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ABSTRACT The Digital Total Variation (DTV) scheme is a digitized energy regularization scheme used for
image denoising. This technique takes advantage of being applied to arbitrarily located data points and also
has the edge detective property. This article aims to introduce a novel meshless scheme using DTV filtering
and Radial Basis Functions (RBFs) to solve the associated equation with the DTV model numerically which
results in the image denoising to remove additive noise from image information. This meshless algorithm
based on local collocation and Multiquadric Radial Basis Function. These appearances allow this algorithm
not only to remove the additive noise from images but also to resolve the discontinuities sharply. It is
also noticed that the proposed meshless scheme is simple, fast, computationally effective, requires simply
post-processing, and can be easily implemented mathematically. Experimental results confirm that the peak
signal-to-noise ratio, the structural similarity, signal-to-noise ratio, the visual effect, and the computational
performance of this new meshless scheme are improved compared with state-of-the-art denoising schemes.
Furthermore, the proposed scheme can be applied to colour images as well.

INDEX TERMS Image denoising, digital total variation (DTV) filter, multiquadric radial basis function
(MQ-RBF), restoration equation, traditional scheme, meshless scheme.

I. INTRODUCTION
Image denoising is one of the most powerful aspects of
image processing and computer vision. This paper concen-
trates on the additive noise removal. Image denoising is
to remove noise from a noisy image, to restore the true
image. Nevertheless, as noise, edge, and texture are high
frequency elements, it is complicated to identify them in
the process of denoising and the denoised images could
necessarily lose some details. In general, recovering impor-
tant information from noisy images in the process of noise
removal to obtain high quality images is an essential problem
nowadays [1].

The additive noise removal problem is modeled as

z0 = z+ η, (1)
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where z: � ⊂ R −→ R2 represents the given true image,
z0 is the noisy image with additive noise η. In literature,
various nonlinear approaches have been utilized to tackle
this problem, such as wavelet approaches [2]–[4], adaptive
smoothing [5], [6], stochastic approaches [7], [8], anisotropic
diffusion [9], [10]. Recently variational approaches have also
been utilized to solve such problem, for instance [11]–[13].
In conventional variational approaches, the Euler-Lagrange
PDE is obtained from the minimization functional of equa-
tion (1) is used for smooth solution of image denois-
ing. But the Euler-Lagrange PDE is always a nonlinear
and non-differential PDE equation. Therefore the classical
numerical schemes unsuccessful to solve the PDE equation
for the smooth solution, which produces staircase effects, tex-
tures, and degrading the fine details during the image denois-
ing process. Some numerical scheme have been utilized
by the researchers to minimize the above mentioned issues
such as Augmented Lagrangian Method (ALM) [14], [15],
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Dual Method (DM) [16], Variable Splitting Based Method
(VSBM) [17], and Alternating Direction Method of Multipli-
ers (ADMM) [18]. But Still there is a space for improvement.

Various filter-based approaches have been introduced
based on these IN detectors, for instance, adaptive
center-weighted median filter [19], progressive switch-
ing median filter [20], adaptive weighted median filter
(AWMF) [21], noise adaptive fuzzy switching median filter
(NAFSMF) [22], modified decision- based unsymmetrical
trimmedmedian filter (MDBUTMF) [23], andmorphological
mean filter (MMF) [24]. These filter-based approaches are
smoothly useful in image denoising and reducing the stair-
case effect, textures and homogeneity in lightly contaminated
noisy images. Nevertheless, these schemes are ineffective
for reducing noise in highly corrupted images (i.e., noise
frequency greater than or equal to 50 percent) because of the
inaccuracy of order statistics.

Chan et al. [25] introduced a self-contained ‘digital’
(Digital total variation (DTV) )filtering theory for image
denoising which is independent of the experience of PDEs
and numerical solution. DTV filtering is acknowledged as
a discrete variational approach that works on the general
discrete domain of given data. This approach is more respon-
sive to regular and irregular shaped domains, and the scat-
tered data points can easily be managed. Another benefit of
this scheme is to determine the discontinuities sharply with-
out earlier information concerning edge locations due to its
built-in edge detective property [25], [26], [28]. DTVfiltering
procedure is a general method in comparison with other pseu-
dospectral post-processing schemes, so it does not require the
location of data on the structured grid [29]–[31]. TheDTVfil-
tering approach has been used for the steady-state solutions of
conservation of law computed by second-order Lax-Wendro
methods [28], [30], [32]. The associated restoration equation
to DTV functional of the model (1) is always nonlinear.
Recently, some numerical schemes have been produced for
the numerical solutions of DTV based nonlinear equation for
smooth solutions i.e. to remove the noise and restore the accu-
racy of the given image information, for instance, see [25],
[27]–[29], [31]. But when the noise variance becomes high,
the fine details of the image can not be recovered properly,
which is the principal disadvantage of the solution of DTV
filtering by classical numerical techniques. To the best of
our knowledge, few numerical schemes have been utilized
to solve the DTV based nonlinear equation and to tickle this
issue. In this study, we will introduce a meshless algorithm
for the numerical solution of DTV based nonlinear equation
to settle as the issues associated with image denoising.

