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ABSTRACT As the number of Internet of Things (IoT) devices proliferates, the magnitude and velocity of
data continues to increase rapidly. IoT systems rely primarily on using messaging protocols for exchanging
IoT data and there exists several protocols or frameworks that support distinct types of messaging patterns.
Given that IoT devices typically have limited computational resources and processing power, choosing
a lightweight, reliable, scalable, interoperable, extensible and secure messaging protocol becomes a very
challenging task. As a result, it is not uncommon that IoT systems may employ multiple messaging
protocols for supporting device heterogeneity and different message exchange patterns. In addition, basic
similarities among existing several messaging protocols or frameworks that exist today for exchanging IoT
data within IoT systems suggest the potential of interoperability. Given that IoT systems help facilitate
the interconnectivity among distributed, heterogeneous entities, interoperability among existing messaging
protocols will play an increasingly important role in simplifying the development and deployment of IoT
systems. In this paper, we present a comprehensive review of the existing messaging protocols that can be
used in deploying IoT systems. Throughout this paper, we highlight the protocols’ distinctive approaches and
applicability of using them across various IoT environments. In addition, we highlight challenges, strengths
and weaknesses of these messaging protocols in the context of IoT.

INDEX TERMS Internet of Things, IoT, HTTP, MQTT, CoAP, AMQP, XMPP, DDS, data distribution
service, constrained application protocol, message queuing telemetry transport, extensible messaging and
presence protocol, HyperText transfer protocol, edge computing, fog computing, cloud applications.

I. INTRODUCTION
Advances in networking technology have profoundly con-
tributed to how IoT devices produce, exchange and perceive
data. This is becoming more evident as the magnitude and
rate at which data is generated by IoT devices is rapidly
increasing. This has also contributed to the deployment of a
wide array of messaging protocols that enabled IoT devices
to exchange messages more efficiently. Application layer
protocols are considered as the underlying layers used by
applications in defining the structure of message exchanges
and how they can be transmitted. In this paper, we primarily
focus on the messaging protocols at the application layer of
the Open System Interconnection (OSI) model [8].

There are a number of communication or middleware pro-
tocols that are commonly used in the deployment of IoT
applications including HyperText Transfer Protocol (HTTP),
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Message Queuing Telemetry Transport (MQTT), Advanced
Message Queuing Protocol (AMQP), Constrained Applica-
tion Protocol (CoAP), Extensible Messaging and Presence
Protocol (XMPP), and Data Distribution Service (DDS),
among others. Such protocols support to some extent similar
features in terms of connectivity, however, they vary in the
degree to which these features are offered. Given that IoT
systems primarily depend on IoT devices for data collection
and message exchanges for the overall functioning of the
system, the choice of which communication or messaging
protocol to use for device interconnectivity becomes a very
time consuming and challenging task. Furthermore, when
choosing a suitable messaging protocol, it is imperative to
consider the hardware characteristics of IoT devices and type
of data link layer protocols employed.

In addition, IoT devices can vary significantly in terms
of the bandwidth they support. That is, IoT devices do not
use a universal radio technology and therefore the physical
data rate they support varies considerably depending on the
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size and hardware components used to build these devices.
For example, low-rate wireless personal area networks
(LR-WPANs) leverage the IEEE 802.15.4 physical layer that
supports data rates up to 250 Kbps with packet length of
approximately 127 bytes. Other variations also exist at other
layers of the OSI model such as HTTP.

A common request header size in HTTP, which includes
basic attributes such as user-agent, is approximately
700-800 bytes. However, an uncompressed request header
may vary in size ranging from 200 bytes to more than 2KB.
Moreover, using application layer protocols that are capable
of capturing data much faster than actual physical data rates
often leads to high latency. Therefore, it would be desirable
when developing IoT applications to consider messaging
protocols that can accommodate or support physical data
rates at the data link layer.

IoT devices producing data at a high velocity often require
lightweight communication protocols. For example, a small
battery-supported IoT temperature device programmed to
send localized temperature readings at a fixed frequency
(e.g. every 10 seconds) to an IoT hub (e.g. Microsoft Azure
IoT Hub) may not have sufficient power by the time it trans-
mits a day-long temperature readings using HTTP. It would
be desirable in this case to alternatively use a lightweight
messaging protocol such as Message Queuing Telemetry
Transport (MQTT) inwhich the smallest packet size is 2 bytes
(compared to 200 bytes in HTTP in the uncompressed header
size scenario). MQTT is a Machine-to-Machine (M2M)/
Internet of Things (IoT) connectivity protocol designed as
an asynchronous lightweight publish/subscribe messaging
transport protocol [1].

Performance of IoT devices and applications can be sig-
nificantly influenced by the choice of messaging protocol
used. By employing a suitable messaging protocol helps
reduce network traffic and latency and thus increases an
IoT application’s reliability [8]. However, there exists no
universal protocol that can be used across heterogeneous
IoT environments. To this extent, choosing an appropriate
messaging protocol depends on a number of factors including
IoT application’s business requirements, software capabili-
ties, device or hardware capabilities, and average size of data
exchanges, among many others. Furthermore, in deploying
IoT devices and developing an IoT application, it is impera-
tive to consider the main characteristics and distinctive fea-
tures offered by existing protocols. Hence, throughout this
study we focus primarily on present messaging or middle-
ware protocols that are commonly used in deploying IoT
systems.

There are a number of survey research studies that have
examined protocols used for IoT connectivity at the data
link layer [120]–[129]. However, the diversity which exists
at this layer in terms of protocols’ goals, architecture and
capabilities makes it progressively difficult to relate these
protocols with those that interface at the application level.
That is, understanding protocols at the data link layer is not
sufficient to build IoT applications. It is essential to also

consider protocols that exist at the application level comple-
menting those that exist at the data link layer.

Understanding data link protocols that indirectly inter-
act with those at application layer through the OSI model
is essential. Because data link layer protocols (e.g. Wire-
lessHART, Sigfox, LoRa, among others) have different goals
and target different types of IoT devices, carefully choosing
a protocol closer to the application layer (e.g. HTTP, CoAP,
MQTT, among others) while also considering crucial system
requirements such as Quality of Service (QoS), bandwidth,
interoperability and security becomes inevitable. Although
there exists a number of studies that have examined proto-
cols at the data link layer [120]–[129] and the application
layer [2]–[7], [130]–[140], there exists a gap on how these
studies connect protocols across a number of layers of theOSI
model. That is, complementing the knowledge area across
multiple layers of the protocol stack for supporting an appli-
cation’s lifecycle is therefore needed. This paper attempts to
reduce this gap by providing technical details and thorough
analysis of protocols that can be used for developing IoT
applications.

This research paper is organized as follows. Section II
discusses some of the related work. Section III discusses
existing protocols and the different layers of the OSI model.
Section IV presents a detailed analysis of existing messag-
ing or middleware protocols including HTTP, CoAP, MQTT,
AMQP, XMPP and DDS. Section V provides a comprehen-
sive comparison of the features of existing messaging proto-
cols. Section VI discusses how messaging protocols address
the challenges associated with building IoT applications.
Section VII highlights the strengths and weaknesses of each
protocol in the context of IoT. Finally, Section VIII provides
the conclusion and future work suggestions.

II. RELATED WORK
Research and investigation in the IoT domain has focused
primarily on data accumulation, data analysis and transfor-
mation and collaborative processes implemented in the form
of RESTful services. To organize IoT data flows, a multilevel
model of IoT or an IoT reference model is employed con-
sisting of a number of layers including: (a) physical device
and controllers, (b) connectivity, (c) data accumulation and
abstraction (e.g. big data) and (d) application. In this section,
we identify key research studies at the application layer
protocol.

In [2], the authors conduct a comparison study into the
usefulness of utilizing CoAP and MQTT in smart healthcare
IoT applications. The paper identifies weaknesses of each of
these protocols and security implications in the context of
healthcare. Furthermore, the study focuses on the security
aspects and identifying weaknesses in protecting sensitive
and private patient data. The authors attempt to classify the
types of threats as Privacy and Confidentiality, Availability
and Integrity [2]. In [3], Naik provides a study surveying
some of the existing messaging protocols and identifying
their pros and cons [3]. In [7], Dizdarević et al. provide
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another survey study of existing application layer protocols
while distinguishing their operability for possible integration
into fog- and cloud-based systems [7].

In [4], Thangavel et al. examine the end-to-end per-
formance of MQTT and CoAP using a common middle-
ware. The study focuses primarily on the usefulness of such
protocols in wireless sensor networks (WSNs). The authors
propose a middleware for extending existing and future
protocols. Results from this study show that MQTTmessages
have lower delay compared to those of CoAP when con-
sidering lower packet loss rates. However, MQTT’s perfor-
mance degrades compared to that of CoAP when considering
messages at higher data loss rates. The study also identifies
that CoAP generates much less traffic overhead compared to
MQTT when message sizes are small and loss rate is equal to
or less than twenty-five percent [4].

Tandale et al. performed a similar study in which they
considered CoAP, MQTT and HTTP REST [5]. The authors
used an arm-based device (Raspberry Pi 3) acting as a gate-
way to examine the reliability and network traffic of these
protocols while considering various network conditions. That
is, the study included two types of networks: (a) cellular
4G and (b) high-speed broadband connection. The authors
conclude that CoAP performs more efficiently for small pay-
loads and its performance deteriorates as the size of messages
increases [5].

In [6], the authors focus in their study on the implemen-
tation and comparison of Machine-to-Machine (M2M) pro-
tocols for IoT. The study was centered on the deployment
of an IoT system that collects temperature data while using
both the MQTT and CoAP protocols. The study determines
that both of these protocols achieve 100% data transfer with
minimal packet loss induced and have relatively efficient
support for re-transmitting data packets. Furthermore, the
study finds that CoAP protocol’s data loss rate is low when
handling smaller data sizes. The study concludes that the
performance of each protocol is fairly dependent on various
network conditions (e.g. in the case of data retransmission as
data size increases) [6].

Apart from research efforts that investigated the use of
messaging protocols at the application layer, there have been
a number of research studies that focused on the network
layer protocols. Network layer protocols enable technologies
at that layer to communicate in a unidirectional or bidi-
rectional capability [119]. For example, network protocols
have different identification techniques for locating devices
over different types of networks (i.e. small or large). Such
identification can be achieved, for example, through network
addresses using IPv4, IPv6 or 6LoWPAN [120]. Because IoT
devices vary in hardware capabilities (e.g. power consump-
tion, connectivity medium, transmission coverage), identify-
ing a suitable communication medium that can be used within
the boundaries of IoT devices is challenging [121]–[123].
A number of survey studies examined the various differ-
ences amongst existing network layer protocols in the context
of IoT.

In [124], the authors discuss key identification and track-
ing technologies for IoT devices. For example, the Radio
Frequency Identification (RFID) is a suitable technology
that is generally used for tracking and identification. RFID
devices are commonly used in applications such as trans-
portation, logistics, manufacturing, and equipment tracking,
among others [119], [122]. However, IoT systems require
smart devices that go beyond the traditional identification
capabilities [124].

In addition, there exists multiple different types of
networks that can be employed in IoT systems such as wire-
less sensor networks (WSNs). WSNs support longer trans-
mission ranges and, unlike RFID sensor networks, offer a
peer-to-peer communication mode. Because of the need for
enhancing the network identification of IoT devices, improv-
ing data transmission rates and supporting mobility, a num-
ber of activities or alliances have evolved in recent years
including, but not limited to, Electronic Product Code (EPC)
led by EPCGlobal,Machine-to-Machine (M2M), 6LoWPAN,
ZigBee, WirelessHART, NFC, ANT+, Thread, MiWi, and
Weightless, among many others [119]. Many of these activ-
ities vary in terms of communication strategies they support
or enable.

The authors in [125] provide a survey of the communica-
tion strategies that can be applied for building or deploying
smart IoT applications. In this study, the authors identify four
main communication strategies: (a) device-to-device (D2D),
(b) device-to-cloud (D2C), (c) device-to-gateway (D2G) and
(d) device-to-application (D2A). The authors examined the
current state-of-the-art for identifying a technical taxonomy
that can potentially cover all possible IoT communication
types [124]. However, the study focused primarily on a
broad taxonomy for covering these communication strategies.
It would be desirable to include, in addition to considering
this high-level overview of the communication strategies,
more granular technical details that can help identify the
scope to which existing messaging protocols map or support
these communication strategies. This research study attempts
to reduce this gap by identifying the level of support provided
by existing messaging protocols for each of these communi-
cation strategies.

Furthermore, other studies have limited their scope to focus
mainly on a particular applied area of IoT. For example,
the authors in [120] reviewed communication technologies
primarily for smart home systems. The survey study pro-
vides a feature comparison of many elements including archi-
tecture, software implementations, privacy and security and
communication. The study also discusses the advantages and
disadvantages of applying wired andwireless communication
protocols in terms of frequency, data rates, and network topol-
ogy, among others. However, the primary focus of the study
in [120] is on short range technologies at the data link layer
protocols without connecting them to those that exist at the
application layer.

Although many of the existing research studies have
focused on identifying the advantages and disadvantages of
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a number of communication protocols, the need for having
a research study that provides detailed comparison with rel-
evant IoT use cases of the existing messaging protocols at
the application layer while considering differentiating factors
such as interoperability, scalability and performance adapt-
ability and extensibility, security and reliability becomes
inevitable. In this paper, we provide a comprehensive study
that investigates the use of existing messaging protocols
for IoT application and identify the challenges associated
with their usage across various IoT deployment strategies
(e.g. edge- or fog- versus cloud-based). The following section
describes a communication-centric IoT reference model, IoT
application requirements and various IoT-related specifica-
tions, standards and alliances that exist today.

