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ABSTRACT Semantic segmentation is one of the most fundamental techniques for visual intelligence, which
plays a vital role for indoor service robotic tasks such as scene understanding, autonomous navigation and
dexterous manipulation. However, semantic segmentation of indoor environments poses great challenges
for existing segmentation techniques due to the complex overlaps, heavy occlusions and cluttered scenes
with objects of different shapes and scales, which may lead to the loss of edge information and insufficient
segmentation accuracy. And most of the semantic segmentation networks are very complex and cannot
be applied to mobile robot platforms. Thus, it is of significant importance for ensuring as few network
parameters as possible while improving the detection of meaningful edges in indoor scenes. In this paper,
we present a novel indoor scene semantic segmentation method that can refine the segmentation edges
and achieve a balance between accuracy and model complexity for indoor service robots. Our approach
systematically incorporates dilated convolution and rich convolutional features from the intermediate layers
of Convolutional Neural Networks (CNN), which is based on two motivations: (1) The middle hidden layer
of CNN contains a lot of potentially useful information for better edge detection which is, however, no longer
present in latter layers in traditional structures. (2) The dilated convolution can change the size of receptive
field and obtain multi-scale feature information without losing the resolution and introducing any additional
parameters. Thus we propose a new end-to-end Multi-Scale Convolutional Features (MSCF) network to
integrate the dilated convolution and rich convolutional features extracted from the intermediate layers of
traditional CNN. Finally, the resulting approach is extensively evaluated on the prestigious indoor image
datasets of SUN RGB-D and NYUDv2, and shows promising improvements over state-of-the-art baselines,
both qualitatively and quantitatively.

INDEX TERMS Semantic segmentation, convolutional neural networks (CNN), hidden convolutional
features, dilated convolution, indoor service robots.

I. INTRODUCTION

Semantic segmentation is one of the most essential driving
techniques to visual intelligence, which is defined as a seg-
mentation that classifies each pixel according to the semantic
content expressed by each pixel in an image. It is the most
difficult and fundamental task in the current understanding
of the scene. The significance of semantic segmentation
technology to service robots lies in that the realization of
semantic segmentation technology for indoor scenes enables
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the service robots to model the indoor environment, so as to
achieve indoor map construction, autonomous navigation and
path planning capabilities. In recent years, great progress has
been made based on the powerful CNN structures [1]-[6].
Those CNN-based models have pushed semantic segmenta-
tion to a new high level against the traditional ones. However,
unstructured targets, irregular shapes and object occlusion in
images from complex real environments still pose great chal-
lenges to existing semantic segmentation approaches, greatly
restricting their applicability.

With the availability of low-cost and compact 2.5/3D
visual sensing devices, the research community is witnessing
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a growing interest in visual scene understanding of indoor
environments, which is a remarkably challenging benchmark
for semantic segmentation, because there are a lot of complex
overlaps between objects, heavy occlusions and cluttered
scenes with targets of diversified outlines and scales. In these
scenarios, the accurate edge detection for every object is
much harder to obtain, and is, however, of vital importance for
mobile robots since it is the key to a more accurate perception
of their surroundings.

(b) Ground Truth

(a) Image

FIGURE 1. The indoor scene in SUN RGB-D dataset. There are various
shapes of objects that may be unstructured and occluded.

This paper aims to address this challenge, proposing a
new Multi-Scale Convolutional Features neural network for
semantic segmentation of indoor service robots, who may
encounter a typical scene shown in Figure 1 where there are
a variety of unstructured and occluded objects with differ-
ent contours and sizes. To tackle the complexity in indoor
scenes, the proposed MSCF model effectively utilizes the
features captured in the middle layers in CNN to perfect
the identification of edges for objects, and incorporates the
dilated convolution [7] to further facilitate the segmentation.
Our framework is based on the pre-trained model of
VGG-16 [8] or ResNet-101 [9], and we introduce a new mod-
ule for extracting useful features in middle layers of CNN,
inspired by the Richer Convolutional Features (RCF) [10]
model for edge detection.

