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ABSTRACT The paper concerns the problem of synchronization-control in nonlinear bacterial cultures
reaction-diffusionmodel, linear and nonlinear controllers have been proposed to study the complete synchro-
nization of couples of the Degn-Harrison system with identical and non-identical coefficients. Throughout
the paper, we use numerical simulation to show the effectiveness of the proposed results.

INDEX TERMS Degn-Harrison, complete synchronization, Lyapunov method, reaction-diffusion.

I. INTRODUCTION
Synchronization is a process of controlling the output of
the response system (slave system) to force its behavior
to follow that of the corresponding drive system (master
system) asymptotically. Since the pioneering study of
Pecora and Carroll [1], various control schemes have been
introduced to synchronize dynamical systems due to its
applications in image processing, cryptography, ecological
system, combinatorial optimization, lasers technology, and
secure communications [2].

Considerable research has been devoted to study the
synchronization in low dimensional systems represented
by unidimensional ordinary differential equations or maps
[3]–[6]. Nevertheless, synchronizing in high-dimensional
systems modeled in the spatial-temporal domain and
described by nonlinear reaction-diffusion systemswhich state
variables depend on the time and spatial position stills in its
initial stage.

Reaction-diffusion systems models act a central role in
describing the phenomena that exist in neuronal networks,
chemical reaction systems, image processing and ecosys-
tems. Due to the spatial component, this kind of model is
extensively used to understand a wide range of complex
dynamical structures and spatiotemporal patterns as well as
rotating spirals, circulating pulses on a ring, target waves
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and oscillating spots [7]–[10]. For this reason, the study
of synchronization in this kind of model is important to
our comprehension of a wide variety of phenomena in the
real-life.

Recently, significant efforts are made to investigate the
synchronization in reaction-diffusion systems. For instance,
the backstopping synchronization method [11], the hybrid
adaptive synchronization approach [12], the graph-theoretic
synchronization technique [13], impulsive type synchroniza-
tion approach [14] and pinning impulsive synchronization
[15] for PDEs have been proposed. Moreover, novel control
synchronization schemes have been designed to achieve syn-
chronization of the FitzHugh-Nagumo model [16], a three-
component autocatalytic model [17], multi-layered natural
and media networks [18], [19], the Newton-Leipnik chaotic
system [20]. Also, linear and nonlinear control are suggested
to synchronize a class of reaction diffusion systems [20], [21].

The present paper deals with the analysis of control syn-
chronization for bacterial culture model introduced by Degn
and Harrison [23] as

∂u1
∂t
= d11u1 + a− u1 − u2gk (u1), (x, t) ∈ �× R+,

∂u2
∂t
= d21u2 + b− u2gk (u1), (x, t) ∈ �× R+,

∂ui
∂η
= 0, i = 1, 2, (x, t) ∈ ∂�× R+,

0 ≤ ui(x, 0) = ui0(x), i = 1, 2, x ∈ �,
(1)
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where u1(x, t), u2(x, t) represent the oxygen and the nutri-
ent respectively, a, b, d1, d2, k are positive constants and
gk (u1) =

u1
1+ku21

. � ⊂ Rn, (n ≥ 1) is a bounded

domain with smooth boundary ∂�, η is unit vector
normal to ∂�.

The Degn-Harrison model (1) is used to describe the effect
of the oxygen concentration in the Klebsiella aerogenes bac-
teria culture, for a more detailed background of chemical
reaction scheme and significance of system (1) we refer
interested reader to [24], [25].

The Degn-Harrison system (1) has been studied exten-
sively in the literature, but most of the researches focus on
the dynamics of this model including the local and global
asymptotic stability of the steady-state solutions [25], [26],
Turing instability [27], [28] and Hopf bifurcation [29], [30].
However, as far as we know, this is the first work deal with
control synchronization of the model (1).

The contribution of this paper is the development
of novel methods for synchronization of Degn-Harrison
reaction-diffusion system with identical or non-identical
coefficients.

This work is organized as follows. In section 2 and 3
along with the proposed control laws and proofs of their
convergence based on the Lyapunov approach and Green
identity. In section 4, we consider numerical applica-
tions to illustrate the effectiveness of the development
schemes. Finally, In section 5 we give the conclusion of our
work.

II. IDENTICAL SYSTEMS
To analyze the synchronization between two identical Degn-
Harrison models, we use the master-slave (drive-response)
formalism, where the two Degn-Harrison reaction-diffusion
systems are coupled, in such a manner that the output of
the second (slave) system tracks the output of the first (mas-
ter) system asymptotically. In this case, we design appropriate
functions called controllers to force the difference of states of
synchronized systems converge to zero. This process is called
complete synchronization.