III. IoT MESSAGING PROTOCOLS
In a traditional IoT cloud architecture, the plurality of data
generated by IoT devices relocate to the cloud for data accu-
mulation (i.e. storage) and abstraction (i.e. aggregation and
access). In contrast, an IoT edge-based architecture reduces
the amount of data in which only partial data relocates to the
cloud for further storage and processing.

In the edge-based model, network and system architectures
are generally responsible for not only collecting data at the
edge of the network but also performing advanced functions
such as data analysis and processing. That is, the data accu-
mulation and abstraction partially shift from the cloud to the
edge of the network which significantly contributes to reduc-
tion in network traffic as the number of IoT devices increases.
Therefore, it is imperative when choosing a deployment
architecture to identify a suitable messaging protocol. To this
extent, in the following section, we discuss a communication-
centric IoT reference model for the purpose of distinguishing
the various protocols and specifications that exist across the
various IoT layers.

A. THE IoT REFERENCE MODEL
Despite the differences between IoT deployment approaches,
producing data which occurs at various rates is achieved by
the physical layer to which IoT devices connect to a network
(i.e. wired or wireless). Given that IoT devices at this layer
may have limited power, the rate at which data generates
requires special consideration to the amount of power con-
sumed by these devices. That is, reducing the velocity or the
rate at which data generates on the edge of the network trans-
lates into longer battery life of IoT devices while reducing
bandwidth.

A plethora of standards, specifications and technologies
at this layer exist including Ethernet 802.3, Wi-Fi 802.11
a/b/g/n, Low Power Wide Area Network (LWPAN), Long
Range Radio (e.g. LoRa, Sigfox, Narrowband IoT –NB-IoT),
Zigbee, Cellular (2G, 3G, 4G, LTE, 5G), 802.15.4, among
many others. Figure 1 presents a Communication-centric
Internet of Things (CIoT) reference model.

In the following sections, we describe the main functional-
ity supported by the layers presented in Figure 1 and briefly

FIGURE 1. A communication-centric IoT reference model (CIoT).

discuss the relevant protocols, specifications or standards that
exist at each layer.

B. PHYSICAL AND DATA LINK LAYERS
At the lowest level of the IoT reference model presented
in Figure 1 is the physical layer which contains the electronic
circuitry for transmissions. The data link layer is responsi-
ble for data transfers between network entities. There are
a large number of technologies that exist at the data link
layer each of which has been designed to target specific
applications or connectivity strategy. For example, Z-Wave
enables IoT devices to be controlled via the Internet and is
very common among smart home systems.

On the other hand, the Weightless technology uses a set
of Low-Power Wide-Area Network (LPWAN) standards for
data exchanges primarily between a base station and thou-
sands of IoT nodes. There are three types of Weightless
protocols including: (a) Weightless-N, Weightless-W and
Weightless-P. Each of these Weightless protocols is designed
for specific use cases. Weightless-W, for example, oper-
ates in the TV White Space (TVWS) spectrum and takes
advantage of the ultra-high frequency (UHF). Weightless-
N uses an ultra-narrowband which is ideal for sensor-based
networks and metering systems, among others. Weightless-
P offers bi-directional support and operates in both licensed
and unlicensed ISM radio bands. Common applications
using Weightless-P include industrial machine monitoring
and health equipment monitoring, among others.

Sigfox is another data link layer technology which offers
subscription-based connectivity services over a dedicated
LPWAN networks and can be used in smart alarm systems
and metering systems, among others. LoRaWAN provides a
low-cost and secure bi-directional long-range transmissions
supporting very large networks that consist of hundreds, thou-
sands or millions of nodes. Ideal applications of LoRaWAN
include smart cities, smart street lighting and smart waste
management, among many others.

ZigBee, a technology developed by the ZigBee Alliance,
is based on the IEEE 802.15.4 standard and operates in unli-
censed radio bands while it supports a number of topologies
including the star, cluster tree and mesh topologies. ZigBee
can support up to 65,000 nodes over a network and has low
data rates. Table 1 provides a feature comparison for a subset
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TABLE 1. Some of the data link layer protocols comparison.

of the existing data link layer technologies sorted by the
transmission range in an ascending order.

C. NETWORK AND TRANSPORT LAYERS
Above the data link layer as can be seen in Figure 1 is
the network layer. This layer is responsible for the log-
ical addressing and delivery of packets between source
and destination, which generally requires routing. Hence,
a lightweight routing process is essential for IoT devices par-
ticularly constrained devices while maintaining a high level
of scalability. Because some IoT devices may operate using
low-power radio communication, IPv6 Low Power Wireless
Personal Area Network (6LoWPAN) provides an optimal
method for transmitting IPv6 packets for low-power or con-
strained devices.

The transport layer is mainly responsible for the end-to-
end communication via a network and provides many ser-
vices such as data-stream support, reliability, multiplexing
and security, among others. For connection-oriented trans-
missions, Transmission Control Protocol (TCP) is used for
messaging transmissions. Although TCP is considered one of
the most widely used protocols over the Internet, TCP may
not be ideal for all types of IoT systems. An IoT system
that uses a large number of constrained devices dissemi-
nated across multiple geographical areas may benefit signif-
icantly from using a connectionless service protocol such as
User Datagram Protocol (UDP) for messaging transmissions
versus TCP.

D. APPLICATION LAYER
The application layer is an abstraction layer that identifies a
variety of protocols and interfacing methods [8]. There exists
several application layer protocols that address a wide range

of application requirements. Each of these protocols provide
various features that vary in terms of reliability, quality of
service, performance, functionality and scalability, among
other factors.

Some of the protocols that exist at the application layer
include: (a) HyperText Transfer Protocol (HTTP), (b) Secure
HTTP (HTTPS), (c) Message Queueing Telemetry Transport
(MQTT), (d) AdvancedMessage Queuing Protocol (AMQP),
(e) ExtensibleMessaging and Presence Protocol (XMPP) and
(f) Constrained Application Protocol (CoAP), among many
others. In addition, a number of industry-specific protocols
used primarily in IoT environments (mainly industrial) also
exist such as Modbus, Distributed Network Protocol (DNP3),
OLE for Process Control (OPC), Manufacturing Message
Specification (MMS), among many others. A software devel-
oper, system designer or network administrator needs to
consider not only an application protocol but also relevant
protocols employed at other layers in the OSI model by an
IoT system. In Section IV, we discuss in details each of the
IoT messaging protocols that exist at the application layer.

TABLE 2. IoT application range requirements [120]–[123], [130]–[140].

E. IoT APPLICATION RANGE REQUIREMENTS
Because of the diversity of IoT devices, there exists no sin-
gle communication technology that is capable of support-
ing heterogeneous environments. To have a more thorough
understanding of the transmission requirement ranges for the
various IoT application domains, we present in Table 2 a list
of some of the common IoT application domains with cor-
responding ranges based on data we collected from existing
research work [2]–[7], [120]–[123], [130]–[140].

F. SPECIFICATIONS, STANDARDS AND ALLIANCES
Over the past few years, there have been a significant increase
in the number of standards’ governing bodies and alliances
that have been formed for enhancing communication tech-
nologies for the IoT landscape. Identifying the scope and
goals of these initiatives is beyond the scope of this paper.
However, we would like to provide the reader an overview
of some of these initiatives that we believe would be rele-
vant to this study. In Figure 2, we present a subset of the
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FIGURE 2. Standards governing bodies and alliances in the IoT
Landscape.

organizations and alliances that have been playing an increas-
ingly important role in solving challenges that exist in the IoT
paradigm in recent years.

The initiatives, specifications and standards presented by
the various organizations and alliances shown in Figure 2
have different focuses and target specific stakeholders or mar-
kets. For example, some of these initiatives offer solutions
that aim to solve challenges for Business to Consumer
(B2C) or Business to Business (B2B) applications. Other
initiatives were developed to accommodate specific verti-
cal or horizontal domains in the IoT landscape. Consider,
for example, organizations or alliances such as the IEEE,
ZigBee Alliance, ISO, CEN and ULE. All of these organiza-
tions or alliances have proposed standards or specifications
for a vertical domain which primarily focus on solving a very
specific area such as home and building automation.

Other organizations such as the IEC, ISO, oneM2M, OPC
and OpenIndustry 4.0 Alliance provide specifications or rec-
ommendations that are domain-specific or solve problems
within the manufacturing and industrial automation vertical
domain. Furthermore, organizations such as the W3C, ITU,
OASIS, OMG, IETF and HyperCat [163] provide standards,
specifications and recommendations that provide broader
support for a number of IoT applications while encompassing
many different domains (e.g. industrial, home automation,
healthcare, energy, oil and gas, among many others.

G. CHOOSING MESSAGING PROTOCOLS
Although there exists a significant number of initia-
tives or standards that attempt to solve IoT challenges
across different domains, they vary considerably in terms of
the following factors: (a) architecture, (b) communication,
(c) security and privacy, (d) interoperability, (e) integration,
(f) device types and sensor technology, (g) deployment mod-
els (h) services’ provisioning and (i) application and device
management. Some of these features are also supported by a
number of protocols that exist across the link and application
layers. Examining similarities and differences among existing
data link layer’s specifications, standards or initiatives is
beyond the scope of this paper. However, due to the fact that
exchanging data through messages is fundamental for the
development and deployment of IoT applications, we focus
primarily in this paper on investigating messaging protocols
that support IoT data exchange.

As a first step into identifying the protocols to be part
of this research paper, we conducted a review of the exist-
ing research studies that have examined protocols for IoT
applications [7], [118], [121]–[138]. As part of our selection
strategy, we also considered the following factors:

- What are the system requirements and challenges that
may influence choosing an application protocol for IoT
development?

- What is the extent of the coverage of these challenges in
existing literature?

- Which communication types are covered by existing
application layer protocols?

- What factors were used or applied in conducting prior
research studies?

- What is the depth of the examined literature in terms of
coverage, comprehensibility and technical knowledge?

- What is the adoption rate of the existing protocols used
for IoT applications?

For considering the communication scope, we reviewed the
current state-of-art literature to identify the IoT communica-
tion types based on environments running IoT applications.
The authors in [124] identified four classical communication
types for IoT environments. We summarize these communi-
cation types below.

- Device-to-Device (D2D) where communication is pro-
vided between two nodes or devices directly.

- Device-to-Application (D2A) where communication is
performed between devices and an IoT application.

- Device-to-Gateway (D2G)where communication is pro-
vided through a gateway that resides in close proximity
to the edge of the network while interacting with IoT
devices.

- Device-to-Cloud (D2C) where communication is
achieved directly between IoT devices and cloud service
providers.

We use these communication types to identify existing
application layer protocols that provide support for D2D,
D2A, D2G and D2C. Not all protocols support all of the
identified communication types. For example, MQTT func-
tions in the communication type D2C whereas CoAP only
supports D2D. In addition, supporting the communication
scope depends on a number of factors such as device capabil-
ities. For an IoT device to send data streams to an IoT cloud
platform directly (e.g. Azure IoT Hub), the device must be
equipped with networking technology (e.g. WiFi or Ethernet)
to send data to the cloud. However, if the device does not
support direct connectivity to the cloud (e.g. an RFID tag),
performing a D2C communication is not possible. Hence,
a gateway may be used to collect data streams from the IoT
device and then forward the stream to the cloud. As part of our
comprehensive analysis and review of IoT application proto-
cols, we take into consideration these variations and compare
these protocols based on the scope of the communication type
they support.

In addition, we considered published literature for iden-
tifying the adoption rate of the plurality of messaging
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protocols that exist today. To this extent, we reviewed existing
surveys conducted across the IoT developers’ community.
We make use of the results from surveys conducted by the
Eclipse Foundation between 2015 and 2019 that received sig-
nificant feedback from the IoT developers’ community [155].
We collected statistical data about the adoption rate published
by Eclipse Foundation through these surveys and used it to
identify protocols that we should consider as part of our study.

Combining the data we collected from our literature review
and the results of the surveys published by the Eclipse Foun-
dation, we identify the following messaging protocols as
part of our comprehensive review: (a) HTTP(S), (b) CoAP,
(c) MQTT, (d) AMQP, (e) XMPP and (f) DDS. We believe
that by thoroughly investigating these protocols while having
general understanding of the existing data link layer pro-
tocols, it is then possible to determine how each of these
protocols can address system requirements or challenges that
exist across the IoT communication landscape while also
identifying suitable IoT cloud service providers for deploying
crucial IoT services.

H. SUPPORT FOR IoT MESSAGING PROTOCOLS
ON THE CLOUD
Apart from examining adoption rates for IoT messaging pro-
tocols, it would be desirable to identify any patterns or trends
for protocols that are supported by existing IoT cloud
platforms. To this extent, we conducted a literature review
examining support levels of messaging protocols across the
plurality of existing IoT cloud platforms [166]–[175]. Table 3
presents a detailed list of supported protocols that we gath-
ered for ten of the major players or the plurality of IoT cloud
platforms that exist today.

As can be seen in Table 3, all of the IoT cloud platforms
support HTTP(S) and MQTT across all ten cloud platforms,
followed by AMQP supported by six platforms, then CoAP
supported by four IoT platforms. These results align with
those of the Eclipse Foundation survey noting that HTTP and
MQTT constituted the top two messaging protocols used by
developers according to the survey results [155]. We discuss
the results of the survey in Section VI.I. Unfortunately, none
of the existing IoT cloud platforms provide support for DDS
although it is being used by IoT developers based on the
results gathered from the survey conducted by the Eclipse
Foundation (Section VI.I).