To be more specific, the general pipeline of our approach
is as follows. We firstly introduce a new module to extract
the features of each convolutional layer of CNN, incorporate
these features, and then get the fusion loss through the loss
layer which can be trained by back-propagation. It is evi-
dent this approach can clearly enhance separations of objects
because it carries the function for more accurate edge detec-
tion. However, this module only uses general convolutions
with sizes 3 x 3 and 1 x 1, and so it can only identify a
few features that are not enough to recognize objects well.
Therefore, we go one step further to insert the part of dilated
convolution to enrich the expressive power of the network,
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enabling it to learn multi-scale information to cope with the
challenges of varied sizes and irregular shapes of objects in
indoor scenes.

The main contributions of the paper can be summarized as
follows:

1) We introduce a new Hidden Convolutional Feature
(HCF) module for extracting valuable information
from all hidden layers in CNN to capture the coarse
high-level semantic features as well as fine-grained
low-level ones, which can better the separations of
objects because it can provide the information to iden-
tify their boundaries more accurately.

2) We encapsulate dilated convolution as Pyramid Con-
volution Module (PCM) to get multi-scale information
for different objects in indoor scenes, and systemati-
cally incorporate HCF and PCM in a unified network,
which is conducive to the production of high-resolution
output.

3) A Multi-Scale Convolutional Features structure for
indoor service robot scene understanding has been pro-
posed to crystallize the ideas above. It strikes a good
balance between accuracy and model complexity, and
the prototype has been implemented and evaluated on
the prestigious SUN RGB-D [11] and NYUDVvV2 [12]
indoor scene datasets, showing promising results with
respect to state-of-the-art baselines, both qualitatively
and quantitatively.

The structure of the paper is as follows. The related work is
first discussed in the next section, followed by the introduc-
tion of the proposed approach, showing how to combine the
HCF and dilated convolutional features together to produce
the resulting MSCF model. Then the experimental results are
presented to show the efficacy of the model, compared to
different state-of-the-art baselines. Finally, we conclude the
paper with future research.

Il. RELATED WORK

Traditional semantic segmentation methods, such
as [13], [14], use manual annotation of semantic information
to promote image comprehension tasks after segmentation of
objects with shallow visual features. With the rise of deep
learning models, researchers began to introduce CNN into
semantic segmentation, which has been empirically proved
to be highly effective. Therefore, the current mainstream
frameworks are based on CNN that acts as the underlying
building block to classify and recognize objects. And a lot
of variants along with the optimization techniques are put
forward for different scenarios.

The Fully Convolutional Network (FCN) [15] proposed
by Long et al. is the first CNN-based network to implement
pixel-level semantic segmentation. This landmark model is
based on classic CNN such as VGG [8], ResNet [9] and
GoogleNet [16], providing the capability of precise semantic
segmentation in complex environments. However, its contin-
uous pooling operation results in low output image resolution.
In order to solve this problem, Chen et al. [17] took
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Conditional Random Fields (CRF) as the post-processing
module of the FCN network, and refined the segmentation
results with CRF, which has achieved satisfactory results.
But FCN and CRF modules are not integrated well, violating
the end-to-end training policy. Furthermore, Zheng et al.
proposed CRF as the Recurrent Neural Network (RNN)
model [18] that can successfully combine CRF and RNN into
a complete end-to-end framework, significantly improving
the segmentation accuracy of FCN.

In addition to FCN, there are other influential encoder-
decoder architectures. Badrinarayanan et al. [19] presented
a typical encoding-decoding neural network for road and
vehicle segmentation. The advantage of this network is
that the pooling layer is capable of preserving the spatial
location of pixel points. And these pixels can be mapped
back to the corresponding position when restoring image
resolution. However, this method does not segment object
boundaries well. The DeconvNet [20] proposed by Noh et al.
mirrored the convolutional layer to form the encoder-decoder
structure, and improved FCN with this new structure.
Paszke et al. [21] introduced another approach that also
applied the encoder-decoder framework, in which they added
BN layers and ReLU between convolution, and obtained
enhanced results.

Recently, the utilization of multi-scale information to
improve the accuracy of semantic segmentation has been
paid much attention to [7], [22]-[27]. Chen et al. proposed
the DeepLab series of models [17], [22], [23], [28], using
the Atrous Spatial Pyramid Pooling (ASPP) structure to
make full use of the multi-scale information. Lin et al
introduced RefineNet [29], which adopted a chain residual
connection that can effectively fuse the missing information
in the down-sampling to produce predicted images with
high-resolution. but the network parameters scale is large.
Zhao et al. [30] designed a novel model that combined
dilated convolution and a pyramid pooling module to capture
global information. Yu et al. [31] presented the Convolutional
Block Attention Module (CBAM) [32] in order to select
more discriminative features, effectively solving two basic
problems of semantic segmentation: intra-class inconsistency
and inter-class indistinction. And Zhang et al. [33] put
forward a contextual semantic coding module and a class
prediction module, alleviating the problem of unbalanced
samples between classes in semantic segmentation.