Radial basis function (RBF) methods have become suc-
cessful methods in recent years in approximation theory
as well as in the numerical solution of PDEs. The most
broadly applied RBF scheme for the latter class of problems
is the RBF collocation method due to Kansa [33]–[35],
known as the Kansa method. The popularity of the Kansa
approach is due to its meshless applications which means
that only a set of points is required in the discretization of the

continuous problem. This contribution to the implementation
of the method particularly easy, especially for problems in
the complex shape domain, and in two and more dimensions.
The solution of the nonlinear problem hence produces not
only the coefficients in the RBF approximation but also a
suitable value of the shape parameter [36]. Kansa method
has also shown excellent efficiency compared to FDM
[35], [37], pseudo-spectral method [38], and FEM [39].
Since, Kansa method is a domain type strategy, which has
numerous features like the finite element approach for the
approximated solution of the nonlinear equation. For further
information of RBF collocation schemes, see [36], [40]–[44].
In this research study, we will use the BRF meshless col-
location scheme (Kansa scheme) for the solution nonlinear
equation arising in the DTV filtering based model [25].
Since, Kansa method is a domain type strategy, which has
numerous features like the finite element approach for the
approximation of the solution of the nonlinear equation. This
proposed scheme will not only be helpful in image denoising
and edge preservation but also be helpful in the minimization
of staircase effect, preservation of textures, and fine details
during the restoration process. The main purposes of the
recommended meshless scheme in image restoration are;
the RBF interpolation process used in the proposed scheme
will preserve the edges and fine details in images while the
smoothness property and the lack of dependence on a mesh
or integration procedure will produce the best restoration
performance regarding minimization of staircase effect and
texture preservation.

The paper outlines are organized as follows. The detailed
mathematical discussion of DTV filtering and RBFs approx-
imation is given in section. The discussion of Chan et al. [25]
model for image denoising having additive noise is also
mentioned in section 2. The mesh-based scheme and pro-
posed meshless scheme for the solution of the model [25] are
discussed in section 22. Section 4 describes some numerical
results to validate the performance of the proposed scheme.
A comparison with existing state-of-art numerical schemes is
described in section 5. Section 5 shows the detailed tabulated
discussion of the sensitivity of parameters used in the pro-
posed technique. Finally, the paper is concluded in the last
section.

II. MATHEMATICAL BACKGROUND
A. DIGITAL TOTAL VARIATION FILTERING
To define DTVfiltering [25], let select a general graph [�,D],
containing a finite set of � having different nodes (vertices)
and a dictionary D of edges. In the graph, the size of D
represents the total number of nodes (vertices). It is also
assumed that the graph is associated and has no self-loops
(no immediate edge from a vertex to itself). All the general
vertices on the graph are named β1, β2, . . . . The notation
β1 ∼ β2. indicates that β1 and β2 are neighbors. All the
neighbors of β1 are represented by Nβ1 = {β ∈ � | β1 ∼ β1}
for β1 ∼ β1 = β2 ∼ β1. Let z such that z : � −→ R
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denotes the digital image, for any vertex β1, zβ1 signifies the
z at vertex β1. At any vertex β1, the regularized local variation
or strength function ‖∇pzβ1‖ is defined as∥∥∥∥∇pzβ2∥∥∥∥ = [ ∑

β2∈Nβ1

(
zβ2 − zβ1

)2] 1
2

. (2)

To avoid the regularized local variation from zero denomina-
tor, a small regularization parameter α is selected, thus the
equation (2) can be re-written as∥∥∥∥∇pzβ2∥∥∥∥ = [ ∑

β2∈Nβ1

α2 +

(
zβ2 − zβ1

)2] 1
2

.

As explained in [25], the edge derivative of z is given as under.

∂z
∂e

∣∣∣∣
β1

:= zβ2 − zβ1 ,

where e denotes the edge of z along e and is represented by
β2 ∼ β1. Also

∂z
∂e

∣∣∣∣
β1

=
∂z
∂e

∣∣∣∣
β2

and

∥∥∥∥∇pzβ1∥∥∥∥ =
√√√√∑

e`β1

[
∂z
∂e

∣∣∣∣
β1

]2
,

where e ` β1 shows that β1 is one node of e. For more
information about DTV filtering, see [25], [29], [31].

The first DTV filtering based minimization model for
image denoising having additive noise was presented by
Chan et al. [25]. So, equation (1) by [25] can be re-written
as

z0 = z+ η or z0β1 = zβ1 + ηβ1 , (3)

for all β1 ∈ �, where z is restored image data, z0 is noisy
image data with additive noise data η. The minimization
approach for equation (3) by [12], [25] is defined as;

min
z
E(z) =

∑
β1∈�

∥∥∥∥∇pzβ1∥∥∥∥+ λ2
∥∥∥∥zβ1 − z0β1∥∥∥∥2

�

. (4)

In the foregoing equation (4), the first term is the regu-
larization term, while the second term is the data fidelity
term, where γ and α are called the fitting and regularization
parameters, respectively.

B. RADIAL BASIS FUNCTION APPROXIMATION
The RBF collocation scheme is defined as, a RBF function
φ(x) with respect to the origin, φ(x) = φ(r) ∈ < for the
known data set {xj} and its distance from a given point (pixel)
such that with φ(x − xj) = φ(rj) ∈ < is satisfied. The
function φ(x) = φ(‖ x ‖2) is known as radial function.
The different basis functions that are used in RBF collocation
method are Multiquadric (MQ), Inverse Multiquadric (IMQ),
Gaussian (GA), Polyharmonic spline, and Thin plate splines
(TPS). For more information regarding these basis functions,
see [45], [46].