The following result provides the existence, uniqueness
and the boundedness of the solution of the Degn-Harrison
system (1).
Lemma 1: [25] Suppose that b < a and ui0(x) ∈ C(�̄) ∩

C2(�) then

1) The model (1) possesses a global unique solution
ui(x, t) ∈ C1,2(�×R+∗ )∩C(�̄×R+), this solution is
positive for all (x, t) ∈ �̄× R+.

2) R = [ū1, a] × [2b
√
k, ū2] where ū1 =

b(a−b)
a(1+a2k)

and ū2 =
a−ū1
gk (ū1)

is an invariant rectangle for the
system (1).

First of all, we assume that the master and the slave sys-
tems are identical in all coefficients except in the associate
initial condition. Therefore, the slave system associated with

the master system (1) can be written as

∂v1
∂t
= d11v1 + a− v1 − v2gk (v1)+ L1,

(x, t) ∈ �× R+,
∂v2
∂t
= d21v2 + b− v2gk (v1)+ L2,

(x, t) ∈ �× R+,
∂vi
∂η
= 0, i = 1, 2,

(x, t) ∈ ∂�× R+,
0 ≤ vi(x, 0) = vi(x), i = 1, 2,

x ∈ �,

(2)

where vi = vi(x, t), (i = 1, 2) are states of the slave system
(2) and Li are controllers to be designed.

The aim this section is to determine a suitable controls Li to
force the synchronization errors e(x, t) = (e1(x, t), e2(x, t)),
defined by

e(x, t) = v(x, t)− u(x, t), (3)

where u(x, t) = (u1(x, t), u2(x, t)) and v(x, t) =

(v1(x, t), v2(x, t)) are the solutions of systems (1) and (2)
respectively, to converge towards zero as t goes to infinity.
Definition 2: The master system (1) and the slave system

(2) are said to be completely synchronized if

lim
t→∞
‖e(x, t)‖ = 0.

Differentiate the errors given (3) with respect to time to get
∂e1(x, t)
∂t

= d11e1 − e1 + u2gk (u1)−v2gk (v1)+ L1,

∂e2(x, t)
∂t

= d21e2 + u2gk (u1)−v2gk (v1)+ L2.
(4)

One can observe that the error system (4) satisfies the
homogeneous Neumann boundary conditions

∂e1
∂η
=
∂e2
∂η
= 0, for all (x, t) ∈ ∂�× R+. (5)

The following lemma is needed in the proofs of results of this
paper.
Lemma 3: There exists a positive constantK depending on

a, b and k such that

|u2gk (u1)− v2gk (v1)| ≤ K (|v1 − u1| + |v2 − u2|) . (6)

Proof:

|u2gk (u1)− v2gk (v1)| ≤ |u2gk (u1)− v2gk (u1)|

+ |v2gk (u1)− v2gk (v1)|

≤ |v2 − u2| |gk (u1)| + |v2| |u1 − v1|

+ k |v2| |u1 − v1| |gk (u1)| |gk (v1)| .
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The function gk (.) has a maximum 1
2
√
k
, then

|u2gk (u1)− v2gk (v1)| ≤
5
4
|v2| |u1 − v1| +

1

2
√
k
|v2 − u2| .

Due to Lemma 1 |v2| < v̄2, thus, we can choose the
constant K as

K ≥ max{
5
4
v̄2,

1

2
√
k
}.

The synchronization error defined in (3) goes to 0, as t goes
to +∞ if and only if the zero solution of the synchronization
error system (4) is globally asymptotically stable. That is,
in the following Theorem, we determine the controllers L1
and L2, in linear forms to achieve synchronization between
systems given in Eq. (1 ) and Eq (2).
Theorem 4: The master system (1) and the slave system

(2) are completely synchronized under the following linear
control law

L1 = (1− 2K )(v1 − u1),

L2 = −2K (v2 − u2). (7)

Proof:Merging the Eq. (7) and Eq. (4), we obtain
∂e1(x, t)
∂t

= d11e1 − 2Ke1 + u2gk (u1)−v2gk (v1),

∂e2(x, t)
∂t

= d21e2 − 2Ke2 + u2gk (u1)−v2gk (v1).
(8)

Now, we construct a Lyapunov functional as

V =
1
2

∫
�

(
e21 + e

2
2

)
dx,

then

∂V
∂t
=

∫
�

(
e1
∂e1
∂t
+ e2

∂e2
∂t

)
dx

=

∫
�

e1 (d11e1 − 2Ke1 + u2gk (u1)− v2gk (v1)) dx

+

∫
�

e2 (d21e2 − 2Ke2 + u2gk (u1)− v2gk (v1)) dx

=

∫
�

(d1e11e1) dx +
∫
�

(d2e21e2) dx

− 2K
∫
�

(
e21 + e

2
2

)
dx

+

∫
�

[(u2gk (u1)− v2gk (v1)) (e1 + e2)] dx.