The approaches mentioned above have played a signif-
icant role in promoting semantic segmentation of images.
However, they mainly focus on the feature information in
the last layer of CNN, and ignore somewhat useful and
hierarchical features along with the hidden layers. Based on
this observation, we propose a new approach to address this
deficit by taking advantage of CNN'’s hierarchical features
from the hidden layers. Moreover, multi-scale information
from dilated convolution is also systematically integrated to
improve the accuracy, leading to a new end-to-end network.
Finally, we choose the challenging benchmark of indoor
scenes to justify its efficacy.
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lll. THE PROPOSED APPROACH

For intelligent service robots, being able to recognize various
types of objects indoors, such as tables, cups and chairs, is an
indispensable ability. However, most of the existing semantic
segmentation methods cannot segment these objects finely,
and the network is too large to be applied to mobile robot
platforms. In order to refine the boundaries of indoor object
segmentation, while light-weighting the semantic segmen-
tation method, we propose a MSCF model that has exhib-
ited good empirical performance on standard benchmarks.
The strength of MSCF comes from two new proposed mod-
ules within that we introduce: Hidden Convolutional Feature
Module and Pyramid Convolution Module. HCF can preserve
the discriminative information and prevent them from losing
gradually in the process of downward transmission in CNN,
while PCM can deal with the situation where the shapes and
sizes of objects vary substantially and hence different sizes of
receptive field are badly needed. Therefore, the integration
of the two modules can empower the proposed MSCF to
effectively segment an indoor image on a high-resolution
feature map.

A. HIDDEN CONVOLUTIONAL FEATURE MODULE (HCF)
As is known, a CNN is always composed of many con-
volutional layers and some pooling layers, which attenu-
ates the input image resolution layer by layer to produce
high-level features and global information. As the example
shown in Figure 2, with the increasing of the convolutional
layer, the overall structure information extracted by the net-
work is gradually clear, but the details are becoming less and
less.

(c) conv2

(d) conv3

(e) conv4

(f) convs

FIGURE 2. Features extracted by every convolutional layer on SUN RGB-D
data. The convolutional feature becomes coarser as the convolutional
layer increases.

Although the features extracted by the network decrease
with the increase in the number of CNN layers, it is known
that useful features are captured in actually each layer of
CNN. For a high-precision segmentation task, the final rough
frame features provided by just the last layer of CNN are
definitely not sufficient. So a better feature map containing
more detailed features from the intermediate hidden layers of
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CNN should be taken into account as well, generating rich
feature reserves for the downstream segmentation task.

The idea described above has actually been proved to be
effective by [10], in which RCF was proposed using hid-
den layer features of CNN for edge detection. The results
justified that features from hidden convolutional layers can
indeed empower the network to identify more details of target
boundaries.

Based on the above motivation, we propose a novel HCF
module to extract the convolutional features from the hidden
layers in CNN. The proposed HCF is a more advanced version
of RCEF, since the task of RCF is just for edge detection, and
there is no need to identify every object, which is equivalent
to a binary classification task, that is, the edge is one class and
the non-edge is another class. Therefore, a relatively simple
1 x 1 convolution is used by RCF to preserve the features from
hidden convolutional layers. However, for the more complex
task of semantic segmentation, it is necessary to keep the
details of every target of different shapes and sizes in the
pixel level, and thus the convolution of 1 x 1 is definitely
not sufficient. So the proposed HCF will go one step forward
to combine the convolution of 1 x 1 and 3 x 3 to enlarge the
receptive field. The 1 x 1 convolution is applied first and then
the output is fed into a 3 x 3 hole convolution [7] in a parallel
structure, with 3 x 3 hole convolutions in different rates. This
kind of operation can extract features for targets in different
scales, and hence can sharpen our model to recognize targets’
boundaries with varied sizes.