We summarize the distribution of the support by cloud
platform providers in Figure 3. Figure 4 presents a compari-
son of the messaging protocol support across cloud platforms
examined in Table 3. As can be seen in Figure 4, Oracle IoT
and Siemens MindSphere provide support for all of the five
protocols, followed by Eclipse Hono.

In addition to supporting IoT messaging protocols, some
IoT service providers also provide support for proprietary
protocols or protocols that are specific at the IoT device
level. For example, Siemens’ MindSphere supports Modbus,
LightweightM2M (LwM2M), LoRaWAN andOPCUA tech-
nologies which are commonly used in industrial automation,

TABLE 3. List of protocols/technologies supported by existing IoT
platform providers for data transmission.

FIGURE 3. IoT platform support distribution.

FIGURE 4. Comparison of messaging protocol support by IoT platforms.

manufacturing or home automation. Although Alibaba IoT
provides support for two of the protocols that we are investi-
gating, it also supports IoT device mobility through dedicated

94886 VOLUME 8, 2020



E. Al-Masri et al.: Investigating Messaging Protocols for the IoT

transmission channels on its IoT platform providing support
for a number of cellular network types including 2G, 3G, 4G
and NB-IoT.

Apart from the complexities in choosing an appropri-
ate messaging protocol for IoT applications, results from
Figures 3 and 4 show that considering the IoT deployment
platform is also important. In cases where an IoT application
has high levels of heterogeneity, choosing an IoT platform
that supports diverse IoT messaging protocols would be a
good choice. However, there are also other factors that may
influence the choice of IoT cloud platforms such as cost,
bandwidth, reliability, security, service provisioning, interop-
erability, resiliency and composability, among others.

In addition, the degree of the services offered by existing
IoT cloud service providers varies depending on the tech-
nologies used or applied. For example, IBM offers hosting
services for its SoftLayer data centers [141] which support
a large magnitude of data streams (i.e. in billions) from
connected IoT devices. Deploying an IoT application onGCP,
for example, can take advantage of Google’s fiber optics
network [142] which can significantly support low-latency
IoT application deployments. Microsoft Azure offers a num-
ber of services through the Azure Suite running applica-
tions such as Salesforce, SAP, Oracle database and Microsoft
Dynamics. AWS enables messages to be routed to AWS end-
points through the Rules Engine to AWS’s Lambda, Kinesis,
machine learning and Elasticsearch service, among many
others. In the following sections, we describe the various
messaging protocols that exist at the application layer that can
be used for developing and deploying IoT applications.

IV. MESSAGING PROTOCOLS FOR THE
INTERNET OF THINGS
In this section, we primarily focus on the application layer
protocols that support the data link layer protocols discussed
in Section III. We applied a selection strategy based on the
adoption rates of the application layer messaging protocols
from a survey conducted by the Eclipse Foundation [155]

as discussed in Section III.G. In addition, we considered the
support level of messaging protocols by existing IoT cloud
platforms as discussed in Section III.H.

A. HYPERTEXT TRANSFER PROTOCOL (HTTP)
HTTP is an application-level, generic, stateless protocol [9]
that is used generally for data communication over the World
WideWeb. One of the key features of HTTP is content negoti-
ation of data representation. This enables different heteroge-
neous devices built independently of the data to be shared [8].
HTTP is a request-response protocol in which a client (e.g. a
browser) sends a request message and a host (e.g. a server)
generates a response message. HTTP version 3.0 or H3 is
the latest (draft) version of HTTP introduced in 2018 [10].
However, the common HTTP version used today is HTTP
1.1. Figure 5.0 presents variations among HTTP versions 1.0,
1.1 and 2.0. In this paper, we focus primarily on the common
HTTP version used in IoT applications or HTTP 1.1.

B. CONSTRAINED APPLICATION PROTOCOL (CoAP)
Constrained Application Protocol (CoAP) is a web transfer
protocol that is intended for devices running on constrained
(e.g., low-power, lossy) networks [11]. Constrained devices
generally have 8-bit microcontrollers with small amounts of
memory. The CoAP standard was designed for Machine-to-
Machine (M2M) applications (e.g. factory automation, smart
energy). Similar to HTTP, CoAP is a request-response inter-
action model and uses major concepts from the web such
as Uniform Resource Identifiers (URIs) and Internet media
types [11]. CoAP aims to bridge HTTP and RESTful services
through simple interfacing. This protocol is used over the
UDP transport protocol using the coap scheme and over
DTLS using the coaps scheme [11]. An abstract layer of a
DTLS-Secured CoAP is shown in Figure 6.

A request URI can be split into multiple parts:
(a) Uri-Host, (b) Uri-Port, (c) Uri-Path and Uri-Query
Options. These features provide easy and intuitive way to
communicate using this protocol with RESTful services.

FIGURE 5. HTTP message control flow (left: HTTP 1.0, middle: HTTP 1.1, right: HTTP 2.0.
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FIGURE 6. Layers of DTLS-Secured CoAP [11].

TABLE 4. CoAP methods.

FIGURE 7. CoAP message structure.

CoAP supports CRUD operations through HTTP methods
as shown in Table 4 and provides status codes that are very
similar to those in HTTP.

CoAP also provides support for discovering services and
resources. In addition, when a message is published in a URI,
notifications are sent to clients who can access the resource.
An example of a CoAP message format is shown in Figure 7.
The version specifies the CoAP version number and the type
indicates the type of message. CoAP uses a simple binary-
base header format and the smallest size is 4 bytes.

Table 5 outlines the four different message types that CoAP
support. The message types provide a certain guarantee to the
delivery of messages and hence increases the level of quality
overall. For example, when a server processes a response
identified by a given code (in the code field) matching the

request, an 8-bit response code identifies the class of the
response: (2) success, (4) client error and (5) server error.

A confirmable message (CON) represents reliable mes-
sage delivery since this type of message is retransmitted
one or more times until the server ultimately receives the
message. The ACK message will contain the same message
id of the confirmable message (CON). An example of a con-
firmable message with an acknowledge response message is
shown in Figure 8.

FIGURE 8. CoAP message control flow.

Through the message types and HTTP-like status codes,
CoAP becomes an easy to use protocol for integrating into the
existing web. IoTivity, an open source software framework
that enables device-to-device communication, uses CoAP as
its application layer [18]. In addition, CoAP offers extensions
such as the Observe Option which helps in observing the
changes in the state of resources giving it a RESTful archi-
tecture support.

C. MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT)
Although HTTP and CoAP can be used as a request/response
protocols used by IoT systems or devices, there is a need
for a lightweight protocol that is designed to handle situ-
ations in cases of unreliable networks or intermittent con-
nectivity. MQTT, an OASIS standard, is a publish-subscribe
lightweight messaging protocol designed for constrained
devices [12] and is well-suited for these types of scenarios
while enabling the exchange of data with the cloud in a real-
time manner.

As outlined in Table 3, nearly all of the existing IoT
cloud platform providers including IBM Watson IoT Plat-
form [13], Microsoft Azure IoT Hub [14], Google Cloud

TABLE 5. CoAP message types.
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FIGURE 9. MQTT protocol based on TCP/IP stack.

IoT Core [15], Bosch IoT Hub [16] and AWS IoT [17],
among many others provide support for an IoT application
to send data using the MQTT protocol. MQTT, an applica-
tion layer protocol designed for Machine-to-Machine (M2M)
communication, uses a publish-subscribe model and runs on
top of the Transmission Control Protocol/Internet Protocol
(TCP/IP) as shown in Figure 9.

MQTT is considered lighter than HTTP 1.1 and supports a
near real-time message exchange using the publish-subscribe
model. In addition to being a protocol of choice for many
IoT and M2M applications, MQTT is also used in vari-
ous applications where data exchange is necessary such as
asset management, automotive telematics, traffic monitoring,
home automation and supervisory control and data acquisi-
tion (SCADA), among others.

This publish-subscribe model is composed of a broker
(i.e. a server) and clients establish a connection with the bro-
ker at any time. In this model, clients send messages through
the broker which is known as the publisher. Then, the bro-
ker filters these incoming messages and distributes them
to clients who are interested in receiving these messages.
To this extent, a client that registers with the broker to receive
these messages must first subscribe to specific topics. Clients
receive the payload (or message data) when a new device
publishes a message. A subscriber can receive a published
message later. That is, the subscribers can receive published
messages at different times. Figure 10 presents a high-level
overview of the MQTT brokering model that shows all of the
entities involved in this architecture including: (a) centralized
broker, (b) publishers and (c) subscribers.

FIGURE 10. MQTT centralized broker model.

In this publish-subscribe model, a publisher can send mes-
sages to a number of subscribers with one single publish

FIGURE 11. MQTT message structure.

FIGURE 12. An example of a MQTT message control flow.

operation to the broker. The broker handles the ‘‘broad-
casting’’ or sending messages to all subscribers subscribed
to topic of the message as shown in Figure 10. There
are a number of MQTT model implementations including
Mosquitto, eMQTT, HiveMQ, Moquette, among many oth-
ers. Figure 11 presents the MQTT protocol message format.
Figure 12 depicts an example of an instance of amessage flow
in the MQTT protocol.

In the message control flow shown in Figure 12, client 1
wishes to connect to the broker (CONNECT) where the
broker accepts the request (CONNACK). Client 1 then
subscribes to topic ‘‘temp’’ (SUBSCRIBE) and the broker
responds with an acknowledgement for this subscription
(SUBACK). Client 2 publishes to the broker message on the
topic ‘‘temp’’ for which the broker then will publish it to
Client 1 (PUBLISH) who is already subscribed to the ‘‘temp’’
topic. The message contains the data or payload. Client 1
then acknowledges the receipt of the published message
(PUBCREC).

Message reliability is imperative in this publish-subscribe
brokering model. That is, an IoT system may require that
messages be delivered in a reliable manner where all clients
acknowledge the receipt of thesemessages.MQTT supports a
Quality of Service (QoS) level when messages are published
through the Connect Flags of the Fixed Header using theWill
QoS parameter (bits 4 and 3). These bits specify the QoS level
applied when a broker publishes a message to one or more
clients. MQTT supports three levels of QoS as presented
in Table 6.

As shown in Table 6, as the QoS level increases, the reli-
ability of messages’ delivery also increases. However, this
also increases the overhead associated with ensuring that
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TABLE 6. MQTT message reliability and QOS levels.

all clients receive the intended messages. The more clients
are subscribed to receive a message with QoS 2, for exam-
ple, will increase the overhead on the message broker while
ensuring the delivery of the message without duplication or
retransmission.

Nearly all of the existing cloud platform providers sup-
port both HTTP(S) and MQTT. Table 7 provides a feature
summary of the Quality of Service (QoS) levels supported by
some of the popular IoT cloud platforms. Because MQTT is
widely used across a number of M2M applications including
home appliances, smart utility management, waste control
and logistics, among many others, attackers may exploit
vulnerabilities within the protocol to carry out targeted
attacks (e.g. denial-of-service (DoS) attacks) or collect pro-
prietary data tunneled through unsecure MQTT transmission
channels.

TABLE 7. MQTT QOS support by some IoT cloud service providers.

The MQTT handling of disallowed Unicode code points
provides a client or server the option to decide on the
validation of these code points (e.g. UTF-8 encoded strings).
As a result, an endpoint does not necessarily need to validate
UTF-8 encoded strings (e.g. topic name or property). As such,
a client could potentially use this as a vulnerability and causes
a subscribed client to close the network connection using a
topic that contains an invalid Unicode code point. Amalicious
client can then use this as a security exploit for possibly
causing a Denial of Service (DoS) attack. Therefore, enabling
UTF-8 encoded strings, for example, can allow these security
exploits to occur in cases they are used as control charac-
ters or in control packets (see the first byte in Figure 11).
Hence, all clients will remain offline and not acknowledge

to the MQTT broker if a malicious client sets the QoS level
at 2 while retaining the message.

D. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)
AMQP, both an OASIS and ISO standard, is another
lightweight but an extensible messaging protocol designed
forM2Mmessaging [19], [44], [45]. AMQP is used generally
in corporate environments and focuses on interoperabil-
ity [20]. AMQP is a binary, application layer protocol that
supports a wide range of messaging applications and commu-
nication patterns. In addressing interoperability issues when
using Message-Oriented Middleware (MOM), AMQP sup-
ports both request-response and publish-subscribe models.
Similar to MQTT, it supports a topic-based publish-subscribe
messaging. In addition, AMQP provides support for flexi-
ble routing and business transactions. Figure 13 presents an
AMQP message structure which includes header, message
and delivery annotations.

FIGURE 13. AMQP message structure.

AMQP provides two message interaction modes:
(a) browse mode and (b) consume mode. In the browser
mode, a client can lookup stored messages in a specified
queue whereas in the consume mode, a client can consume
messages within a queue. These consumed messages are then
deleted from the queue. AMQP’s message distribution is
composed of three components: (a) exchange, (b) binding and
(c) queues.

Figure 14 illustrates the message distribution model for
AMQP. Through this model, AMQP provides multiple levels
for exchanging and delivering messages. An exchange is rep-
resented by a routing agent that runs on a virtual host residing
on a broker’s server. This routing agent accepts messages and
then routes them internally or forwards them to appropriate
message queues along with a routing key. An exchange type
applies a specific matching criterion and a corresponding
algorithm.