Using Green identity, we can deduce

∂V
∂t
=−

∫
�

d1 |∇e1|2 dx +
∫
∂�

d1e1
∂e1
∂η

dσ−
∫
�

d2 |∇e2|2 dx

+

∫
∂�

d2e2
∂e2
∂η

dσ − 2K
∫
�

(
e21 + e

2
2

)
dx

+

∫
�

[(u2gk (u1)− v2gk (v1)) (e1 + e2)] dx.

By using the homogeneous Neumann boundary conditions
(5) and Lemma 3, we get

∂V
∂t

= −

∫
�

[
d1 |∇e1|2 + d2 |∇e2|2

]
dx − 2K

∫
�

(
e21 + e

2
2

)
dx

+

∫
�

[(u2gk (u1)− v2gk (v1)) (e1 + e2)] dx

≤ −

∫
�

[
d1 (∇e1)2 + d2 (∇e2)2

]
dx − 2K

∫
�

(
e21 + e

2
2

)
dx

+

∫
�

[|u2gk (u1)− v2gk (v1)| (|e1| + |e2|)] dx

≤ −

∫
�

[
d1 |∇e1|2 + d2 |∇e2|2

]
dx − 2K

∫
�

(
e21 + e

2
2

)
dx

+

∫
�

K (|e1| + |e2|)2dx

= −

∫
�

[
d1 |∇e1|2 + d2 |∇e2|2

]
dx − 2K

∫
�

(
e21 + e

2
2

)
dx

+

∫
�

K
(
e21 + 2 |e1| |e2| + e22

)
dx

= −

∫
�

[
d1 |∇e1|2 + d2 |∇e2|2

]
dx − K

∫
�

(|e1| − |e2|)2 dx

< 0.

Based on the Lyapunov stability theory, we conclude that
the zero solution of the synchronization error system (4) is
globally asymptotically stable. Therefore, the master-slave
systems (1) and (2) are completely synchronized.

III. NON IDENTICAL SYSTEMS
In this section, we consider master-slave of the Degn-
Harrison reaction-diffusion systems which are not identical.
In this case, the slave system associated with the master
system (1) is given by

∂v1
∂t
= d̂11v1 + â− v1 − v2gk (v1)+ U1,

(x, t) ∈ �× R+
∂v2
∂t
= d̂21v2 + b̂− v2gk (v1)+ U2,

(x, t) ∈ �× R+
∂vi
∂η
= 0, i = 1, 2, (x, t) ∈ ∂�× R+

0 ≤ vi(x, 0) = vi(x), i = 1, 2, x ∈ �

(9)

where vi = vi(x, t), (i = 1, 2) are states of the slave system
(9 ), d̂1, d̂2, â, b̂ are positive constants and Ui are controllers
to be designed.

The synchronization error system for (x, t) ∈ �×R+, can
be derived as

∂e1(x, t)
∂t

=
∂v1(x, t)
∂t

−
∂u1(x, t)
∂t

= d̂11v1 − d11u1 + (â− a)− e1
+ (u2gk (u1)− v2gk (v1))+ U1,

∂e2(x, t)
∂t

=
∂v2(x, t)
∂t

−
∂u2(x, t)
∂t

= d̂21v2 − d21u2 + (b̂− b)
+ (u2gk (u1)− v2gk (v1))+ U2.

(10)
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Theorem 5: If there exists control constants (li), i =
1 . . . 4 such that 

d̂1 − d1 − l1 ≥ 0,
d̂2 − d2 − l3 ≥ 0,
l2 = â− a,
l4 = b̂− b,

(11)

then, the non identical master-slave systems given in (1) and
(9) are completely synchronized under the following nonlin-
ear control low

U1 = −

(
(d̂1 − 2d1)1u1 + d11v1

)
+ (1− 2K )e1 − l11e1 − l2,

U2 = −

(
(d̂2 − 2d2)1u2 + d21v2

)
− 2Ke2 − l31e2 − l4.