The RBF collocation scheme is used on function f (x),
x ∈ � ∈ <n including bounded domain � to interpolate it

smoothly. So, for the given selected interpolating values data
centers points, the function is approximated as under.

f (x) =
N∑
j=1

γjφ

(∥∥∥∥x − xj∥∥∥∥
2

)
, x ∈ �, (5)

where γj are definedweights. To calculate γj, the RBF scheme
is defined as

yi = f (xi) =
N∑
j=1

γjφ

(∥∥∥∥xi − xj∥∥∥∥
2

)
, i, j = 1, 2, . . . ,N .

(6)

The above equation (6) gives a linear system of equations of
order N × N which is written as under.

C = γ b,

where γ = (γ1, γ2, . . . , γN )T is known as N × 1 undefined
vector and to be defined, while b = (y1, y2, . . . , yN )T isN×1
known vector, and C = [φi,j] = [φ(‖x − xj‖2)]1≤i,j≤N with
φij = φji is called N × N interpolation matrix.
The polynomial term is added to the RBF approximation to

ensure invertibility of the interpolated matrix C , in such case
equation (5) can be defined as under.

f (x) =
N∑
j=1

γjφ

(∥∥∥∥x − xj∥∥∥∥
2

)
+

M∑
i=1

γN+1li(x), (7)

with constraints

M∑
i=1

γjli(xj) = 0, i = 1, 2, . . . ,M , (8)

with li ∈ 5m−1 for i = 1, 2, . . . ,M , in which5m represents
the polynomial space in which the polynomial is m in N
variables are the total degree polynomials [45], which is given
as [

N + m− 1
m− 1

]
.

The resultant solution of equations (7) and (8) through inter-
polation gives matrix system of (M+N )×(M+N ) equations
which is given as under.[

C l
l t O

]
=
[
γ
] [ b

0

]
,

whereC = [φi,j] = [φ(‖xi−xj‖2)]1≤i,j≤N shows the elements
of the matrix C , li,j = li[xj]1≤i≤N ,1≤j≤M are the elements of
the matrix l, and O is (M × N ) matrix.
The RBFs having shape parameter c and selection of shape

parameter, also the RBFs having positive definiteness (PD)
and conditionality positive definiteness (CPD) are explained
in [45], [47]. The selection of shape parameter c in RBFs,
positive definiteness in RBFs, and Conditionality positive
definiteness CPD are described in [45], [47].
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III. NUMERICAL SCHEMES
IIn this section, numerical schemes are reviewed for the
numerical solution of the system of nonlinear equations con-
nected with the DTV minimization functional (4).

A. MESH-BASED SCHEME M1
The primary DTV filter-based model was introduced by
Chan et al. [25] for image restoration containing additive
noise and produced some good recovery results on a 1-D
graph and 2-D images (grayscale), and 3-D (color) images.
The minimization functional for [25] from equation (4) is
mathematically written as,

min
z
E(z) =

∑
β1∈�

∥∥∥∥∇pzβ1∥∥∥∥
α

+
λ

2

∥∥∥∥zβ1 − z0β1∥∥∥∥2
�

, (9)

where the first term is called regularization term, the second
term is called data fidelity term and γ is the fitting parameter
and α is regularized parameter. The fidelity parameter γ is
used to set a balance between the denoised and smoothness of
the denoised images which is often based on the level of noise
added to the given image and the regularization parameter α
is used to avoid a zero so its value is usually taken α = 10−4.
The resultant nonlinear restoration equation from (9) by [25]
is given as

0 =
∑
β2∼β1

(
zβ1 − zβ2

)
ωβ1β2 (z)+ λ

(
zβ1 − z

0
β1

)
, (10)

where

ωβ1β2 =
1

‖∇pzβ1‖α
+

1
‖∇pzβ2‖α

, (11)

and

‖∇pzβ2‖ =
[
α2 + ‖∇pzβ2‖

] 1
2

. (12)

for a small fixed value of α i.e., α = 10−4. The above
equation (10) can be fixed and re-defined as

0 =
∑
β2∼β1

(
zβ1 − zβ2

)[
1

‖∇pzβ1‖α
+

1
‖∇pzβ2‖α

]
+λ

(
zβ1 − z

0
β1

)
. (13)

For further details, see in [25], [27], [28].

B. PROPOSED MESHLESS SCHEME M2
In this new subsection, we introduce the meshless scheme
by applying the BRF collocation scheme for the numerical
solution of DTV filter-based restoration equation (12) and to
get resultant image z from the given noisy image z0 selected
in model (9). Consider {βj}Ncj=1 be Nc centers in the closed
domain � ⊆ <2. For any RBF in 2D (2 Dimensional),
the following equation will be satisfied, φ(r) = ‖r‖2 in <2

i.e r = (x, y).

For given pixel data center points {βj}Ncj=1, the equation for
RBF approximation with unaugmented polynomial term is
given as below.

H (x) =
Nc∑
j=1

θjφ(‖x − βj‖2), (14)

with undefined coefficients of θj and are defined the given
interpolation condition.

H (xj) = z0.

The RBF interpolation at Nc centers data is written as

Dθ = z0, (15)

which results in Nc × Nc linear system of equations. This
system is used to find the coefficients of Nc × 1 vector
θ = (θ1, θ2, . . . θNc)T for given known vector data z0 =
(z01, z

0
2, . . . z

0
Nc)

T , where

D = [φi,j] = [φ(‖xi − xj‖2)]1≤i,j≤Nc,

is called Nc×Ncmatrix and is an invertible matrix [30], [47]
due its positive definite application [43], [45]. Thus

θ = D−1z0, (16)

with θ represents a Nc × 1 order matrix. Again using the
same above-mentioned operation on equation (14), the RBF
interpolation at N evaluation points {xi}Ni=1 results in Nc×N
matrix E which is defined as follow.