B. PYRAMID CONVOLUTION MODULE (PCM)

After generating good convolutional features, the next key
step in segmentation is to appropriately increase the receptive
field and capture the context information.

)

3X3 CONV

M [3X3 CONV

When performing semantic segmentation, the pooling
operation is often carried out to reduce the image size while
increasing the receptive field. A common understanding is
that the lost information caused by pooling in down-sampling
is irreversible. However, the emergence of dilated convolu-
tion [7] makes it possible to allow for greater receptive field
without losing any information. Thus, dilated convolution
becomes a common convolution technique for the pixel-wise
output model, which can preserve the internal data structure
of the image while avoiding the loss of spatial stratification
information.

Inspired by the ASPP structure [17] in which dilated con-
volutions are incorporated very well, we apply pyramidal
convolution layers in two modules in our MSCF model. At the
HCF module, pure hole convolution [7] is used to extract
features for targets in different scales with receptive fields of
different sizes. In the PCM module, a combination of hole
convolutions and ordinary convolutions is executed. We first
apply hole convolutions to extract the context information in
different scales, and then use ordinary convolutions for fur-
ther feature extraction and recognition. The PCM enables the
MSCF model to easily obtain multi-scale features of an image
without introducing any extra parameters. Finally, all the
features of different scales from the two proposed modules
are integrated to form a high-resolution feature map.

C. NETWORK ARCHITECTURE
We now present the MSCF network to fuse the HCF module
and PCM module into an end-to-end model, whose architec-
ture is shown in Figure 3.

We use a pre-trained VGG-16 or ResNet-101 as the under-
lying building block, with HCF and PCM modules to produce
the rich feature map. Here, we remove all fully connected

Dilated
CONV

Dilated
CONV

Dilated
CONV

Semantic
Segmentation

I

CONCAT

HCF

-

Y

FIGURE 3. The proposed MSCF network. This network consists of a basic network, an HCF module and a pyramid structure of PCM, which can make full

use of convolutional features to construct high-resolution feature maps.
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layers and the last pooling layer of VGG-16 and ResNet-101.
The details of our model can be summarized as below:

e Our basic network uses five stages of VGG16 or
ResNet101. The input of the convl stage is the image
size, and the output is one-half of the original image.
The output of the conv?2 stage is a quarter of the original
image. the output of the conv3 stage is one-eighth of
the original image. The output of both conv4 and conv5
stage is one-sixteenth of the original image. In each conv
phase, the size of the feature map does not change.

« After each convolutional layer of basic network, an HCF
module composed of convolutions with kernel sizes of
1 x 1 and 3 x 3 is connected to obtain the additional
detailed feature information.

o The convolutional features are fused by add in each
stage, which is to compute element-wise operations,
such as product and sum, along multiple input blobs.

« Each stage contains a cross-entropy loss/sigmoid layer
for monitoring network training process.

¢ 3 x 3 hole convolutions with different rates are applied,
and they are connected to the last layer of the basic
network in a pyramid structure.

o The features learned by the two modules are merged into
arich feature map and trained through back propagation.

Finally, we use the multiclass cross-entropy loss function

to get the fusion loss and train the neural network by back-
propagation, which is defined as the negative log-likelihood
function over an entire data set of independent samples:

M
E cross-entropy = — Z)’(C) Inpj ey
c=1
where M is the number of classes, y is the correct class label
for pixel o, and p is the predicted probability of pixel o being
of class c.

IV. EXPERIMENTS
In this section, we present experimental results that we have
conducted on SUN RGB-D [11] and NYUDVv2 [12] datasets
to evaluate the proposed model. We use the standard evalua-
tion method of semantic segmentation: mean Pixel Accuracy
(mPA) [15], and mean Intersection over Union (mloU) [15]
to carry out quantitative studies on the network performance.
Moreover, we illustrate the output segmentation graph of the
network on the test set to show the qualitative comparisons
with respect to different state-of-the-art counterparts.

Mean Pixel Accuracy (mPA) [15], and mean Intersection
over Union (mloU) [15] are defined as follows:

k

1 Dii
mPA = =7 D @)
3
k+1 i—0 2_j=0Pij
1 & P
mloU = u (3)
k+1 g Zjl;o pijt Z,]-{:o Pji — Dii

Here k + 1 is the number of classes, including k labeled
classes and one unlabeled class. p;; represents the number of
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pixels that belong to class i but are predicted to be class j.
So pii, pij, pji are defined as true positives, false positives and
false negatives, respectively.

