality applications to
replace existing infrared devices.

In parallel with academic studies, practical applications of
RF signals for motion and gesture detection and tracking are
emerging in industry. As an example, Google [36] uses RF
radar signals at mmWave frequencies obtained from antenna
arrays, for micro-motion tracking of hand and finger gestures
for applications such as connection less winding or rolling
over the surface of a wristwatch. RF signal variations can
replace any application using mechanical sensors. For exam-
ple, the interactive electronic games commonly use mechan-
ical sensors such as an accelerometer, and an accelerometer
mounted on the gait of a patient has been used to measure
the extent of progress in Parkinson decease [37], [38]. The
RF cloud of UWB devices, measuring the CIR, can replace
many of these mechanical sensors and be used in interactive
electronic gaming [39], to help visually impaired [40]; and to
provide gait motion detection.

Building on the advances in motion, activity and gesture
detection using RF Cloud, researchers have begun to explore
the possibilities for future HCI applications. Early work
explored using unmodified GSM signals to enable recogni-
tion of eight tapping gestures, four hover gestures and two
sliding gestures around a mobile device, to enable incoming
call management as well as phone navigation from a dis-
tance [41]. More recent work, has demonstrated an mmWave
gesture recognition pipeline [36] as well as the recognition of
eleven gestures with short-mmWave radar with a goal of them
being used in human-computer interaction [42]. Other work
explored mmWave gesture recognition for in-car infotain-
ment control [43]. Radar signals have also been explored for
automatically classifying everyday objects to support various
applications including a physical object dictionary that looks
up objects that are recognized, context-aware interaction,

FIGURE 11. Security architecture for applications involved in the RF
clouds.

as well as future applications such as automatic sorting of
different types of waste, assisting the visually impaired and
smart medical uses [44]. Using radio signals and one external
sensor hanging on the wall, researchers have demonstrated
that gait velocity and stride length, which are important health
indicators, can be monitored, enabling health-aware smart
homes [45]. Taking advantage of indoor WiFi signals to iden-
tify motion direction, researchers have created a contactless
dance ‘‘exergame’’ [46] as well as sign language gesture
recognition [47]. Other work demonstrated that 5GHz WiFi
can be used to achieve decimeter localization accuracy of up
to four users as well as activity recognition of up to three users
doing six different activities [48].

C. SECURITY AND AUTHENTICATION WITH RF CLOUD
In recent years, several researchers have shown interest in
developing authentication and security applications bene-
fitting from big data embedded in the RF cloud. These
researchers look into various kind of devices, including
Wi-Fi, Bluetooth, Zigbee and RFID, to evaluate the threat,
to assess vulnerability of the systems, and to propose frame-
works for specific authentication and security schemes.

To analyze the security of the networks, it is customary
to refer to a layered architecture [49]. Figure 11 shows a
general layered architecture and the relations among different
layers. The architecture of the security system in this figure
consists of three layers: perception layer, network layer, and
application layer. The functionality of the perception layer is
data collection, preprocessing of data, and secure transition of
this data to the network layer. The network layer checks the
security of data and transmits it to the application layer. The
application layer analyzes and process the data to support the
application.

Since most of the RF data collection sensors are deployed
in environments with no human supervision, and the data is
collected through a wireless medium, this data can be easily
monitored, intercepted and modified. In these environments,
an attacker can access the sensor and take control of the
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device or damage these sensors or physically remove them
from their assigned location. As a result, most of the security
designers for RF cloud applications implement their mea-
sures at the perception layer.

Application of machine learning methods for classification
of devices for authentication and security has been very pop-
ular in the recent literature [50]. The time-domain features of
the RF cloud from Wi-Fi have been used to train a classifier
to differentiate between trusted and un-trusted devices oper-
ating in close vicinity of each other [51]. Researchers have
also examined physical authentication using a unique coding
technique to generate location-related public keys based on
RF cloud signature in a given location [52].

In section II.B.2, we introduced the main features of the
RF cloud, which includes RSS, TOA, CIR, and CSI and how
we can process them for extraction of traditional statistical
features such as mean and standard deviation, as well as
Doppler spectrum related features. At the perception layer of
security systems, we can use the fingerprint of these feature
for RF authentication. Fingerprinting is the process of iden-
tifying radio transmitters by examining their unique transient
characteristics at the beginning of transmission. A complete
identification system has been presented, which includes data
acquisition, transmission detection, RF fingerprint extraction,
and a variety of classification subsystems [53]. Following
this pioneering work, a number of researchers have examined
different machine learning methods for RF cloud related
research in authentication and security.

Using non-parametric and multi-class ensemble classifiers
for RF fingerprinting, researchers demonstrated improved
ZigBee device authentication over the traditional algo-
rithms [54]. Other work extracted novel RF fingerprint
features to design a hybrid and adaptive classification
scheme adjusting to the environment conditions, and car-
ries out extensive experiments to evaluate the performance
of these systems [55]. A low-cost system has been intro-
duced for bit-level network security, benefitting from phys-
ical unclonable functions, which is challenging to replicate
[56]. A device recognition algorithm based on RF fingerprint
has also been proposed [57]. In this work, a Hilbert transform
and principal component analysis are used to generate the
RF data fingerprint of the device and traditional machine
learning algorithms are used to classify the devices. The accu-
racy of RF fingerprinting employing low-end receivers has
been evaluated showing that receiver impairment effectively
decreases the success rate of impersonation attack on RF
fingerprinting [58].

Another area of emerging security and authentication
research related to RF cloud applications is the design of
testbeds for risk analysis for IoT-based physically secure
systems. To assess security risks, researchers have proposed
testbeds and methodologies for risk analysis and evaluation
of vulnerability [59], [60]. There are other works proposing
a testbed for authentication of IoT objects benefiting from
RF fingerprinting, along with a machine learning technique
[61], [62].

IV. CONCLUSIONS AND FUTURE DIRECTIONS
The success of wireless networks has resulted in the deploy-
ment of a huge infrastructure as well as development of inex-
pensive wireless devices. Big data from the RF cloud of the
infrastructure and devices has enabled a number of intelligent
cyberspace applications in positioning and tracking, motion
and gesture detection, and security and authentication. These
innovative cyberspace applications have the potential for cre-
ating a major paradigm shift of untethered human-computer
interfacing and development of popular applications in the
heath and gaming industries.

Research challenges facing this industry include learning
how to integrate multiple sensors to enhance positioning
and tracking for universal operation in all environments.
Another challenge is in finding methods for systematic per-
formance evaluation of alpha-beta classification capability
of micro-gestures and performance evaluation of motion and
micro-motion tracking techniques. Designing a universal data
acquisition interfaces for multiple RF sources is another tech-
nical challenge facing the existing devices for practical appli-
cations in health, interactive gaming, and human-computer
interaction.
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