E = [φi,j] = [φ(‖x − xj‖2)]1≤i≤N , 1≤j≤Nc.

The resultant equation to obtain z at N data points using
interpolation is given as,

z = Eθ. (17)

The combination of equations (15) and (16) results in the
given equation.

z = ED−1z0,

or

z = Lz0 where L = ED−1, (18)

which results in approximate solution of at any point inside
the closed domain �. Since equation (10) forms the mini-
mization functional (4) of model [25] using DTVmethod and
is given as

0 =
∑
β2∼β1

(
zβ1 − zβ2

)
ωβ1β2 (z)+ λ

(
zβ1 − z

0
β1

)
, (19)

where

ωβ1β2 =
1

‖∇pzβ1‖α
+

1
‖∇pzβ2‖α

.

The steady state time marching equation from equation (18)
is denoted by the equation below.

dzβ1
dt
=

∑
β2∼β1

(
zβ1 − zβ2

)
ωβ1β2 (z)+ λ

(
zβ1 − z

0
β1

)
. (20)
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The Collocation method (Kansa scheme) is then used to solve
the obtained restoration equation by the combination of the
equations (17) and (19). Here Gauss-Jacobi iterative is used in
Kansa scheme to solve resultant system of non linear equation
which is given as follow.

z(n+1)β1
= z(n)β1 + dt

[ ∑
β2∼β1

(
z(n)β2 − z

(n)
β1

)
ωβ1β2 (z

(n))

+λ

(
z(n)β1 − z

(0)
β1

)]
, (21)

where z(0)β1 = z0β1 , zβ1 = Lβ1z
0
= Eβ1D

−1z0, and
zβ2 = Lβ2z

0
= Eβ2D

−1z0. Also

Eβ1 = [φβ1,j] = [φ(‖β1 − βj‖2)]1≤j≤Nc,

and

Eβ2 = [φβ2,j] = [φ(‖β2 − βj‖2)]1≤j≤Nc.

Here zβ1 and zβ2 represent the approximate values at ver-
tices β1 and β2 respectively. The main application of the
RBF scheme (Kansa method) is usually not necessary to
satisfy the given restoration equation (21), so we are inde-
pendent to choose any BRF. In literature, multiquadric (MQ)
RBF gives good results in the RBF scheme (Kansa method)
[34], [48] provided if a proper value for shape parameter is
chosen [34]. The main utilization of the collocation scheme
used on equation (21) is that the suggested meshless method
displays the unique solution of (21) due to the MQ-RBF
interpolation method employed in the collocation scheme
which results in the preservation of the edges. Furthermore,
the resultant smooth solution of equation (21) is due to the
weighted mean determined in equation (15) using the inter-
polation process which is based on the Euclidian distance
between a noisy pixel and other non-noisy pixels obtained
from equation (14) in the selected frame. Consequently,
the smooth solution of the equation (21) is responsible for
image restoration, reducing the staircase effect, and pre-
serving edges, textures, and image details. In our proposed
meshless scheme M2 the value of shape parameter c plays
an important role in smooth solution in terms of good image
restoration result. In our meshless technique, c and λ are
important parameters for good restoration results and their
values are based on the image size and noise. The locality and
adaptivity for smooth results by DTV filtering have already
been discussed in [25].
Many research papers have been published by the

researchers regarding the selection of the best value of shape
parameter c for getting the smooth results used in RBF. Here,
we will apply the extended Rippa’s [49] algorithm proposed
byMarjan [50] for the selection of the best value ofMQ shape
parameter c used in the proposedmeshless schemeM2, which
is shown in algorithm2. All entries in the error vector ε can
be computed in a single statement in MATLAB. In order to
determine a good value of the shape parameter as quickly as
possible we have used the Matlab function fminbnd to find
the minimum of the cost function ‖ε‖ for c The algorithm

returns a good value c ∈ (cmin, cmax) where cmin = 7
√
N

and

cmax = 15
√
N

are chosen initially. In this article, the role of
algorithm 2 in our meshless algorithm 1 is to find the optimal
value of c to provide the best restoration performance in terms
of PSNR value rather than error estimation.

Algorithm 1 Algorithm for Proposed Meshless Scheme M2
Radial Basis Function Approximation:
1. Set the centers β1, β2, . . . β|�|.
2. Use MQ-RBF to calculate θ by using (16).
3. Use MQ-RBF to calculate z by using (18).
DTV filtering:
4. Choose the centers β1 ≤ β2 ≤, . . . ,≤ β|�|, let n = 0.
5. n = n + 1, for the selection of each center location
β1 and all its neighbors β2, calculate the local variation
‖∇pzβ2‖α and weighted function ωβ1β2 (z

(n)) according to
equation (12) and (11).
6. Put ωβ1β2 (z

(n)) and z(n) in equation (21) to get N × 1
nonlinear system of equations.
7. For each located center β1, calculate z

(n+1)
β1

by using equa-
tion (21), where we choose z(0) = z0.

8. ‖g
(n+1)
−g(n)‖

‖g(n)‖
≤ ε = 10−5 (stopping condition for itera-

tions), go to step no. (11).
9. Back to step no.(5).
10. End.
11. Outcome result z = z(n+1)β1

.