A. TRAINING DETAILS

Our model is based on the pre-trained network of VGG-16
or ResNet-101. All weights of convolutional layers that do
not belong to the underlying VGG or ResNet network are
initialized to a Gaussian distribution with zero mean and 0.01
variance, while the biases are initialized with 0. We use Caffe
to implement our model, which is trained and fine-tuned on
the NVIDIA GTX1080 Ti GPU. We adopt the poly learning
policy in Caffe and set the initial learning rate to 0.001 and
the power to 0.9, so that the learning rate will decrease as
the number of iterations increases. Finally, the momentum
and weight_decay were set to 0.9 and 0.0005, respectively.
In the experiment, we cropped the original images to the size
of 321. For data augmentation, we randomly mirror and scale
(0.5,0.75, 1, 1.25, 1.5) the input images.

B. QUANTITATIVE EVALUATION

SUN RGB-D dataset [11] was derived from four RGB-D
sensors, containing 10335 RGB-D images and 37 categories
of dense annotations. This dataset contains images from NYU
Depth V2 [12], Berkeley B3DO [34] and the SUN3D [35]
dataset, which is very suitable for scene understanding tasks.
We use only RGB images to train our network without
using depth information. Then, we apply the standard split
of 5285 and 5050 images for training and testing.

We first tested the effect of dilated convolution kernel rate
in the HCF module on segmentation accuracy. We set three
rates, which are rate = (4,8, 12), rate = (6, 12, 18) and
rate = (8, 16, 24), respectively, and the comparative results
are shown in Table 1. The results are obtained on the testing
set using a single-scale input.

As presented in Table 1, we show the ablation study
with HCF and PCM modules, respectively that use different
field-of-view sizes. Here we use the VGG-16 as the basic
network for training. For the HCF module, we first compare
the performance of 1 x 1 kernel size with the 3 x 3 one.
The results indicate that the convolution of size 1 x 1 is
better than that of 3 x 3, which may be due to the fact
that 1 x 1 convolution kernel can integrate the feature graph
without changing the feature resolution. Compared to 3 x 3
convolution, 1 x 1 convolution results in less feature infor-
mation loss. Subsequently, we add dilated convolution with

TABLE 1. Semantic segmentation accuracy on SUN RGB-D with different
rates of dilated convolution.

Method | 1 x1 | 3 x 3 | rate=(4,8,12) | rate=(6,12,18) | rate=(8,16,24) | Mean Acc | Mean IoU
VGG-16 24.32 17.61
+HCF v 23.07 17.18
v 2245 16.65
v v 23.66 17.70
v v 23.80 17.83
v v 29.06 22.00
v v 22.78 17.61
+PCM v v 35.08 26.70
v v 35.50 26.92
v v 36.46 26.94
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TABLE 2. Pixel accuracy per-class on NYUDv2.