A message queue is a named FIFO buffer that stores mes-
sages on behalf of applications temporarily. Such applications
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FIGURE 14. AMQP message distribution model.

can, for example, create, share, use or delete messages
depending on the granted authorizations. Bindings repre-
sent relationships between message exchanges and mes-
sage queues. In specific, bindings route messages between
exchanges to the appropriate queues depending on the mes-
sage exchange type. Exchanges can be classified as either
durable or transient. Durable message exchanges are persis-
tent and continue their operations in case a broker needs to
restart while transient exchanges are temporary. Restarting
transient exchanges is required after a broker has restarted.
Generally, there are four main message exchange types:
(a) direct, (b) topic (c) fanout and (d) header. We describe
each exchange type in the following sub-sections.

1) Direct Exchange Type
Using the direct exchange type, an exchange instance
forwards incoming messages to queues based on the
routing key associated with each message. Each bind-
ing contains a binding key. When a publisher sends a
message to the direct exchange, it must provide a rout-
ing key. If the binding key from the message queue is
identical to that of the publisher’s message routing key
(i.e. exact matching), the message then passes through
a message queue.
To illustrate the direct exchange type, consider, for
example, a publisher that sends a message using direct
exchange. In this case, the message published by the
publisher will be routed to the queue that is directly
bound to this exchange. This example is represented
in Figure 14 between Publisher 1 and Subscriber 1
exhibiting a direct exchange type. Direct exchange type
is often used to represent cases for point-to-point mes-
saging. In cases the binding key is associated with more
than one queue, this exchange type can be used for
multicasting operations.
2) Topic Exchange Type
The topic exchange type is similar to that of direct
exchange except that the routing key is considered as
a routing pattern (i.e. a topic). Unlike direct exchange,
the routing key is fixed whereas the routing pattern in

the topic exchange allows the use of wildcards. That
is, it is possible to identify a binding key pattern to be
matched against a routing key. The routing keys can be
matched for one or more keywords. Pattern matching
characters include ∗ and #.
The ∗ is used to match a single keyword whereas
the # is used to match zero or more keywords. Each
keyword is delimited by a ‘‘.’’ (or a period). Using
topic exchange type, when a publisher sends a message
to the topic exchange, it provides a routing key. The
message then passes to themessage queue if the routing
pattern matches that of the routing key. An example
of topic exchange is represented in Figure 14 between
Publisher 1 and Subscribers 2 and 3 since the rout-
ing key is matched by some binding key pattern. The
topic exchange type is typically used to represent a
publish/subscribe messaging pattern.
3) Fanout Exchange Type
The fanout exchange type does not require routing keys
for binding messages to queues. That is, it ‘‘broad-
casts’’ messages to all subscribers unconditionally.
Using the fanout exchange type, when a publisher
sends a message to the fanout exchange instance, the
exchange will simply forward the messages to all
of the queues that are bound to it unconditionally
without the need of any topic mapping (i.e. a pat-
tern) or subscribed access (i.e. routing key). An exam-
ple of topic exchange is represented in Figure 14
between Publisher 1 and Subscribers 4 and 5 where
the exchange forwards the message to all subscribers
without any verifications or matching conditions. The
fanout exchange type is generally used when a broker
needs to asynchronously broadcasts event notifications
to all endpoints.
4) Header Exchange Type
In this exchange type, routing keys and patterns are
ignored. An exchange binds to a message queue
based on a list of arguments or properties specified
in the header of a message. A message is routed
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to a queue when header properties agree with a
‘‘x-match-expression’’. The ‘‘x-match’’ sup-
ports logical both AND and OR matching based on
defined list of header properties. Using this exchange
type, a publisher sends a message to the exchange
matching the properties in the header based on a col-
lection of name/value pairs. A message is then routed
based on the header property matching the arguments
for binding. The header exchange type is very similar to
service binding that occurs in HTTP request/response
paradigm.

In addition to the exchange types, AMQP also provides
a flow-controlled communication in routing messages with
message-delivery guarantees including: (a) at most once
where a message is delivered once or not at all, (b) at least
once where a message is indeed delivered once but may
be received multiple times and (c) exactly once where a
message will be guaranteed to be delivered only once without
loss or redundancies. Furthermore, AMQP supports mes-
sage QoS using two modes: (a) unsettled (not reliable) and
(b) settled (reliable). In terms of security, AMQP supports
authentication and/or encryption based on SASL and/or TLS
and uses TCP as the underlying transport layer protocol [20].

In terms of interoperability, AMQP can run with other
transport protocols such as Stream Control Transmission
Protocol (SCTP). This interoperability is exhibited by the
Apache Qpid which aims to provide an AMQP stack imple-
mentation in multiple languages including C, Java and C++.
In addition,Microsoft provides an AMQP.NET lite library for
supporting AMQPmessaging queues in the. NET framework.
Both theMicrosoft Azure Service Bus and the Azure IoTHub
support communication using AMQP. IBM also provides
support for AMQP through its MQLight, a lightweight mes-
saging API. Amazon provides support for message queuing
through the Amazon Simple Queue Service (SQS).

E. DATA DISTRIBUTION SERVICE (DDS)
The Data Distribution Service (DDS) is a middleware pro-
tocol and an API standard that was developed by the
Object Management Group (OMG). It is a publish-subscribe
model [21] but follows a data-centric approach for data shar-
ing through what is known as a global data space. DDS’s
brokerless architecture makes it very suitable for M2M com-
munication. The messaging model in DDS consists of two
interface layers: (a) Data-Centric, Publish-Subscribe (DCPS)
and (b) Data Local, Reconstruction Layer (DLRL).

The DCPS layer is primarily responsible for binding
the values of data objects within an application during the
publish/subscribe process. That is, it enables a publish-
ing application to associate data objects with values that
require publishing. Furthermore, it enables subscribing appli-
cations to identify data objects of interest andways for access-
ing their values. Similar to other messaging protocols such
as MQTT and AMQP, DDS provides a way to define topics
of interest. Additionally, through the DCPS interface layer,

DDS enables publishers and subscribers to associate Qual-
ity of Service (QoS) policies with publisher and subscriber
entities [46]. The DLRL, an optional layer in DDS, acts as
a connector for integrating DDS at the application level for
interfacing with other external entities (e.g. other protocols,
applications, among others).

We focus primarily on describing the core layer of DDS,
the DCPS. There are two main constructs in DCPS: (a) pub-
lisher with DataWriter and (b) subscriber with DataReader.
A publisher uses the DataWriter to bind values of data objects
per a defined data type. A publisher is responsible for the
data distribution while adhering to a list of predefined QoS
policies, if any. When an application needs to write data
associated with data objects, the DataWriter describes the
data that requires publishing.

A subscriber receives published data while making it avail-
able, based on a predefined set of QoS policies, to an applica-
tion. To retrieve data from a subscriber, an application needs
to use a DataReader attached to a subscriber. An application
subscribes to data described by a DataReader that is supplied
by a known subscriber. The relation in which the process of
publishing and subscribing to data objects is achieved through
topics.

A topic is associated with a (a) name, (b) data-type and
(c) (optionally) one or more QoS policies related to the
data [46]. The QoS policies are often used to control how
data should be distributed in this messaging model. DDS pro-
vides twenty-three different QoS levels dealing with various
features such as security, priority, durability and reliability,
among many others. Figure 15 presents a high-level overview
of the communication model of the DCPS layer in DDS.

FIGURE 15. DDS data-centric model.

Through this communication model, DCPS entities are
associated with DomainParticipants enabling applications to
participate in one or more defined domains. Subscribers and
publishers are linked through this communication plane such
that ones that are joined in the same domain can inter-
act. Through this approach, publishers and clients are time-
decoupled which helps reduce the overall latency, bandwidth
and processing power consumption. In addition, it enables
publishers and subscribers to have their own networks of
communication and hence enabling real-time interactions
between these entities (i.e. D2D).

The data model of DDS stems from the relational data
model. In the DDS middleware protocol, it treats data similar
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to a relational database managing both the: (a) structure
(or schema) and (b) queries and filters on content when
data is requested. DDS allows publishers and subscribers to
dynamically discover each other without servers thus directly
controlling data flows between DDS entities. In addition,
DDS supports a number of trigger patterns for maintaining
updates on subscribed content.

Furthermore, DDS supports interoperability among vari-
ous vendor implementations through the Real-Time Publish
Subscribe (RTPS) wired protocol [22], [46], [47]. A Security
Model extends the security capabilities of DDS which is
enforced by the Service Plugin Interfaces (SPIs). Through
SPIs, DDS provides a wide-range of support for out-of-the-
box security plugins and connectors that enable the com-
munication between multiple DDS applications [48]. DDS’s
support for interconnectivity among applications makes this
middleware protocol an excellent choice for heterogeneous
IoT applications that require communication in real-time.

F. EXTENSIBLE MESSAGING & PRESENCE
PROTOCOL (XMPP)
The Extensible Messaging and Presence Protocol (XMPP) is
an open standard protocol used for building real-time applica-
tions and uses a wide-range of service communication tech-
nologies such as instant messaging, multi-party chat, voice
and video calls, collaboration, lightweight middleware and
generalized routing of XML data [23]. Originally named as
Jabber, this client/server architecture was initially designed to
enable applications to provide instant messaging capabilities.

XMPP uses XML as the underlying data exchange format
and runs over TCP/IP. XMPP provides a set of essential
services called XMPP Core Services and extensible ser-
vices called XMPP Extension Protocols (XEPs) which aim
to extend XMPP’s core services. Some examples of XEPs
includes the Bidirectional-streams Over Synchronous HTTP
(BOSH), which offers HTTP binding for XMPP traffic. Cur-
rently, over 350 IETF-governed specifications that extend
the core of XMPP are part of the XEP Series [23]. One
of the key XMPP extension protocols is the PubSub XEP
which enables XMPP to support the publish-subscribemodel.
Through PubSub XEP, it is then possible to use XMPP as a
messaging protocol for IoT systems.

The PubSub is a protocol extension of the core XMPP that
allows XMPP entities to create topics (nodes) and publish
information at those nodes. Subscribed entities will then
receive notifications either with or without payload. XMPP
entities are associated with JIDs (Jabber IDs) when run-
ning over a network. A JID is in the form of an email
address with a fully qualified domain name and/or a valid
resource (e.g. xmpp_user@xmpp_server/resource)
where xmpp_user is the client’s username, xmpp_server is
a fully qualified domain name and resource is an identifier
used to identify the client’s device on the network. A bare
JID is an address that is without the resource whereas a JID
that includes a resource identifier is referred to as full JID.
Multiple resources (e.g. full JIDs) can be associated with one

username indicating different devices used or associated with
the same ‘‘account’’ or user.

XMPP provides point-to-point encryption (TLS) that is
built-in within the core specification. In addition, given that
XMPP uses XML, which is text-based, this translates into
higher network overhead compared to the binary encoding
protocols such as CoAP, MQTT, AMQP and DDS. Further-
more, XMPP uses open-ended XML streams via TCP and
supports relatively small-sized XML data units called XML
stanzas. Table 8 presents the steps involved when sending
XML stanzas between nodes using XMPP [23].

TABLE 8. Process of XML stanzas exchange in XMPP.

Clients in XMPP send stanzas to exchange messages and
it follows a fire-and-forget mechanism (e.g. no guarantee a
receiver receives the stanza). A stanza advertises its status
(or network availability) to other XMPP entities. This is based
on a subscription model in which entities A and B, for exam-
ple, subscribe to a presence stanza of entity C. When entity C
is present online (via the presence stanza), the XMPP server
will update all other subscribed entities (in this case A and B)
with the presence status of entity C.

Unlike CoAP, AMQP and DDS, XMPP does not allow
device-to-device communication. However, XMPP servers
can form a federation where each server acknowledges the
existence of other servers over the same network. This can
be used for dynamic resource discovery in IoT systems.
In addition, XMPP supports clustering in which multiple
servers within a single domain can form a cluster. Clustering
can support interoperability between various systems running
XMPP. Figure 16 presents an illustrative example of using
XMPP for building an IoT smart home system. Each IoT
device (e.g. room light) is associated with a full JID.

V. COMPREHENSIVE COMPARISON OF MESSAGING
PROTOCOLS FOR THE INTERNET OF THINGS (IoT)
When developing IoT systems, choosing themost appropriate
Messaging Protocols becomes a challenging task. To identify
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FIGURE 16. An illustrative example of a XMPP-based IoT smart home system architecture.

a suitable protocol requires sufficient background knowledge
on how these protocols operate. Due to the fact that these
protocols are critical for the interconnectivity among entities
in an IoT system, the functioning and overall performance
of the system can significantly be impacted by the type of
protocol employed. For example, choosing HTTP for low
latency or mission-critical IoT systems may not be an ideal
choice for a messaging protocol for data connectivity. In addi-
tion, choosing a protocol that does not enforce an acceptable
degree of quality of service (QoS) such as XMPP while
ensuring message delivery guarantees is not an ideal choice
for real-time IoT systems.

Although all messaging protocols are used for data com-
munication between two or more entities via some transmis-
sion medium, some of the characteristics of each protocol
vary. For example, HTTP uses a request/response messaging
pattern suitable for a client/server architecture. Low-power
or constrained IoT devices may not be able to cope with
using this messaging pattern since HTTP is a connectionless
and stateless protocol. Hence, when choosing a messaging
protocol for building IoT systems, it is essential to consider
protocol characteristics and identify ways to which it can help
overcome challenges that may arise in cases such as reliable
message delivery or scaling up.