(12)

Proof: By using (12) the error system (10) can be
written as

∂e1(x, t)
∂t

=

(
d̂1 − d1 − l1

)
1e1 +

(
â− a− l2

)
−2Ke1 + (u2gk (u1)− v2gk (v1)),

∂e2(x, t)
∂t

=

(
d̂2 − d2 − l3

)
1e2 +

(
b̂− b− l4

)
−2Ke2 + (u2gk (u1)− v2gk (v1)).

(13)

Let us introduce the following Lyapunov functional

V =
1
2

∫
�

(
e21 + e

2
2

)
dx.

Differentiate the above function with respect to time, yields

∂V
∂t
=

∫
�

(
e1
∂e1
∂t
+ e2

∂e2
∂t

)
dx

=

∫
�

(
d̂1 − d1 − l1

)
e11e1dx

+

∫
�

(
d̂2 − d2 − l3

)
e21e2dx

+

∫
�

[(
â− a− l2

)
e1 +

(
b̂− b− l4

)
e2

− 2K (e21 + e
2
2)
]
dx

+

∫
�

[(u2gk (u1)− v2gk (v1))(e1 + e2)] dx

≤ −

∫
�

(
d̂1 − d1 − l1

)
|∇e1|2 dx

−

∫
�

(
d̂2 − d2 − l3

)
|∇e2|2 dx

+

∫
�

[(
â− a− l2

)
e1 +

(
b̂− b− l4

)
e2

− 2K (e21 + e
2
2)
]
dx

+

∫
�

K
(
e21 + 2 |e1| |e2| + e22

)
dx

= −

∫
�

(
d̂1 − d1 − l1

)
|∇e1|2 dx

−

∫
�

(
d̂2 − d2 − l3

)
|∇e2|2 dx

+

∫
�

[(
â− a− l2

)
e1 +

(
b̂− b− l4

)
e2
]
dx

−K
∫
�

(|e1| − |e2|)2 dx.

Using the conditions given in (11), we obtain

∂V
∂t
= −

∫
�

(
d̂1 − d1 − l1

)
|∇e1|2 dx

−

∫
�

(
d̂2 − d2 − l3

)
|∇e2|2 dx

−K
∫
�

(|e1| − |e2|)2 dx < 0.

Based on the Lyapunov stability theory, we conclude that
the zero solution of the synchronization error system (13)
is globally asymptotically stable. Hence, the master sys-
tem (1) and the slave system (9) are globally completely
synchronized.

IV. NUMERICAL SIMULATIONS
To test the theoretical findings and to clarify the feasibility
of the synchronization schemes introduced in the previous
sections, two numerical examples are presented. The first
one is to the case of identical coefficients, while the second
one is to the nonidentical coefficients case. The numerical
simulations are performed in one (two) dimensional space
using a three (five) central difference scheme.
Example 1:
Let (a, b, k, d1, d2) = (1.2371, 0.34, 19.974, 3, 2) and

u1 (0, x) = 0.8 (1+ 0.3 sin (0.2x)) , (14)

u2 (0, x) = 0.4 (1+ 0.3 cos (0.2x)) . (15)

and the slave system (2) equiped with the initial conditions

v1 (0, x) = sin (0.3x) ,

v2 (0, x) = cos (0.3x) .

The spatio-temporal solution of the system (1) (i.e., the sys-
tem (2) for L1 = L2 = 0) with zero Neumann boundary
conditions are shown in Figures 1 and 2.

According to the Theorem 4, if we choose K = 158, then
the controller L1,L2 can be designed as

L1 = −315(v1 − u1),

L2 = −316(v2 − u2). (16)

As a result from the performed numerical simulations, we can
observe that with the addition of appropriate linear con-
trollers given by (7), the dynamics of the systems, given in
(1) and (2) become synchronized and the zero steady-state
of the synchronization error system given in (8) becomes
asymptotically stable. Hence, the errors defined in (3) goes
to 0, as t goes to +∞, see Figures 3 and 4. In addition,
Figures 5, 6, 7 show the pattern formations in two-
dimensional space, of synchronization error system (8) in

91832 VOLUME 8, 2020
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FIGURE 1. Dynamic behavior of u1 the solution of system (1) for
(a, b, k, d1, d2) = (1.2371, 0.34, 19.974, 3, 2) and initial condition (14-15).

FIGURE 2. Dynamic behavior of u2 the solution of system (1) for
(a, b, k, d1, d2) = (1.2371, 0.34, 19.974, 3, 2) and initial condition (14-15).

FIGURE 3. Dynamic behavior of e1 the solution of the synchronization
error system (8).