Wall Floor Cabinet | Bed Chair Sofa Table Door Window Book shelf
Silberman et al. [12] 60.7 77.8 33.0 40.3 324 253 21.0 59 29.7 22.7
Ren et al. [36] 60.0 74.4 37.1 42.3 32.5 28.2 16.6 12.9 27.7 17.3
Saurabh et al. [37] 67.9 81.5 45.0 60.1 41.3 47.6 29.5 12.9 34.8 18.1
HrNetV2 [38] 64.6 71.7 46.0 49.1 36.4 40.8 28.8 23.3 33.0 27.3
MSCF (ResNet-101) 64.5 74.9 49.7 61.0 50.6 54.0 37.9 26.5 35.1 31.7
Picture Counter Blinds Desk Shelves Curtain | Dresser Pillow Mirror Floor mat
Silberman et al. [12] 35.7 33.1 40.6 4.7 33 27.4 13.3 18.9 4.4 7.1
Ren et al. [36] 324 38.6 26.5 10.1 6.1 27.6 7.0 19.7 17.9 20.1
Saurabh et al. [37] 40.7 51.7 41.2 6.7 52 26.9 25.0 32.8 21.2 25.8
HrNetV2 [38] 43.7 41.2 48.5 7.5 5.5 26.2 15.9 23.6 16.0 18.4
MSCF (ResNet-101) 45.2 47.6 52.5 14.3 12.7 359 30.0 37.6 29.3 28.8
Clothes Ceiling Books | Fridge | Tele-vision | Paper Towel | Shower curtain Box White board
Silberman et al. [12] 6.5 73.2 5.5 1.4 5.7 12.7 0.1 3.6 0.1 0.0
Ren et al. [36] 9.5 53.9 14.8 1.9 18.6 11.7 12.6 54 3.3 0.2
Saurabh et al. [37] 7.7 61.2 7.5 11.8 15.8 14.7 20.0 42 1.1 10.9
HrNetV2 [38] 2.1 45.1 21.3 28.3 38.9 17.2 18.7 18.3 2.3 57.5
MSCEF (ResNet-101) 13.7 27.6 27.5 50.1 55.2 20.8 314 21.6 5.6 31.0
Person | Night stand | Toilet Sink Lamp Bathtub Bag Other str Other prop | Other prop
Silberman et al. [12] 6.6 6.3 26.7 25.1 15.9 0.0 0.0 6.4 3.8 224
Ren et al. [36] 13.6 9.2 352 28.9 14.2 7.8 1.2 5.7 5.5 9.7
Saurabh et al. [37] 1.4 17.9 48.1 45.1 31.1 19.1 0.0 7.6 3.8 22.6
HrNetV2 [38] 12.3 20.5 49.1 40.6 27.3 26.9 2.3 13.5 9.8 21.8
MSCEF (ResNet-101) 61.3 28.6 72.1 49.7 31.3 26.2 9.8 25.8 15.3 30.7
TABLE 3. Results on different baselines. show that the deeper the network is, the better the results
- i are. Our VGG-16 based MSCF obtained 26.9% of mIOU,
ﬁgg;r AT 3“2116 ;n;(;li while MSCF on ResNet-101 exhibits an improvement of
( -16) ’ ’ approximately 7% over the VGG-16 based network model.
MSCEF (ResNet-101) | 44.19 | 33.56 . . .
In Table 4, we verify the efficacy of our network with com-
parative experiments. We compare the segmentation accu-
TABLE 4. Comparisons for different models on SUN RGB-D. racy and parameters of our MSCF with other state-of-the-art
approaches such as DeconvNet [20], FCN [15], SegNet [19],
Network mPA | mloU | Parameters DeepLab v2 [28], DeepLab v3+ [23] and HrNetV2 [38] on
Liu et al. [39] 10.0 - - the SUN RGB-D dataset. Here we use the deeper ResNet-101
Ren et al. [36] 36.3 ) ) network as the underlying pre-trained network for the exper-
DeconvNet [20] 333 22.6 - . ts. Th lts indicate that del strik d
FCN-8s [15] 384 | 274 i iments. The results indicate that our model strikes a goo
SegNet [19] 439 | 318 30M balance between accuracy and model complexny:
DeepLab v2 [28] 422 | 321 44M The performance of the latest representative models
DeepLab v3+ [23] | 42.5 | 31.7 59M DeepLab v3+ and HrNetV2 on the SUN RGB-D dataset is
HrNetV2 [38] 31.0 | 22.0 66M not satisfactory, indicating that blindly using encoder-decoder
MSCF methods to improve the resolution of feature maps, or using
(ResNet-101) 4.2 | 33.6 M high-resolution feature maps throughout, is not very effective

different rates after 1 x 1 convolution. Since the feature
extracts in HCF are now further equipped with information
of different scales, the average pixel precision and average
IoU are greatly improved. They grow by about 5% and 4%,
respectively. As for the PCM module, we also compare the
effects of different rates on network accuracy, where the
model performs best when rate = (8, 16, 24).

Then we present the comparative results of our model
on the SUN RGB-D dataset in Table 3 and Table 4. Since
our network structure is flexible and not bounded by a spe-
cific pre-trained network, we compare two different basic
networks: VGG-16 and ResNet-101 in Table 3. The results
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for semantic segmentation of complex indoor environment
with irregular shapes and mutual occlusion. Our method that
makes full use of all hidden convolutional layer’s details
information and enriches the rough high-resolution feature
maps of the last layer, has shown advantages over the latest
prestigious landmark model of DeepLab v3+ and HrNetV2
in both accuracy and number of parameters.