Messaging protocols have similarities and differences
among a number of properties or characteristics. When build-
ing or deploying an IoT system, it is crucial to consider
the protocol characteristics to which it can meet functional
and operational requirements. To this extent, we provide
in Table 9 a detailed comparison of the characteristics such
as messaging pattern, network layer support, transactional
support, message caching, dynamic discovery, filtering,
encoding types and implementation support among others.
In addition, we considered the basic elements that make up
a communication model such as source, transmitter, receiver,
destination and transmission system. We also considered key
communication tasks such as interfacing, exchange manage-
ment, addressing, routing, security, network management,
fault tolerance, error detection, synchronization and protocol
representation, among many others.

VI. DISCUSSION
Internet of Things (IoT) systems are driven by IoT
devices that are typically resource-constrained having limited
power, networking and processing capabilities. These low-
bandwidth devices are often equipped with wired or wireless
radio technologies that enable them to transmit data and
receive instructions. To this extent, it is imperative that the
messaging protocols employed in IoT systems maintain high-
levels of quality for data transmission.

In addition, messaging protocols need to be optimized
such that they require minimal resources (e.g. processing
power, memory, storage, network bandwidth) which are often
needed by IoT devices when communicating data or receiving
control signals. The degree to which messaging protocols
can offer the anticipated levels of quality will likely to vary
since many of the existing protocols were developed by
different organizations and designed for different purposes.
Some protocols were designed for corporate environments
(e.g. AMQP) while others were designed for mission-critical
systems (e.g. DDS). This makes the task of identifying which
protocol is suitable to use in IoT systems a challenging task.

Given the fact that IoT systems are heterogeneous, support-
ing more than one protocol may be an option. Hence, it is
critical to identify those messaging protocols that are exten-
sible. However, extensibility may yield to an extra overhead
on part of IoT devices. In this case, it would be desirable
to identify protocols that are not only extensible but run
on constrained environments. The choice can become easy
if there exists a protocol that can accommodate these two
factors: extensibility and support for devices running in con-
strained environments. The problem, however, is that without
considering the various degrees to which what each protocol
can offer IoT systems, choosing a single suitable protocol is
unlikely to be an easy design decision.

To identify the key similarities and differences that exist
among communication protocols, we determine key features
that need to be considered when choosing an application
layer protocol for interfacing. Such features relate mainly
to challenges that occur when designing and maintaining
services in IoT systems. In addition, our selection strategy
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TABLE 9. Comparison of existing communication protocols’ characteristics.
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for examining the features that differentiate between existing
messaging protocols or standards is based on results from the
IoT developer surveys conducted between 2015 and 2019 by
the Eclipse Foundation [155]. In particular, we examine the
response rates for the question ‘‘What are your top 2 con-
cerns for developing IoT solutions?’’ Additionally, we con-
sider limitations and deficiencies that were published by the
International Electrotechnical Commission (IEC) in its recent
outlook on the next important steps in developing smart and
secure IoT platforms [176].

To this extent, we identify based on our IoT messaging
protocol feature selection strategy the following character-
istics including: (a) interoperability, (b) service provision-
ing, (c) support for microservices and distributed tracing,
(d) scalability and performance, (e) reliability, (f) security,
(g) adaptability and extensibility, (h) language implementa-
tions and (i) protocols’ adoption rates.We believe that investi-
gating and comparing protocols such as HTTP, CoAP,MQTT,
AMQP, DDS and XMPP in the context of these features will
provide guidance into choosing an appropriate protocol when
building and deploying IoT systems.

A. INTEROPERABILITY
There are basic similarities among the several messaging
protocols that exist today. However, given the fact that IoT
systems are heterogeneous, interoperability becomes a major
challenge. As Table 9 illustrates, protocols vary in the degree
to which they offer features that support device communi-
cation. For example, devices that are developed by different
manufacturers which are used in an IoT system may vary
in the support of the communication pattern (e.g. one-to-
one, many-to-one, etc.). Therefore, it becomes a challeng-
ing task to enable all of these IoT devices to communicate
using a unified pattern. That is, an IoT device may not be
equipped or does not support a protocol that provides a com-
munication feature that is needed for another device to com-
municate properly. This is an example of a communication
pattern interoperability.

There are also other interoperability issues that may arise
in case of having heterogeneous devices in an IoT system.
Syntactic interoperability exists when multiple IoT devices
exchange data in a non-uniform payload format or structure.
Data formats or structure vary depending on the commu-
nication protocol employed. For example, CoAP supports
JavaScript Object Notation (JSON), a popular syntax for stor-
ing and exchanging data. XMPP on the other hand supports
Extensible Markup Language (XML) for data exchange.

Furthermore, there are a number of IoT applications across
different sectors that use application specific data formats
or structures. The American National Standard for Utility
Industry End Device Data Tables (ANSI C12.9) is a common
standard that defines a data structure for transferring data
between end user devices (e.g. smart grid utility device) [42].
In [43], researchers have devised a prototype that acts as a
proxy for using the ANSI C12.19 implementation over DDS.
The authors use an interface definition language (IDL) that

utilizes two topics: (a) an electric element IDL definition
and (b) a utility element IDL definition [43]. However, this
approach is limited to smart grid applications. Support for
a wider range of data formats or payloads spanning across
heterogeneous IoT systems becomes inevitable.

To illustrate the importance of interoperability among
data formats, consider an IoT system that uses devices
which support CoAP over 6LoWPAN network that may
need to communicate with other devices that support XMPP
(i.e. these devices do not support CoAP). That is, an IoT
device that supports CoAP, for example, may need to send a
message whose content is serialized over a network channel
in JSON format. Another IoT device in the same system that
uses XMPP as a communication protocol will not properly
retrieve the message since the syntactic rules used in seri-
alizing the message are different (e.g. JSON versus XML).
Therefore, exchanging data in different formats or structures
across heterogeneous IoT devices raises important syntactic
interoperability issues that need to be addressed.

In addition, multiple IoT cloud platforms provide sup-
port for proprietary protocols other than HTTP, MQTT and
AMQP. For example, Azure IoT Edge Runtime can act as a
protocol translator where devices that do not have support
for HTTP, MQTT or AMQP would use the gateway for
sending data on their behalf [143]. The gateway in this case
understands the protocol of the device generating the data and
creates a message in a format that is understood by the Azure
IoT Hub (e.g. HTTP, MQTT or AMQP). Figure 17 presents
an illustrative example of a predictive maintenance IoT sys-
tem architecture that can be used for industrial automation
using Azure IoT Edge.

Through the support of custom or proprietary protocols
(e.g. BLE, RJ485) on part of the Azure IoT Edge as shown
in Figure 17, it is then possible to support the interoperability
among heterogeneous IoT devices that need to connect to the
cloud. That is, the protocol translation would allow the coex-
istence of IoT nodes that have different protocols. In addi-
tion, the edge gateway can act as a middleware that can
perform edge analytics for running deep learning or artificial
intelligence high-performance workloads or tasks. Hence,

FIGURE 17. A predictive maintenance IoT system architecture using the
Azure IoT Edge which acts a middleware for allowing devices to send
their IoT data in proprietary formats.
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intelligence can then be built at the edge of the network
and insights can be discovered locally rather than on the
cloud. The architecture shown in Figure 17 would be ideal,
for example, for low-latency IoT applications that require
support for the communication among devices that require
exchanging data in proprietary formats.

Interoperability is not limited to protocol mapping but
also extends to architecture, workflow, services and data
access [144]. Consider an IoT system that is composed of
a number of heterogeneous data sources each of which has
a different data model. Figure 18 presents an example of an
IoT system that consists of a number of heterogeneous data
sources with different data models.

FIGURE 18. An illustrative example of an IoT system architecture
composed of heterogeneous data sources (A, B, C and D).

Data generated by data sources (A, B and C) in
Figure 18 have different hardware and software compo-
nents which causes technical interoperability such that these
devices or nodes are not able to communicate directly
(i.e. no direct D2D support). This type of interoperability
can also apply to devices operating during service or runtime
discovery (e.g. mDNS) where metadata about data exchanges
is likely be different. In addition, syntactical interoperability
exists when data formats generated by the sources is different
(e.g. XML, JSON, among others). Semantic interoperability
may also exist since the context or meaning of data generated
by the three independent data sources in the example shown
in Figure 18 can be interpreted differently by various compo-
nents within the IoT system.

To overcome interoperability challenges, the authors
in [144] proposed a number of solutions to solve this prob-
lem. Inspired by the Linked Open Data (LOD), the authors
in [144] proposed an extension to LOD for the Internet of
Things or LOD4IoT. In addition, the authors also introduced
Linked Open Vocabulary of Internet of Things (LOV4IoT)
where the primary focus is not only on data but also includes
catalogs, ontologies, datasets and rules [144].

Furthermore, in attempt to combine Semantic Web Ser-
vices for unifying services, the authors in [144] introduced
the SemanticWeb of Things (SWoT) which primarily focuses

on the interoperability of data and ontologies [145]. SWoT
combines concepts from both the Semantic Web and the Web
of Things (WoT), a standard introduced by the W3C [146].
In addition, The Web of Things Working Group has recently
introduced a recommendation called a Web of Things (WoT)
Thing Description [147]. A WoT Thing Description docu-
ment is used to describe metadata and interfaces of Things.
Through the Thing Description, it is then possible to allow
heterogeneous applications or services to interoperate [147].
The Things Description is encoded by default in a JSON
format allowing JSON for Linked Data (JSON-LD) to be
processed.

In addition to the efforts in solving semantic interop-
erability for IoT, the DDS middleware protocol supports
a lightweight encoding scheme called the Concise Binary
Object Representation (CBOR) [21], [148], [149]. CBOR is
a binary serialization format whose data objects are asso-
ciated with name-value pairs. What distinguishes CBOR
from JSON is the small message sizes [149]. Additionally,
the CBOR format is extensible where tags can be used to
identify data objects of models other than the ones specified
in predefined data model. This enhances the interoperability
of IoT systems, for example, that involve different types
of data models across a number of data sources as shown
in Figure 18.

B. SERVICE PROVISIONING
An IoT application is likely to integrate or consume
one or more services to achieve specific functionalities
(e.g. via SOAP or REST services). Interoperability for IoT
service provisioning therefore becomes essential. In recent
years, HTTP has become the de facto standard or proto-
col for consuming RESTful services. Unlike RESTful ser-
vices, SOAP services communicate via the Simple Object
Access Protocol (SOAP). The Device Profile for Web Ser-
vices (DPWS), an OASIS standard, enables web service mes-
saging, discovery and description on resource-constrained
endpoints while supporting SOAP over UDP [29]. However,
HTTP and SOAP may not be ideal for service-binding across
all types of IoT systems.

CoAP provides support for low-powered IoT devices to
interoperate via HTTP in order to communicate in a RESTful
manner with services. Because SOAP, an XML-based pro-
tocol that works at the application layer, is often associated
with very large message sizes, this makes the SOAP protocol
inadequate for resource-constrained IoT devices that require
service bindings while maintaining small message sizes.
Hence, CoAP becomes an excellent choice for IoT devices
that need to coexist or interoperate with HTTP for service
provisioning. That is, CoAP becomes an ideal protocol for
IoT systems that require constrained devices to perform real-
time service bindings in a RESTful manner.

XMPP, a protocol that is often used for near real-time data
packet exchanges, supports the XML format which makes it
another suitable protocol choice for provisioning services in
IoT systems. For example, assume an IoT system requires
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IoT devices to communicate via XMPP in order to resolve
SOAP- and REST-based service endpoints via a firewall
proxy. Running RESTful services over XMPP may not be an
ideal choice, although they can be accomplished with proper
protocol design considerations. Providing REST support in
protocols can enable IoT systems to support the provisioning
of services particularly on mobile devices, industrial automa-
tion and robot control, among many others.

The SOAP-over-XMPP is an XMPP binding (XEP-0072)
which provides binding support for SOAP messages to
XMPP [30], [31]. XMPP provides support for transporting
XMPP datagrams using HTTP which enables XMPP’s sup-
port in languages such as JavaScript running in browsers [32].
In contrast, DDS does not support data distribution to operate
via HTTP (e.g. access DDS via a web browser to provision
services). However, a RESTful DDS was introduced for fill-
ing this gap where a RESTful service connects to a DDS
backbone listening for any incoming HTTP requests [33].
As for the rest of the IoT messaging protocols, there are a
number of tools or libraries that can be used for support-
ing RESTful interfacing such as RoboMQ over REST for
AMQP [34], RabbitMQ message broker [35] and Eclipse
Paho for supporting REST interfaces via MQTT [36], among
many others.

Because web services are modular entities that commu-
nicate via the web, HTTP becomes the natural protocol for
service provisioning. In fact, early web services used to
communicate using XML standards (e.g. SOAP). Given the
overhead associated with XML and popularity of miniatur-
ized devices (e.g. mobile devices) and ubiquitous computing,
an apparent shift to utilize protocols that are commonly used
for web browsing is inevitable. Hence, RESTful services
have become in recent years more popular due to the wide
acceptance of HTTP. Whether RESTful HTTP remains the
protocol of choice for service communication or not, the need
for more efficient service protocols that can accommodate
IoT application deployment is desirable.

C. MICROSERVICES AND DISTRIBUTED TRACING
In recent years, microservices have become fundamen-
tal building blocks for developing many IoT applications.
Whether these microservices are deployed on edge-based
networks or the cloud, they are loosely coupled and provide
high level of modularity. As the level of intelligence increases
on an IoT device (i.e. fog- or edge-based), the more likely that
there exists a number of cooperating entities in the form of
modular microservices that are capable of delivering multiple
different functionalities. An IoT application in such scenarios
may need to utilize distributed tracing for observing andmon-
itoring the behavior of these microservices. To this extent,
messaging protocols need to provide support for this new
form of end-to-end observability of IoT applications.