Algorithm 2Algorithm for the Selection of Shape Parameter
c in Meshless Scheme M2
:
1. Fix c ∈ (cmin, cmax)
2. For n = N + 1, compute the error estimator εn at the nth
data point from equation (16) by the relation εn =

θn

D−1n
.

3. Get the cost vector ε = (ε1, ε2, . . . , εn)T .
4.End.
5. The optimal value of c is obtained by the minimization of
‖ε‖.

IV. EXPERIMENTAL RESULTS
In this section, experimental analysis is demonstrated to val-
idate the performance of the proposed meshless collocation
scheme M2. To justify the performance of the meshless
method M2, we perform several experiments on real and
artificial grayscale and color images and compare the results
with a classical methodM1. The test images for experimental
analysis are shown in Fig.1. For 2D case, Nβ can be defined
in different ways. One way is to consider a point P neighbor
of a node β consisting of all P points that are closest to β.
In this paper, Nβ is defined in the best way. Dividing the
region surrounding a point an into P regions of equal angle,
Nβ is defined such that it consists of points in each region that
are closest to β as discussed in [25]. In this research study,
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FIGURE 1. Test images; (a) Cameraman; (b) Moon; (c) Peppers; (d) House; (e) Ring; (f) Lena; (g) Bird; (h) Bridge; (f) Colour Peppers; (i) Colour Sanada;
(j) Colour Man; (k) Colour Rose; (l) Boat; (m) Clock; (n) Colour Bird; (o) Colour barbara; (p) Barbara.

we select P as the size of the chosen image and Multiquadric
Radial Basis Function (MQ-RBF) is utilized as the basis
function for meshless scheme M2. The peak-signal-to-noise
ratio (PSNR) is used to determine the quality of the denoised
image. PSNR of an image can be calculated by the following
formula.

PSNR = 10 ∗ log10

[
M × N max{û}
‖û− u‖

]
. (22)

where û is the selected image and u represents the denoised
image, whileM × N is the size of the selected image.

The Structure Similarity (SSIM) index is a method for esti-
mating the similarity between two images [51], [52]. It car-
ries the necessary information for image quality evaluation
utilizing the principle approach that the pixels have storing
interdependency when they are spatially close. The SSIM
metric is based on the intensity, contrast, and structure, and is
determined as

SSIM (u, v) =
(2µuµv + c1)(σuv + c2)

(µ2
u + µ

2
v + c1)(σ 2

u + σ
2
v + c2)

, (23)

where µu, µv, σu, σv, σuv indicate the mean, variance, and
covariance on typical 8 × 8 square windows, which movies
pixels by pixels in images u(i) and v(i), respectively. The two
variables c1 = k1L and c2 = k2L are employed to stabilize
the division with weak denominator. Here, L is the dynamic
range of pixel value (e.g., 255 for 8-bit grayscale image),
with k1 = 0.01 and k2 = 0.03 by default. As the SSIM

metric is measured on various windows of an image, themean
SSIM (MSSIM) is used in this experiment to evaluate the
overall image quality:

MSSIM (u, v) =
1
M

M∑
i=1

(
u(i), v(i)

)
, (24)

where M is the number of local windows in the image while
MSSIM ∈ [0, 1]. Higher MSSIM indicates better structural
similarity between two images.

Signal-to-noise ratio (SNR) is also applied to determine
the visual quality of restoration of the restored image and is
defined as:

SNR = 10log10 =
‖u− u0‖
‖n− n0‖

, (25)

where u and n indicate the true image and noise, while u0
and n0 describe their mean values in the image domain �.
Repeatedly, the greater SNR value leads to better restoration
results.

The stopping criteria for iterations in meshless scheme
M2 is given by the following equation

‖z(k+1) − z(k)‖
z(k)

≤ ε, (26)

where ε shows the maximum acceptable error with ε = 10−4.
In meshless scheme M2, Multiquadric radial basis function
(MQ-RBF) is selected as a basis function. The formula for
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FIGURE 2. De-noised results on Cameraman; (a) Original image; (b) Noisy image with σ1 = 15; (c) Resultant image by
method M1; (d) Resultant image by method M2.

FIGURE 3. Obtained results on Moon; (a) Original image; (b) Noisy image with σ1 = 18; (c) Restored image by using method M1;
(d) Restored image by using method M2.

FIGURE 4. Experimental results on Peppers; (a) Original image; (b) Noisy image with σ1 = 22; (c) Obtained image by using M1;
(d) Obtained image by using M2.

FIGURE 5. Experimental results on house; (a) Original image; (b) Noisy image with σ1 = 24; (c) Obtained image by using M1;
(d) Obtained image by using M2.

MQ-RBF for each point (xi, yj) is defined by the given
equation.

φj(x, y) =
√
c2 + r2j =

√
c2 + (x − xj)2 + (y− yj)2,

where rj =
√
(x − xj)2 + (y− yj)2.

Experiment 1: In experiment 1, three real images ‘Cam-
eraman’, ‘Moon’, ‘Peppers’, and ‘House’ are applied and
tested on mesh-based scheme M1 and proposed meshless
scheme M2 for Gaussian noise (Gaussian noise with mean
value zero and standard deviation σ1) with standard deviation
of σ1 = 15, σ1 = 18, σ1 = 22, and σ1 = 24, respectively.