NYUDv2 [12] is another commonly used 2.5-dimensional
dataset with depth information, including 40 categories of
indoor objects, 1449 RGB-D images captured by Microsoft
Kinect device. This dataset focuses on depicting indoor
scenes and can be used for training tasks of home robots.
In this benchmark, we use the standard split of 795 and
654 images for training and testing, and again, no depth
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(a) Image (b) Ground Truth

(c) RCF

(d) DeepLab v2

(e) Our MSCF

FIGURE 4. Qualitative results of our MSCF method compared to RCF and DeepLab v2 on SUN RGB-D. It can be seen that RCF pays too much
attention to the details of the edges in objects, and thus is good at drawing the outline, such as tables, beds, and bicycles, but the black in the
figure indicates that RCF fails to recognize the separated objects. On the contrary, DeepLab v2 can correctly recognize most of the segmented
objects. But the segmentation effect is not as fine as RCF, since the edge of the segmented object tends to be blurred compared to RCF, as shown in
(d). Due to the elaborate fusion of the strength from both RCF and DeepLab v2, our model outperforms DeepLab v2 in edge segmentation, and RCF

in object recognition accuracy.

information is used. The details of the evaluation of our
network on the NYUDv2 dataset are illustrated in Table 5.

Statistics in Table 5 show that our MSCF network outper-
forms other counterparts. It achieved 47.3% and 36.0% in
mPA and mloU, respectively. This result justifies that our
proposed network also performs well on the NYUDv2
dataset.

Finally, the precision results for each category compared to
the other four state-of-the-art baselines are shown in Table 2.
Our results indicate that most categories are significantly
improved by the effective use of the generated rich convolu-
tional features in our model, especially in categories with dis-
tinct geometric distinctions, such as Curtain, Fridge, Person,
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and Toilet. The recognition rate of Box category is relatively
low, because there are fewer pictures containing Box category
in the dataset and it is difficult to distinguish Box from other
categories, such as Books, Bag and other objects shaped like
Box, even with rich convolutional features.

C. QUALITATIVE ANALYSIS

We now present qualitative comparisons of our MSCF model
with RCF [10] and DeepLab v2 [28] in Figure 4. The outputs
are all results run on the same machine using the same dataset.
Both RCF and DeepLab’s code and related parameter settings
are derived from the open source code on Github described
in the published articles.
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TABLE 5. Comparisons for different models on NYUDv2.

Network mPA | mloU
Silberman et al. [12] | 17.5 -
Ren et al. [36] 202 | 214
Saurabh et al. [37] 29.6 | 30.7
Gupta et al. [40] 35.1 -
Eigen et al. [41] 45.1 34.1
FCN [15] 46.1 | 34.0
Wang et al. [42] 47.3 -
HrNetV2 [38] 39.8 | 28.3
MSCF

(ResNet-101) 473 | 36.0

RCF uses 1 x 1 convolution to obtain the hidden layer
information, and the receptive field is too small to correctly
identify large objects such as beds and tables, as shown
in Figure 4. However, it is better than DeepLab v2 at recog-
nizing edges and small objects such as chair legs, lamps and
wheels. DeepLab v2 works well on objects such as tables,
chairs, roofs and picture frames, but it is not good enough in
boundary segmentation. Our approach systematically com-
bines the advantages of the two models to achieve better
results than both of them. However, the segmentation accu-
racy of small targets is still poor, which needs to be further
enhanced in future work.

V. CONCLUSION

This paper proposes a new semantic segmentation model of
MSCEF for indoor intelligent service robots, which can make
full use of all convolutional features from hidden layers in
traditional CNN and achieve a balance between accuracy
and model complexity. This model contains a proposed HCF
module and a PCM module. The HCF module applied to
each convolutional layer can extract coarse high-level seman-
tic features and fine-grained low-level ones while the PCM
module can acquire multi-scale information for images in the
form of a pyramid. Then, the high-resolution feature map can
be produced by the systematic fusion of the two modules
and hence enable better segmentation. Finally, comparative
evaluation studies on two prestigious indoor image bench-
marks show that the proposed MSCF model can achieve
better results than state-of-the-art baselines.

In future research, we will consider the introduction of the
binarization network [43] to further improve the efficiency
of our model, develop real-time semantic segmentation tech-
niques, and also explore more powerful encoder-decoder
structures for the rich contextual information in the images.
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