Support for distributed tracing in non-HTTP proto-
cols or beyond the use of HTTP headers has been inade-
quate or inexistent. For instance, HTTP currently provides
extensive support for distributed tracing through a number of

tools such as Zipkin, OpenTrace, Dapper and Jaeger, among
many others. Through HTTP headers, it is then possible
to trace data and service requests across a distributed IoT
application. However, support of distributed tracing across
non-HTTP protocols is very limited.

In recent years, a number of efforts or initiatives have
been proposed for supporting distributed tracing in non-
HTTP protocols such as MQTT and AMQP. These initiatives
depend primarily on the use of the TraceContext acting
as a proxy [39], [40]. However, the application of dis-
tributed tracing to publish-subscribe interaction pattern has
been very rare or inexistent. Real-Time Innovations (RTI)
provides a framework that enables the support for near
real-time communication betweenmicroservices while main-
taining some levels of QoS through Connext DDS Micro
[41], [79]. However, this framework does not provide real-
time observability or monitoring of IoT devices. As the
dependency of IoT systems on using modular microservices
to execute traditional tasks or workloads (e.g. data analysis,
machine learning, artificial intelligence), the need for dis-
tributed tracing support in non-HTTP messaging protocols
(e.g. MQTT or AMQP) becomes increasingly essential.

D. SCALABILITY & PERFORMANCE
Scalability is an integral software design property in which a
system is capable of maintaining to deliver its functionality
within an acceptable degree of quality as the number of
users or workloads that needs to be accomplished increases.
When dealing with IoT devices, for example, scaling sys-
tem resources to accommodate an increasing magnitude of
real-time data becomes an important design element of IoT
systems.

To illustrate the importance of scalability, consider for
example an IoT system that has a number of IoT devices that
can capture images and videos attached around a multipur-
pose arena. These IoT devices have limited resources to per-
form image processing and artificial intelligence techniques.
The frequency at which these IoT devices are programmed to
capture images or videos depends primarily on the number
of objects detected in a captured image. As more objects
are detected (e.g. more faces or humans) in captured images,
the frequency to capture images or videos increases. Assume
the frequency is originally set to 30 seconds. When there is
an increase in number of objects, the frequency of capturing
images or videos is set to increase (i.e. time duration is
shorter or 5 seconds). This enables the system to capture more
images and therefore can provide real-time security and mon-
itoring of events surrounding the arena. The IoT system in this
case needs to scale up to the increasing demand of resources
while maintaining an acceptable degree to which the system
can respond (i.e. response time). Choosing a protocol that
supports scalability in this case is essential to the functioning
of this real-time detection system.

Furthermore, when choosing a message protocol such
as MQTT, the number of message transmissions increases
significantly as more clients subscribe to topics. In the
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multipurpose arena IoT system scenario, assume that the
number of IoT devices is 100 each of which is subscribed
to all of the existing topics. When an IoT device is trig-
gered, it sends a message to the broker (one transmis-
sion). The broker would then notify all subscribers (in
this case 99 transmissions). This is a total of 100 trans-
missions. If another device sends a message to the bro-
ker, the number of total message transmissions increases
to 200. In the worst case scenario where all IoT devices
are transmitting messages, the total number of messages
to be transmitted is equivalent to the product of the num-
ber of messages per device (i.e. 100) and total number
of subscribed clients (i.e. 100). Hence, this would yield
100 × 100 or 1002.
Assuming that there is a set of clients defined as C that

communicate with the message broker such that C= {c1, c2,
c3, . . . , cn} where n represents the total number of clients and
the average number of topics each client is subscribed to is
topic_average. In order to calculate the total number of
message transmissions required (or throughput), we define
trans_msg as follows:

trans_msg = n×topic_average

In the worst case scenario, the topic_average equals to
the total number of clients. In this case, the total message
transmissions is equivalent to n2. Assume the average time
it takes to transmit a message is timemsg. Then, the total
time for all possible message transmissions can be defined
as follows:

transtime = transmsg × timemsg

In the previous example, assuming that it takes on average
10ms to transmit a message and the average number of sub-
scribed topics is equivalent to all clients subscribed to all top-
ics. Also assume that there are 100 clients. Therefore, the total
time for all possible message transmissions would be:

transtime= 100× 100× 10ms = 1.67minutes.

This example illustrates that as the number of messages
increase, the total transmission time also increases. The
case can become worse if the broker’s resources are max-
imized and hence a broker becomes a source for a Single
Point of Failure (SPoF). Because MQTT is designed primar-
ily for a Device-to-Cloud (D2C) communication scope, the
problem of SPoF can be resolved by serverless computing
which increases the agility of the deployed IoT application.
Figure 19 provides an example of a serverless solution for an
air quality fog-based IoT system that uses the AWS IoT Core
platform.

As can be seen in Figure 19, the device layer is composed
of a number of IoT nodes represented by the ESP32 modules
equipped with air quality sensors for measuring outdoor air
quality. The fog-based system utilizes the multicast DNS
(mDNS) which resolves host names to IP addresses within a
small sized network [159]. The mDNS protocol operates on

FIGURE 19. A fog-based serverless air quality monitoring IoT system
using AWS.

a local and not a global network which makes it ideal for the
device layer of the IoT reference architecture (see Figure 1).

In addition, the DNS Service Discovery (DNS-SD) proto-
col [160] which complements that of the mDNS offers a zero-
configuration networking (zeroconf) feature which makes the
discovery of devices over the network automatic [161]. The
CoAP, DDS and XMPP protocols support dynamic discovery
of devices on a local network. Through mDNS, each node
can act as a server and it supports multicast and unicast oper-
ations. Avahi is among the popular zeroconf network imple-
mentations that exist for Linux and BSDs [161]. Bonjour is
also another zeroconf technology developed by Apple [162].
Bonjour is capable of identifying devices and services on a
local network using mDNS service records.

Another service discovery approach is the W3C’s Web
of Things (WoT) used to publish URIs representing things,
devices or nodes [146]. There are a number of tech-
nologies that adopt the WoT approach including Hyper-
Cat [163], Physical Web [164] and Universal Plug and
Play (UPnP) [165]. HyperCat is an open-source, lightweight
JSON-based hypermedia catalog format whereas the Phys-
ical Web is a technology that is used to broadcast their
URIs or localized data within web pages. UPnP provides a
group of networking protocols which enable IoT nodes to
discover one another within a local network. UnlikeHyperCat
and Physical Web, UPnP supports data sharing.

As illustrated in Figure 19, when IoT nodes are running,
a local Raspberry Pi that acts as a fog-based gateway will
forward the data on part of these air quality sensors. The gate-
way will send the data using MQTT to AWS IoT core which
is used for telemetry. The geographical distance between IoT
nodes and the cloud server deployment plays an increasingly
important role when considering network latency. Because
MQTT is D2C communication scope, the further these nodes
are from the deployed serverless solution in terms of distance,
the longer is the travel time of the MQTT messages and the
higher the latency. The cloud layer in Figure 19 provides a
serverless solution to maintain high levels of scalability for
published MQTT messages

However, existing implementations of MQTT vary in
terms of performance and scalability. In [111], the authors
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compared Mosquitto, HiveMQ and BevyWise MQTT broker
deployed on the cloud. Using QOS level 1, the data rate is
designed to be approximately one message per second for all
of the three brokers (minor variations) using a single client
subscribed to one topic. Using our analogy, if 10 concurrent
clients are subscribed to all topics, the rate would be 1/10 or
0.1 msg/sec. Hence, as we increase the number of clients and
subscribed topics, the rate at which messages are delivered
significantly decreases which is a major scalability problem
as the system scales up. As such, usingMQTT as a messaging
protocol for data transmission in IoT applications such as
mission-critical IoT systems or IoT autonomous vehiclesmay
not be ideal.

There are a number of studies that have examined the per-
formance and scalability of communication protocols. Some
studies have found that the throughput in MQTT drops sig-
nificantly as the number of clients’ subscriptions increases
[112], [113]. In [114], the authors compared the performance
of DDS and MQTT. They have found that DDS delivers high
performance whereas MQTT shows significant deterioration
in sending round-trip time packages [114].

In [115], the authors have found that MQTT outperforms
CoAP in terms of delay, the number of messages lost and the
number of bytes used in messages. In [116], the authors eval-
uated the performance of CoAP and MQTT-SN and deter-
mined thatMQTT-SN outperformsCoAP. In [118], the author
compared the performance of AMQP and MQTT and have
found that AMQP slightly outperforms the MQTT and CoAP
protocols. Furthermore, the research study concludes that
CoAP uses more computing resources compared to MQTT
whereas AMQP’s use of resources is much higher when
compared to both MQTT and CoAP protocols’ resource
consumption.

The performance and scalability of messaging protocols
vary. CoAP and HTTP have an additional overhead associ-
ated with transporting messages. CoAP and HTTP should be
used in cases where low latency is not of critical importance.
Hence, this makes these two protocols not very suitable for
real-time IoT edge- or fog-based systems. MQTT follows a
device-to-cloud data flow and therefore introduces network
latency dependent on the cloud service performance.

Generally, message brokers may deliver 100 to 1000
messages per second per subscriber [20], [117]. However,
these messaging brokers can vary significantly. For example,
XMPP is generally used for client/server or instant mes-
saging applications and is known to be unsuitable for low
latency networks. On the other hand, DDS is generally
deployed on a local area network (LAN)where publishers and
subscribers can utilize the UDP’s multicast feature. Hence,
DDS can scale to 1000 messages/second for every peer
device on a network consisting of thousands of devices [20].
DDS is very suitable for low-latency IoT systems consisting
of thousands of IoT nodes. Furthermore, due to the fact
that DDS is deployed on a LAN, this makes the protocol
suitable for edge- and fog-based IoT distributed systems’
deployments.

There are a number of research efforts that attempted
to compare the performance of existing messaging proto-
cols. In the subsequent sections, we provide a summary of
the existing studies that published performance metrics when
testing these protocols.

1) PERFORMANCE COMPARISON ON LATENCY
The authors in [151] conducted a performance analysis in
terms of the latency forMQTT andHTTP. The study involved
two testbeds: (a) a fog-based MQTT broker and (b) a cloud
MQTTbroker based on an existing IoT cloud service provider
platform. Results from this study show that HTTPwas associ-
ated with having higher response times of 12.1 and 4.76 when
compared to that ofMQTT fog and cloud based deployments,
respectively. Additionally, the authors identified that MQTT
with QoS Level 1 is associated with a packet loss of 6.2 times
higher when compared to that of MQTT QoS Level 0 in a
local, fog-based testing environment.

In another study conducted by authors in [152], a home
automation testbed was used to compare MQTT and HTTP
where results show that MQTT had a much lower latency
compared to HTTP. In another study that involved CoAP,
the authors in [4] compared the performance of MQTT
and CoAP. Results from this study show that MQTT mes-
sages were associated with lower delays than that of CoAP
messages at lower packet loss rates whereas MQTT has a
higher delay than that of CoAP at higher packet loss rates.
The authors in [153] also conducted experiments comparing
MQTT and CoAP concluding that CoAP performs better in
terms of bandwidth, usage and response time. This suggests
that CoAP is more suitable for applications that require low
latency and reduced resource consumption which makes it
ideal for fog- and edge-based environments.

In comparing the performance of other protocols,
the authors in [154] focused on the publish-subscribe mes-
saging protocols including MQTT, AMQP, XMPP and DDS.
Using a JavaScript client implementation, the authors rec-
ommend MQTT as a reliable protocol that fulfills IoT web
application requirements. Results from this study show that
MQTT had the lowest latency followed by AMQP. Both
XMPP and DDS had higher latency and their results were
very comparable. However, the difference among the latency
performance is small due to the limited number of messages
used in the comparison study.

In a more in-depth study, the author in [118] tested MQTT,
CoAP, AMQP and DDS for small payload with 10 messages
and 1000 messages. Results show that in the small payload,
CoAP outperforms all of the other protocols followed by
MQTT, AMQP and finally DDS. However, when the pay-
load increases to 1000 messages, MQTT performs the worst.
In this test, DDS outperforms all of the other protocols fol-
lowed by CoAP, AMQP and finallyMQTT. This suggests that
DDS performs better as the number of messages increases.
Because DDS and CoAP are decentralized approaches, this
makes these protocols more reliable as the number of mes-
sages increases.
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In addition, DDS and CoAP use UDP as the transport
layer protocol which is associated with much lower overhead
compared to that of TCP that is used in MQTT and AMQP.
The study also examined increasing the payload size for
10 and 1000 message tests. Results from the 10 messages
with message size greater than 50Kbytes reveal the order-
ing from low to high latency as CoAP, DDS, AMQP and
MQTT. Running the same test for 1000 messages with mes-
sage size greater than 50Kbytes show that DDS outper-
forms other protocols followed by CoAP, AMQP andMQTT.
Figure 20 presents a summary of the results presented in the
study in [118].

FIGURE 20. Summary of the results from the performance tests
conducted in the study in [118].