FIGURE 4. Dynamic behavior of e2 the solution of the synchronization
error system (8).

t = 0, t = 5, and t = 10, respectively, these figures indicate
that the zero steady-state of the system (8) is asymptotically
stable in the 2D spatial domain.

FIGURE 5. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (8) in 2D for t = 0.

FIGURE 6. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (8) in 2D for t = 5.

FIGURE 7. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (8) in 2D for t = 10.

Example 2: In order to put Theorem 5 to the test, let us
consider the parameter set

(a, b, k, d1, d2) = (10, 6, 1, 5, 3), (17)

(â, b̂, k, d̂1, d̂2) = (6, 5, 1, 3, 2), (18)

when the initial conditions associated with the system (1) are
given by

u1 (0, x) = 0.8 (1+ 0.3 sin (0.2x)) , (19)

u2 (0, x) = 0.4 (1+ 0.3 cos(0.2x)) . (20)

Then the solutions u1 and u2 of the system (1) with zero
Neumann boundary conditions are shown in Figure 8 and 9.
For the slave system (9) with (U1 = 0,U2 = 0), if the initial
conditions given by

v1 (0, x) = 0.8(1+ 16.3 cos x), (21)

v2 (0, x) = 0.4(1+ cos x). (22)

The solutions v1, v2 are shown in Figures 10 and 11.

VOLUME 8, 2020 91833
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FIGURE 8. Dynamic behavior of u1 the solution of system (1) for
(a, b, k, d1, d2) = (10, 6, 1, 5, 3) and initial condition (19-20).

FIGURE 9. Dynamic behavior of u2 the solution of system (1) for
(a, b, k, d1, d2) = (10, 6, 1, 5, 3) and initial condition (19-20).

FIGURE 10. Dynamic behavior of v1 the solution of system (9) for
(â, b̂, k, d̂1, d̂2) = (6, 5, 1, 3, 2), and initial condition (21-22).

According to the Theorem 5, if we choose the control
constants as

(l1, l2, l3, l4) = (−3,−4,−2,−1) .

and K = 55, then the controllers U1,U2 can be designed as

U1 = 71u1 − 51v1 − 109e1 + 31e1 + 4.

U2 = 41u2 − 31v2 − 110e2 + 21e2 + 1. (23)

so, from the Theorem 5, with the parameter set (17-18),
the master system (1) and the slave (9) are globally syn-
chronized. The distribution of the controllers U1, U2 and the
spatio-temporal evolution of the synchronization error system
(13) states are shown in Figures 12-13 and 14-15 respectively.

FIGURE 11. Dynamic behavior of v2 the solution of system (9) for
(â, b̂, k, d̂1, d̂2) = (6, 5, 1, 3, 2), and initial condition (21-22).

FIGURE 12. The distribution of the controllers U1 given by Eq (23).

FIGURE 13. The distribution of the controllers U2 given by Eq (23).

FIGURE 14. Dynamic behavior of e1 the solution of the synchronization
error system (13).

FIGURE 15. Dynamic behavior of e2 the solution of the synchronization
error system (13).

Moreover, Figures 16, 17, and 18 show the pattern formations
in of error systems in 2D spatial domain for t = 0, t = 5, and
t = 20, respectively, this figures indicate that the zero steady
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FIGURE 16. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (13) in 2D for t = 0.

FIGURE 17. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (13) in 2D for t = 5.

FIGURE 18. Pattern formations of e1 (left) and e2 (right) the solutions of
the synchronization error system (13) in 2D for t = 20.

state of system (10) is asymptotically stable in 2D spatial
domain.

V. CONCLUSION
In the present work, we have established novel methods to
investigate the synchronization in nonlinear bacterial cultures
spatiotemporal model. First, a spatial-time coupling process
for the complete synchronization was introduced. Next, suit-
able linear and nonlinear control schemes are proposed to
realize the synchronization for identical and nonidentical
cases. The synchronization results are derived based on the
Lyapunov theory and master-slave formulation. Numerical
simulations, consisting of displaying synchronously behav-
iors of identical and nonidentical Degn-Harrison systems,
are given to show the effectiveness and applicability of the
proposed synchronization schemes. Simultaneously, compar-
ing time evolutions of the synchronization errors displayed
in Fig. 7 and 18, for the two-dimensional space, we can
conclude that the synchronization in nonidentical coefficients

case (converges to zero as t = 20) is slower than the case
of identical coefficients (converges to zero as t = 10).
In our future research, we plan to study the synchronization
behaviors in many types of spatiotemporal models, including
the lattice maps and stochastic reaction-diffusion systems.
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