All the four images are given in Figures 2, 3, 4, and 5,
respectively. In all the three Figures mentioned for the three
real images, (a) and (b) represent the true and degraded
images while (c) and (d) described the resultant images by
algorithms M1 and M2. In each case, it can be observed
that the quality of the reconstructed images obtained using
M2 is far better than the image quality of the restored images
achieved utilizingmethodM1,without degrading the intrinsic
jumps in the clean data, and also preserve the edges quite
well due to the applications of DTV filter and the meshless
applications due to the meshless characteristics of MQ-RBF
approximation applied to the smooth of DTV based nonlinear
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TABLE 1. The PSNR, SSIM values and the statistical iterations numbers (Iters) and run time (Cpu time) for computation.

FIGURE 6. Restored results on Ring; (a) True image; (b) Noisy image with σ2 = 0.10; (c) De-noised image by scheme M1;
(d) De-noised image by scheme M2.

FIGURE 7. Reconstructed results on Lena; (a) True image; (b) Noisy image with σ2 = 0.11; (c) Restored image by M1; (d) Restored
image by M2.

equation. The PSNR and SSIM values for the three images in
this experiment are listed in Table 1. The bigger the PSNR and
SSIM value results in good restoration performance. Thus,
it can be seen from Table 1, that the PSNR and SSIM values
utilized by using M2 are greater than that of M1 in each case
which represents the good restoration performance of M2.
The number of iterations required for convergence and the
computational time obtained by the meshless scheme M2 is
also smaller than of methodM1 in each case which shows the
accelerated denoising performance of introduced meshless
scheme M2 over mesh-based scheme M1 because of the
meshless application of the lack of dependency on a mesh
or integration procedure connected with MQ-RBF for the
solution of DTV based nonlinear restoration equation. The
values of the two parameters i.e. (shape parameter c, the fit-
ting parameter λ) selected for theM2 for the three test images
‘Cameraman’, ‘Moon’, and ‘Peppers’ in this experiment are
(0.45, 0.315), (0.47, 0.274), (0.50, 0.259), and (0.52, 0.254),
and respectively. The shape parameter c plays an essential
role in image restoration in proposed meshless scheme

M2 [32]. The fminbndMatlab function has been used in this
experiment to get the best value of c ∈ (cmin, cmax) for the best
restoration results shown in Table 1. In this test, cmin = 0.37
and cmax = 0.79 are chosen.
Experiment 2: In this experimental test 2, the restoration

results for two algorithms M1 and M2 are check on arti-
ficial and real images ‘Ring’, ‘Lena’, ‘Bird’, and ‘Bridge’
having salt and paper noise (slat and paper noise with mean
value zero and standard deviation σ2) that are shown in
Figures 6, 7, 8, and 9, respectively. The noise levels in
this test for ‘Ring’, ‘Lena’, ‘Bird’, and ‘Bridge’ are set to
σ2 = 0.08, σ2 = 0.17, σ2 = 0.21, and σ2 = 0.24, respec-
tively. Again for each case, the performance of the restored
images and edge preservation property by Kansa method M2
(shown in Figures (6(d), (7(d), (8(d), and (9(d)) are much
better than of traditional method M1 (shown in Figures (6(c),
(7(c)), (8(c)) and (9(c), respectively). The PSNR and SSIM
values, number of iterations, and CPU times for this
experiment are also listed in Table 1, which shows better
performance of the proposed algorithm M2 over algorithm
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FIGURE 8. Reconstructed results on bird; (a) True image; (b) Noisy image with σ2 = 0.11; (c) Restored image by M1; (d) Restored
image by M2.

FIGURE 9. Reconstructed results on bridge; (a) True image; (b) Noisy image with σ2 = 0.11; (c) Restored image by M1;
(d) Restored image by M2.

FIGURE 10. De-noised results on Color Peppers; (a) True image; (b) Degraded image with σ1 = 19; (c) Reconstructed image by
method M1; (d) Reconstructed image by method M2.

FIGURE 11. Reconstructed results on Color Sanada; (a) True image; (b) Noisy image with σ1 = 22; (c) Obtained image by M1;
(d) Obtained image by M2.

M1 because of meshless properties of MQ-RBF used in M2.
Again, this experiment demonstrates the high efficiency of
M2 compared to M1 regarding image restoration (PSNR,
SSIM values) and faster convergence (iterative numbers in
computational time (CPU Time)). The best experiential val-
ues of parameters i.e. shape parameter c and fitting parame-
ter iλ used in M2 for the two images ‘Ring’, ‘Lena’, ‘Bird’,
and ‘Bridge’ are (0.44, 0.413), (0.47, 0.396), (0.48, 0.387)
and (0.49, 0.371), respectively. Again, fminbnd Matlab
function has been utilized to obtain the good value of
c ∈ (cmin, cmax) for the best image recovery result shown
in Table 1. In this test, cmin = 0.37 and cmax = 0.79 are
selected.
Experiment 3: In the third experiment, the two schemes

M1 and M2 are tested on 3D coluor images ‘Peppers’,

‘Sanada’, ‘Man’, and Roses’ containing Gaussian noises that
are displayed in Figures 10, 11, 12, and 13, respectively. It can
be observed from Figure 10, 11, 12, and 13 that the proposed
scheme M2 can successfully remove the noise without much
smearing of the sharp edges from the two images ‘Peppers’,
‘Sanada’, ‘Man’, and ‘Roses’, (shown in Figures (10(d),
(11(d), (12(d), and (13(d)), respectively, which only show
the good image restoration performance (PSNR, SSIM val-
ues), reducing the staircase effect but also indicates the edge
enhancement and texture preservation character of proposed
methodM2 over methodM1 (shown in Figures (10(c), (11(c),
(12(c), and (13(c)), respectively) even on color images due
to the effectiveness of MQ-RBF Kansa method M2 for the
smooth solution of complex images. Furthermore, it can
be observed that M2 produces better purity of colors in
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FIGURE 12. Reconstructed results on Color Man; (a) True image; (b) Noisy image with σ1 = 22; (c) Obtained image by M1;
(d) Obtained image by M2.