The summary in Figure 20 show that MQTT performs
the worst when compared to all of the examined protocols
particularly having larger message sizes and increasing the
number of messages. Results from this study [118] coincide
with our mathematical results in Section V.D which sug-
gested that the performance of MQTT in terms of latency
degrades significantly as the number of messages increases.
It is worth noting that DDS performs well at higher message
sizes and having large number of messages. For example,
for a small message size with 10 messages, DDS performs
worst. However, when increasing the number of messages
and significantly increasing the size of the payload for smaller
messages, DDS outperforms all of the other protocols. This
suggests that DDS’s decentralized architecture as well as the
use of the CBOR encoding scheme significantly enhance
the protocol’s performance compared to CoAP, AMQP and
MQTT. Furthermore, results also show that CoAP is a stable
protocol across all tests conducted.

2) PERFORMANCE COMPARISON ON THROUGHPUT
In terms of throughput, the authors in [152] report thatMQTT
had the highest number of messages per hour when compar-
ing it with CoAP andHTTP. In addition,MQTT used the least
power consumption in delivering large volumes of messages
compared to CoAP and HTTP. In [157], the authors presented
a performance comparison study of (RESTful) HTTP and
AMQP. The performance testbed used RabbitMQ with exe-
cuting three sets of experiments. The study concludes that
AMQP offers much higher bandwidth compared to RESTful
HTTP. In a similar study, the authors in [158] compared
HTTP and CoAP while assessing the data transmission based
on dynamic network conditions. The study concludes that
CoAP outperforms HTTP with respect to the delivery rate,

delay and overhead [158]. In [5], the authors reached the same
conclusion when comparing MQTT and CoAP with CoAP
being best performer for small payloads. However, in the
study, the authors report that CoAP performance is bad as the
payload size increases.

3) PERFORMANCE COMPARISON ON CPU, MEMORY
AND POWER CONSUMPTION
As for CPU and memory consumption, the author in [118]
reports in the study which examined MQTT, CoAP, AMQP
and DDS that DDS consumed the highest memory con-
sumption, followed by AMQP, CoAP and finally MQTT.
For CPU consumption, AMQP had the highest, followed
by DDS, then MQTT and finally CoAP. The same results
were obtained when testing for small payload (∼5Kbytes)
and for high payload (>50Kbytes) both test running with
10 and 1000 messages, respectively. In [152], the authors
report consistent ordering such that MQTT had the least
power consumption in terms of battery life followed by CoAP
and then HTTP. That is, HTTP had 5.3 times the power
consumption of that of MQTT and 2.8 times the power con-
sumption of that of CoAP [152]. In addition, results from
the study also show that CoAP had 1.9 times the power
consumption comparing it to MQTT.

Although there exists a number of research studies that
examined the performance of IoT messaging protocols, these
studies varied in the degree to which the testing environments
were deployed. That is, some of the results presented in
these studies reflect different QoS levels for various proto-
cols. Furthermore, some studies have considered excluding
the initialization time to run the tests while others did not
provide clear details about whether the latency time includes
initialization time. Additionally, testing environments may be
affected by the implementation language of the protocol used.

E. RELIABILITY
Relying on User Datagram Protocol (UDP) at the transport
level provides constrained IoT devices an optimal method
for data transmission by removing the TCP overhead and
thus reducing bandwidth [24]. However, UDP does not pro-
vide support for flow or error control nor retransmission.
When choosing an IoT communication protocol, it is essential
to identify the level of message reliability required for the
system.

Majority of the IoT messaging protocols listed in Table 6
operate over TCP. CoAP operates over UDP and provides
retransmission to overcome this limitation by having two bits
in the header indicating the type ofmessage (e.g. confirmable,
non-confirmable, etc.). The problem, however, is that CoAP
does not have a built-in mechanism to verify whether a mes-
sage has been received in its entirety or decoded correctly.
In addition, CoAP does not provide built-in security and uses
Datagram Transport Layer Security (DTLS). Furthermore,
DTLS does not support multicast and requires supplementary
packets during handshakes [25]. As a result, more processing
power is utilized to compensate for increasing network
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traffic during handshakes. Additionally, CoAP devices may
not work properly due to resource discovery problems
behind Network Address Translation (NAT) since devices’ IP
addresses can be dynamically assigned over time [26].

To illustrate the limitations of dynamic resource discovery
in CoAP, consider for example an edge-based IoT system
that has a number of CoAP IoT devices each assigned an
IP address. When a CoAP device moves across different
networks, a new dynamic IP address is likely to be assigned
to the CoAP device. In this case, the CoAP device may
not be reachable by the edge-based IoT system. That is, the
system would not be able to communicate with the CoAP
device due to the fact that it is not aware of the new dynam-
ically configured IP address when the IoT device is mov-
ing across various networks. Unfortunately, CoAP does not
provide mobility management when CoAP IoT nodes move
across networks [27].When building IoT systems that require
mobility, it is essential to consider messaging protocols that
support dynamic discovery. Not all messaging protocols sup-
port dynamic discovery as presented in earlier Table 9.

XMPP’s baseline provides a very reliable stream trans-
ports. XMPP operates over a continuous TCP stream which
means that every stanza arrives safely preventing the Two
Generals Problem from occurring [37]. In addition, XMPP
provides XEP-0198, an extension that enhances TCP’s reli-
ability over a number of open sessions in order to provide
reliable data transmissions via mobile networks [38]. DDS
provides a reliability policy for indicating the level of reli-
ability by a DataReader or DataWriter [21]. In addition,
DDS provides redundancy (or retries) to provide guarantees
of the continued delivery of operations in order to increase
the resiliency and reliability of applications. However, with
the increase of reliability comes the increase in the over-
head associated with processing messages on part of the IoT
devices.

F. SECURITY
As the number of microservices consumed by an IoT system
increases, so does the level of communication between them
which augments the need for security. As outlined in Table 9,
nearly all of the protocols examined are based on the trans-
port layer security (TLS) cryptographic protocol. Hence,
these Messaging Protocols are vulnerable to attacks that
may occur or can be performed to the TLS protocol.
Furthermore, IoT devices are generally used by humans
which makes them vulnerable to intruders that attempt to
gain unsolicited access or collect confidential personal data
in a malicious manner. Since IoT devices are resource-
constrained, they may not be equipped with the necessary
processing power or computing resources required to exe-
cute or run complex security operations. As a result, these
IoT devices become an easy target for attackers or intruders.

There are five possible sources that make IoT systems
vulnerable to attackers including: (a) devices or things,
(b) connectivity medium, (c) computing, (d) storage and
(e) microservices. Furthermore, a security function for IoT

systems can be built at the local level (i.e. edge-based) at
the physical hardware or software levels. We identify three
types of threats that may occur in IoT systems while examin-
ing security measures that exist across messaging protocols
and mapping possible sources of vulnerabilities to common
security practices including the CIA Triad (confidentiality,
integrity and availability) and the IEEEAAA (authentication,
authorization and accounting).

When software running on IoT devices is compromised,
device integrity becomes an issue since data can be modified
by individuals who are not authorized to make changes on
the device. In terms of messaging protocols, device integrity
can occur when an intruder or attacker subscribes to an exist-
ing publisher to collect data and use it maliciously. An IoT
communication protocol needs to ensure that only authorized
users regardless if they are publishers or subscribers. This
feature is not provided at the TLS level since its main respon-
sibility is for securing the communication via a computer
network.

Furthermore, such vulnerabilities may occur when offer-
ing QoS level 2 which may explain why many IoT cloud
providers not to provide support at this level as presented
in Table 7. Currently, AMQP and DDS provide mechanisms
for authorizing entities. AMQP uses SASL to perform this
task while DDS offers authorization for both DataRead-
ers and DataWriters through the DDS security model.
In addition, the DDS security model offers extensions for
implementing authentication (e.g. certificate management),
cryptography and access control. ARM provides an open-
source library called DDS Security library (libddssec) that
supports security services for DDS implementations [108].
However, this library is limited to operations that use ARM’s
TrustZone technology [108], [109].

In addition, DDS provides Extending the DDS through the
Service Plugin Interfaces (SPIs) which enables applications
to provide support for security functions such as authentica-
tion, access control, encryption, message authentication and
digital signing, among many other features. For example,
an authentication service plugin in DDS provides support for
verifying application or user identity when invoking DDS
operations (e.g. DataReader, DataWriter). Table 10 provides
a list of the five SPIs defined in DDS Security Model.

Additionally, XMPP provides an extension called Autho-
rization Tokens for issuing authentication tokens to client
applications [110]. During the process of stream negotiation
between XMPP client and server, a client typically needs
to provide a password when a connection is established.
This means that a client needs to store this password and reuse
it every time a connection is made to the XMPP server. The
problem with this security function, however, is that this
mechanism increases the risks associated with the security
threats of storing an account password on the IoT device.
To this extent, XMPP offers support for clients to obtain
tokens in XML structure when a request is made to a XMPP
server. When a client establishes a connection with a XMPP
server, the server then responds with a list of supported proto-
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TABLE 10. DDS security model service plugin interfaces [49].

cols for authentication. The client then send the next element
for authentication including: (a) user name and (b) the issued
authorization token (usually in base64 encoding). Instead
of applying authentication with a password using a plain
method, a token is used to replace the password [110].

Although each protocol provides different levels of
security measures, DDS provides the most comprehensive
security levels for authentication, access control and cryptog-
raphy among others. In addition, DDS provides a framework
for extending the security by supporting a wide range of
SPIs. XMPP also offers a robust authentication process using
tokens (based on SASL) followed by AMQP.

G. ADAPTABILITY AND EXTENSIBILITY
As IoT systems increase in size and complexity, the need
for preserving and extending existing software components is
essential. In addition, software requirements of IoT systems
may change as new use cases or features transpire and exist-
ing software components need replacements. To this extent,
increasing the agility of IoT systems and adapting to changes
in requirements becomes inevitable. That is, software systems
need to be extensible such that organizations are able to make
additions or modifications [98]. In order for IoT systems
to offer good levels of extensibility, it is imperative that
components which are integrated into these systems support
extensibility. In particular, integrating a messaging protocol
that supports or provides custom protocol extensibility will
undoubtedly increase the overall level of extensibility of IoT
systems while enabling them to interact across heterogeneous
environments.

Among all of the examined protocols, XMPP provides the
most protocol native support for extensibility. The XMPP
messaging framework leverages XML as the basic commu-
nication format which translates into high levels of exten-
sibility. For example, the XMPP core protocol provides
support to over 300 extensions such as Malicious Stanzas
(XEP-0076) [101], Service Discovery (XEP-0030) [102] and
User Location (XEP-0080) [103].

The XMPP malicious stanzas extension provides support
for determining if a packet was transferred over the network

with a malicious intent [101]. It attempts to identify the evil
bit in IPv4 and hence identify evil messages in message
stanzas. The service discovery extension provides support
for discovery information about XMPP entities including:
(a) identity and capabilities of an entity and (b) items associ-
ated with an entity [102]. The user location extension, which
is still in draft state at the time of writing this paper, aims
to capture data with respect to the entity’s geographic loca-
tion (geoloc) [103]. The geoloc information is determined
based on a Global Positioning System (GPS) coordinates.
Although this feature may be useful for IoT devices oper-
ating using cellular or wireless networks, IoT systems with
constrained devices may not be able to have capabilities of
identifying GPS coordinates. However, fog-based gateways
in an autonomous vehicle systems can take advantage of this
feature extensively.

DDS also provides some level of extensibility through a
specification called Extensible and Dynamic Topic Types for
DDS (DDS-XTypes) [104]. Using extensible types, one can
extend the addition of new elements that can be associated
during publish/subscribe process without impacting or mak-
ing changes to applications or end devices. To illustrate
this extensibility, consider a fog-based autonomous vehi-
cle system where a fog-gateway uses the publish-subscribe
model using a DDS bus for seamless connectivity between
vehicles, sensors and cloud-based applications. Figure 21
presents a high-level overview of a device-to-gateway-to-
cloud autonomous vehicle system.

FIGURE 21. A fog-based autonomous vehicle system using DDS.

As shown in Figure 21, vehicle A is programmed to trans-
mit via a DDS data bus localized data such as longitude and
latitude information whereas vehicle C requires the transmis-
sion of geographic coordinates in addition to the number of
passengers within the vehicle. In this scenario, autonomous
vehicles that subscribe through the DDS-enabled fog-based
gateway (e.g. cellular base station) to share only geographic
data (e.g. longitude and latitude) will not interoperate with
those vehicles that share geographic data in addition to num-
ber of passengers. However, through DDS-XTypes, it is then
possible to extend the capability of this autonomous vehicle
system by extending and evolving the data types without
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TABLE 11. CoAP client-server implemetations.

making changes to the programs or applications. That is,
DDS provides support to extend data objects to have multiple
data types. Therefore, both data types associated with vehicle
A and vehicle C can coexist within the same IoT system.
Volkswagen [106] and Audi [107] are among vehicle man-
ufacturers that have recently adopted DDS for connectivity
and testing of their smart cars.

AMQP implementations such as RabbitMQ offer a num-
ber of extensions to the native specification in an attempt
to enhance the extensibility of AMQP. For example,
a Per-Queue Message TTL provides support to determine the
duration of an unconsumed message waiting in a queue prior
to its deletion [105]. This enables an IoT system, for example,
to identify the life of a message. This can also be used
in supporting transactional processing in IoT systems and
potentially identifying possible deadlocks (e.g. when a mes-
sage never gets consumed). Other protocols such as HTTP,
CoAP and MQTT have very limited support for extensibility
which impacts the evolvability and interoperability levels of
IoT systems using them.

H. PROTOCOL IMPLEMENTATIONS
Messaging protocols examined throughout this paper vary
in terms of the functionalities they support. However, they
all offer common features that make them suitable for var-
ious communication types such as device-to-device (D2D),
device-to-cloud (D2C) and cloud-to-cloud (C2C) interac-
tions. While many of the existing protocols have been used
in a number of platforms across many organizations, some
protocols are released with adequate features published in
their specifications or standards’ documentation while others
are still evolving. Some of the proposed features in CoAP’s
standard (RFC7252) [49], for example, are still under devel-
opment. Nonetheless, additional language support or imple-
mentations for CoAP has been growing. Tables 11 presents a
partial list of implementations that support CoAP.

In Table 12, we present a partial list of the AMQP client
implementations that are available across various languages.
In addition, there are a wide range of AMQP broker imple-
mentations that exist across various platforms including, but
not limited to, the following:
• Apache: Qpid [72], ActiveMQ [73],
• Azure: Event Hubs and Service Bus [74],
• Solace: PubSub+ [75],

TABLE 12. AMQP client implemetations.

• VMWare: RabbitMQ [76],
• Red Hat: Red Hat AMQ [78], Enterprise MRG [99],
• StormMQ [77],
• OpenMQ [100],
• IronMQ [94] and
• Amazon SQS [95] (no support of publish/subscribe).
DDS language support is very limited compared to other

protocols. RTI Connext provides extensive support for the
DDS implementation in languages including C, C++, .NET
and Java [79]. RTI also provides a RTI Connector for enabling
scripting languages such as Python and JavaScript (Node.js)
to access a DDS network via a WebSocket [80]. In addi-
tion, OpenDDS is an open source C++ implementation of
DDS [81]. OpenDDS also provides support for Java through
JNI bindings and JavaScript through IDL mapping.

TABLE 13. XMPP implemetations.

As for XMPP, there are a number of client/server XMPP
implementations available. Table 13 presents a list of libraries
that provide support for XMPP offered in different languages.
In addition, there is a number of XMPP server implementa-
tions that support a wide range of platforms including, but not
limited to, the following:
• Apache Vysper [85],
• Openfire [89],
• Tigase XMPP Server [90],
• MongooseIM [91] and
• IoT Broker [92].
It should be noted that the size of a protocol’s implemen-

tation may vary significantly from one protocol to the other.
This also depends on the language to be used for implemen-
tation due to library or code interdependencies. For example,
CoAP.NET is a.NET-based client-server CoAP implemen-
tation that requires over 10MB of disk space whereas a
Windows-based DDS implementation fromRTI requires over
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640MB of disk space. CoAP-Lite, a lightweight implementa-
tion of CoAP, is a Linux-based client-server implementation
which consumes approximately 14KB of disk space [97].
The size of this library would be ideal, for example, for low-
power or constrained IoT devices particularly those that are
running close to the edge of a network (i.e. edge- or fog-based
IoT devices).

Considering the type of IoT devices and choosing a suit-
able protocol therefore becomes an important decision when
designing and deploying IoT systems. For example, con-
strained edge-based IoT devices typically have limited stor-
age. As a result, these devices may not be able to consume a
client version of DDS whereas CoAP may be more appropri-
ate to employ on such devices. Nonetheless, CoAP may not
perform well when compared to other messaging protocols
(e.g. MQTT, AMQP or XMPP) which makes it inacceptable
to use for mission critical IoT systems. Therefore, determin-
ing an appropriate protocol to be employed in IoT systems
is influenced by a number of factors that not only include
physical device or operating system features such as storage
capacity or preferred language of implementation but also
factors that relate to performance, communication overhead,
network latency, security, ease of use, reliability, popularity,
dependability, supportability, interoperability and scalability,
among many others.

I. ADOPTION RATE OF MESSAGING PROTOCOLS
In previous sections, we presented feature comparison of the
messaging protocols HTTP, CoAP, MQTT, AMQP, XMPP
and DDS. Irrespective of the features that differentiate each
protocol from one another, it would be worthwhile to deter-
mine any usage patterns or adoption rates for all of the
protocols we examined in this research study. To this extent,
we summarize the results from an annual survey conducted
by the Eclipse Foundation and Eclipse IoT Working Group
between 2015 and 2018 [155]. The survey contained a
number of questions to developers and solution architects.
We focus on the response from a question that we believe is
relevant to our study which is ‘‘What messaging protocol(s)
do you use for your IoT solution?’’ The response rate in
answering this question for the surveys conducted between
2015 and 2018 is shown in Figure 22.

Although HTTP remains to be among the top two pro-
tocols across all years, there is an apparent drop in its
usage with approximately 9% decrease in 2018 as illus-
trated in Figure 22. On the contrary, MQTT has witnessed
a significant increase in its usage from 2017 to 2018. The sur-
vey results from the 2019 Eclipse Foundation and Eclipse IoT
Working Group is partial but report that HTTP and MQTT
remain among the top three messaging protocols [156].
In addition, the AMQP protocol has been witnessing a grad-
ual increase over the years in terms of its usage by devel-
opers who have completed the surveys and as illustrated in
Figure 22. DDS remains steady at the same rate while CoAP
has witnessed a slight decline between 2017 and 2018. In the

FIGURE 22. The eclipse foundation IoT developer survey results showing
the response rates for the messaging protocol question between the
years 2015 and 2018.

results from the 2019 survey, the report show that CoAP has
dropped below a 15% response rate.

The results provided by the Eclipse Foundation and Eclipse
IoT Working Group provide a measure of the extent to which
the messaging protocols examined in this research study are
used in the development and deployment of IoT applications.
However, there are a number of factors that need to be
considered when analyzing these results. For example, the
response rate is provided as a percentage while the number
of participants vary from one year to another. The number of
participants in the 2015 surveywas 394while in 2016 this rate
increased to 528. In 2017, there was another increase in the
number of participants reaching 713. However, the 2018 sur-
vey decreased by more than 30% having 502 participants.
This is contrary, for example, to the number of participants
in 2019 where they were 1717 participants [156]. However,
the released survey results from the 2019 year does not pro-
vide comparable result presentation strategy as to those from
previous years [156].

Furthermore, the results from the IoT Developer Sur-
vey [155] aligns with those that we investigated with respect
to the current support of IoT messaging protocols across
existing IoT cloud providers. Based on our findings as shown
in Figures 3 and 4, HTTP andMQTT are the two top messag-
ing protocols that are supported by all of the ten cloud plat-
forms we investigated. This is followed by AMQP (ranked
third) whereas CoAP is ranked fifth. This may be attributed
to a number of factors or could be interpreted potentially as
an evident decline in the adoption rate of the CoAP protocol
in recent years whereas there exists an apparent growth to
the adoption rate of the AMQP protocol. Moreover, XMPP is
ranked fifth as can be seen in Figure 22 which also aligns with
our results shown in Figure 3 whereas XMPP is also ranked
fifth.

VII. ADVANTAGES AND DISADVANTAGES OF
IoT MESSAGING PROTOCOLS
As part of investigating the characteristics of IoT messag-
ing protocols, it would be desirable to identify the key
strengths and weaknesses of each protocol in the context of
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IoT. To this extent, in this section, we identify key advan-
tages and disadvantages for each of the examined messaging
protocol. We believe that this summary would be useful
to highlight important and unique features offered by each
protocol. We also summarize the strengths and weaknesses
of each protocol in Table 14.

TABLE 14. Summary of strengths and weaknesses of examined protocols
based on our selection strategy.

A. HTTP
Advantages:
• supports RESTful architecture with URI addressing
• supports distributed tracing to identify failures across a
distributed system architecture

• can work behind closed firewalls
• uses a push approach which involves a persistent con-
nection between client and server

Disadvantages:
• header size is large: this adds processing overhead for
devices particularly constrained IoT devices

• high network latency: this makes the protocol not suit-
able for real-time or mission-critical IoT systems

• uses text not binary encoding
• protocol does not provide any QoS support
• protocol is not easily scalable
• computational overhead due to encrypting and decrypt-
ing (secure) messages

B. CoAP
Advantages:
• supports RESTful architecture with URI addressing
• protocol is very suitable for low-power or constrained
IoT devices

• supports dynamic resource discovery
• protocol can be used for M2M communication
• reduced header size (4 byte): CoAP packets are much
smaller than HTTP

• due to UDP, CoAP can be used over packet-based tech-
nologies (e.g. SMS) on mobile networks

Disadvantages:
• protocol has very limited quality of service levels
• protocol is not suitable for device-to-cloud communica-
tion (suitable for device-to-device only)

• protocol has limited level of encryption because of UDP
(SSL and TLS are not available, only DTLS)

• device-to-device protocol: protocol has no support for
broadcasting capabilities (only through extensions)

• protocol is not easily scalable or extensible
• protocol is vulnerable to spoofing and malicious attacks;
an endpoint can freely read/write messages in a con-
strained network

C. MQTT
Advantages:
• has a transient data message transmission cycle
• good for cloud-based IoT applications (D2C)
• a lightweight protocol and works fairly well over con-
strained networks

• provides an adequate level of QoS support (0, 1, 2)
• protocol supports asynchronous messaging
• protocol is an event-driven which enables an IoT system
to scale up (or down)

• protocol can be used for M2M communication
• supported by many IoT cloud providers (Table 3)
Disadvantages:
• does not support large payloads
• topic names are often long; inappropriate for low-rate
wireless personal area networks (LR-WPANs)

• unsuitable for IoT devices that require sending multime-
dia content (e.g. audio, images or videos)

• protocol is not suitable for device-to-device communi-
cation (suitable for device-to-cloud only)

• lack of encryption; can use TLS/SSL for security and
encryption, however, extra connection overhead

• no dynamic discovery (discovery based on topics) and
broker can be a Single Point of Failure (SPoF)

• MQTT clients needs to support TCP; connections
remain open with brokers (always on); limited sleep
mode for constrained devices

D. AMQP
Advantages:
• event-driven protocol which enables some scaling up
• efficient workload distribution via queues (maximizes
scalability)

• communication multiplexing: more than one session can
be carried out in the same connection

• supports [distributed] transactions: messages can be
published as transactions

• offline fetching: clients can fetch data when offline
• supports message header annotations
Disadvantages:
• reliability: only limited to what is provided by transport
protocol

• discovery: offers no dynamic device discovery
• no multicast: messaging depends on connections
between clients and brokers

• broker can be Single Point of Failure (SPoF)
• message flow can be slow and often complex
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• standard does not provide mechanisms extensions with
other protocols (e.g. majordomo protocol)

• standard was first developed in the finance sector, was
not intended for M2M or IoT

E. XMPP
Advantages:
• designed to work in distributed client/server environ-
ments

• supports Simple Authentication and SASL
• based on XML which makes is extremely extensible
Disadvantages:
• does not offer end-to-end encryption
• no QoS support; no message delivery guarantees
• XML message format adds extra overhead in terms of
IoT device processing and communication

• server can be Single Point of Failure (SPoF)
• computational overhead due to encrypting and decrypt-
ing messages

F. DDS
Advantages:

• scalability: can scale up to a large number of queues
• provides near real-time communication
• supports interoperable data formats
• supports multiple data types for data objects
• QoS support: offers a rich set of QoS policies
• efficiency: 1-to-1 latency as low as 30 microseconds
• comprehensive security mechanism through the DDS
Security Model and SPIs

• no single point of failure (SPoF)
• end-to-end security and logging capabilities
• supports peer-to-peer (e.g. D2D), D2C, C2C

Disadvantages:
• implementation libraries are extremely large in size
(sometimes over 2GB)

• complexity: can be quite difficult to implement
• not suitable for edge-based IoT devices with constrained
processing and computing capabilities

VIII. CONCLUSION
Basic similarities among the several IoT messaging protocols
that exist today suggest the potential that they can coexist
throughout the design and deployment of IoT systems. Given
the diversity among IoT device types and the protocols they
can support, it is not uncommon that IoT systemsmay employ
several protocols to be used for IoT data exchange. Due to
the fact that messaging protocols are key components for the
connectivity of IoT devices, understanding the strengths and
weaknesses of each protocol plays an increasingly important
role in choosing an appropriate protocol to use in deploying
IoT systems while reducing maintenance costs.

In this paper, we presented a thorough investigation of
the plurality of messaging protocols that exist today for
building Internet of Things (IoT) systems. Throughout the
paper, we examined six common messaging protocols that

are used in the development of IoT systems including HTTP,
CoAP, MQTT, AMQP, DDS and XMPP. Although each of
these messaging protocols has a different primary focus, they
share key similarities that encouraged us to explore common
features for possible interoperability or coexistence of these
protocols within IoT systems. In addition, we identified key
communication tasks such as interfacing, exchange man-
agement, addressing, security, network management, fault
tolerance, error detection, synchronization and protocol rep-
resentation, among many others. Furthermore, we described
fundamental protocol characteristics that need to be consid-
ered when designing and deploying IoT systems.

As IoT systems proliferate, ineffectively choosing an
appropriate communication protocol makes it increasingly
challenging to build reliable, scalable, interoperable and
secure systems. Understanding the details of how these pro-
tocols are similar to each other presents an opportunity for the
potential of protocol interoperability. In addition, understand-
ing the context to which these applications protocols can be
applied to IoT systems’ deployments is critical. By investi-
gating the protocols’ distinctive approaches for building IoT
systems, it is then possible to determine whether these stan-
dards may merge or coexist, particularly given the limitations
exhibited in terms of essential design features for building IoT
systems. For future work, we plan to conduct performance
comparison of the existing messaging protocols employing
a series of IoT use cases. In addition, we plan to investigate
HTTP 2.0 and WebSocket as part of the messaging protocols
that can be used for IoT data streams in IoT systems.
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