FIGURE 13. Reconstructed results on Color Rose; (a) True image; (b) Noisy image with σ1 = 22; (c) Obtained image by M1;
(d) Obtained image by M2.

FIGURE 14. Comparison of 121th lines of Lena original image, the noisy image with additive noise, and restored images using algorithms M1and
M2. (a) Comparison of true and noisy lines; (b) Original and restored lines comparison using M1; (c) Original and reconstructed lines comparison
using M2. The blue line shows the true image line while the red line indicates the reconstructed image line.

homogeneous regions and sharper boundaries in between for
two images than M1 as shown in Figures (10(d), (11(d),
(12(d) and (13(d), respectively. The PSNR and SSIM values,
number of iterations and CPU times of this experiment are
shown in Table 1. (0.52, 0.439), (0.55, 0.429), (0.55, 0.429)
and (0.56, 0.426) are the values of the parameters i.e. shape
parameter c and fitting parameter λ used in proposed method
M2 for two colours images ‘Peppers’, ‘Sanada’, ‘Man’, and
‘Roses’, respectively. The fminbnd Matlab function is used
to get the best restoration result for the best selected value
of c.
Experiment 4: The homogeneity and preservation (or loss)

are analyzed for the two schemes M1 and M2 applied on
‘Lena’. To achieve this aim, the 121th line of true image com-
pared with degraded and obtained images, which are given
in Fig. 14. It can be seen from Fig. 14 that the lines obtained
by meshless scheme M2 is better than what is obtained using
scheme M1.

Experiment 5: Figure 15 presents the SSIM and PSNR
curves of the traditional mesh-based scheme M1 and the
proposed meshless scheme M2 after different iterations. The
convergence rate of the meshless schemeM2 is faster than the
mesh-based schemeM1. Another judgment from Figure 15 is
that the SSIM and PSNR values of the meshless scheme
M2 are higher than the values of the mesh-based scheme M1.
The comparison results confirm that the proposed method
M2 reproduces the source image better and gives higher
SSIM and PSNR in less iterations. The calculation time along
with iterative numbers of these two methods with the same
level SSIM and PSNR are recorded in Table 1.

V. COMPARSION WITH OTHER SCHEMES
A. COMPARISON WITH ROF SCHEME (M3)
The primary TV-based model for image denoising possess-
ing additive noise was introduced by Rudin-Osher-Fatemi
(ROF) [11]. This scheme performed good results in terms
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FIGURE 15. SSIM and PSNR converge curves of two iterative schemes M1 and M2. The
blue line presents convergence scheme M2 while the red line indicates the convergence
proposed meshless M2.

of image restoration on 2D grayscale images. The TV-based
minimization functional applied by ROF for the model (1) is
presented as follows.

ẑ = min
z
E(z) =

∫
�

|∇z|dxdy+
λ

2
‖z− z0‖22, (27)

with |∇z| =
√
z2x + z2y, where the two terms in equation (23)

are called the regularization term and data fitting terms,
while λ is the scale parameter which controls the similarities
between the denoised and the original images which normally
depends on upon the noise level. The resultant Euler Lagrange
PDE received from model (23) is determined as below.

∂

∂x

(
zx√
z2x + z2y

)
+
∂

∂y

(
zy√

z2x + z2y

)
+ λ(z− z0) = 0, (28)

in �, where ∂z
∂n = 0 on ∂� = �. The time marching PDE

from equation (24) is re-written as follow;

∂z
∂t
=

∂

∂x

(
zx√
z2x + z2y

)
+
∂

∂y

(
zy√

z2x + z2y

)
+ λ(z− z0), (29)

for t > 0, and (x, y) ∈ R. The numerical solution of the PDE
equation (25) has been discussed and explained in [11].

B. COMPARISON WITH DTV-FILTERING BASED
SCHEME (M4)
Osher and Shen [53] introduced a different DTV filter-based
model for image reconstruction having additive noise. The
energy functional of model (1) by [53] is provided as below.

min
z
E(z) =

∑
β1∈�

ϕ

∥∥∥∥∇pzβ1∥∥∥∥
α

+
λ

2

∑
β1∈�

∥∥∥∥zβ1 − z0β1∥∥∥∥2
�

, (30)

where ϕ(x) is a simple function and ϕ(x) = x2−q for
0 ≤ q ≤ 2. The equation (26) results in given restoration
equation.

(zβ1 − zβ2 )
[
ϕ/‖∇pzβ1‖α
‖∇pzβ1‖α

+
ϕ/‖∇pzβ2‖α
‖∇pzβ2‖α

]
+λ(zβ1 − z

0
β1
) = 0. (31)

The nonlinear recovery system of equations from equa-
tion (26) is given as follows.[

λ+
∑
β1∈�

ωβ1β2(z)

]
zβ1 −

∑
β2∈�

ωβ1β2(z)zβ2 = λz
0
β1
. (32)

for all β1 ∈ �. The authors used the Gauss-Jacobi scheme
to resolve the system of nonlinear equation (28) which is
reproduced as below.

zn+1β1
=

∑
β2∈�

(
ωβ1β2(zn)

λ+ ωβ1β2(zn)

)
znβ1

+

∑
β2∈�

(
λ

λ+ ωβ1β2(zn)

)
z0β1 , (33)

where

ωβ1β2(z) =
ϕ/‖∇pzβ1‖α
‖∇pzβ1‖α

+
ϕ/‖∇pzβ2‖α
‖∇pzβ2‖α

.

For further details, see [53].
Experiment 6: In this analysis, the recommended colloca-

tion scheme M2 is compared to schemes M3 and M4 for two
real images ‘Lena’ and ‘Peppers’ holding additive Gaussian
noises. Repeatedly, from the experimental outcomes, we can
see that M2 is better in image recovery (PSNR), iterative
numbers, and time of computation (CUP time) corresponded
with schemes M3 and M4. Those reconstructed results
are displayed in Figures 16, 17, and Table 2, respectively.
Consequently, this analysis confirms the effectiveness of the
meshless MQ-RBF applications used in M2.

C. A NEW METHOD FOR IMAGE RESTORATION IN THE
PRESENCE OF IMPULSE NOISE (M5)
Yuan and Ghanem [54] has introduced a new scheme for a
TV-based model for the removal of impulsive noise from the
given image data and delivered good restoration results. The
minimization functional for this model is defined as below.

arg min
0≤u,v≤

〈1, 1− v〉 + λ‖∇u‖p,1

s.t v� |o� (Ku+ b)| = 0. (34)

VOLUME 8, 2020 88251



M. A. Khan et al.: Total Variation Filter via Multiquadric RBF Approximation Scheme for Additive Noise Removal

FIGURE 16. Obtained results on Lena; (a) True image; (b) Noisy image with σ1 = 22; (c) Resultant image by M3; (d) Resultant image by M4;
(e) Resultant image by proposed method M2 (c = 0.433, λ = 0.511).

FIGURE 17. Reconstructed results on Peppers; (a) True image; (b) Noisy image with σ1 = 20; (c) Resultant image by M3; (d) Resultant image
by M4; (e) Resultant image by proposed method M2 (c = 0.515, λ = 0.432).

TABLE 2. Comparison Of the two algorithms M1 and M2 regarding PSNR values, iterative numbers, and Cpu-times.

where u describes the clean image, b is noisy or blurred
image, K denotes the linear operator, a and b are the noise
vectors,� shows the elementwise product, and p is a param-
eter such that p = 1 for isotropic TV model and p = 2 for
anisotropic TV model. Here, we choose K = 1. The contrib-
utors utilized the proximal ADMM strategy, which iteratively
renewed the primal and dual variables of the augmented
Lagrangian function of equation (34). For any auxiliary
x ∈ <2n and y ∈ <n, equation (34) can be rewritten as

arg min
0≤u,v≤

〈1, 1− v〉 + λ‖∇u‖p,1

s.t ∇u = x, Ku− b = y, v� o� |y| = 0. (35)

Similarly, for £β : <n ×<n ×<2n ×<n ×<2n ×<n −→ <
be the augmented Lagrangian function of (35).

£β (u, v, x, y, ξ, ζ, π)

:= 〈1, 1− v〉 + λ‖∇u‖p,1

+〈∇u− x, ξ〉 +
β

2
‖Ku− x‖2 + 〈∇u− b− y, ζ 〉

+
β

2
‖∇u−b−y‖2+〈v� o� |y|, π〉+

β

2
‖v� o� |y|‖2,

where ξ, ζ, and π represent the Lagrange multipliers con-
nected with the constrains v�o�|y| = 0, respectively, while
β > 0 is the penalty parameter. For further details, the readers
are refereed to [54].

D. HIGHLY ACCURATE IMAGE RECONSTRUCTION FOR
MULTIMODEL NOISE SUPPRESSION USING
SEMISUPERVISED LEARNING ON BIG DATA (M6)
Yin et al. [55] established a newmodel and scheme to remove
the impulse noise from the image data. The model for recon-
structed image f for each pixel x at the ith position is given
by the given equation.

f (xi) = θ0g(xi)+ θ1l(xi)+ θ1s(xi)+ ε(xi), (36)

where θ0, θ1, and θ2 express unknown linear coefficients.
ε(·) determines the random-error map of the model, applying
the Gaussian density ε(xi) ∼ G(0, σ 2). The optimization
procedure based on Sparsity, Density and Multimodality has
been used by the authors to impulsive noise from noisy
image. By employing the semisupervised cost function φ, the
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model (36) is redefined as

f ∗ = argmin
f
{φ}. (37)

The effect of the above cost function is to divide the model
into three different stages for the solution.

In the first stage, φ is used to denoise the image corrupted
by high-density noise. The functions φ1, φ2, and φ3 are given
as follows.

φ1(f ) =
∑
∀xi∈xnf

∣∣xi − f (xi)∣∣. (38)

φ2(f ) =
∑
∀xi∈xn

γi,j
(∣∣f (xi)− f (xj)∣∣). (39)

φ3(f ) =

∣∣∣∣ 1w1

∑
∀xi∈xnf

xi −
1
w2

∑
∀xi∈x

f (xi)

∣∣∣∣. (40)

On the second stage, the number of images considered to
be noise-free in the large-volume image set D is limited.
Correspondingly, images identified to be clean in the training
set are extremely sparse. In this situation, the fourth term of
φ4 is given as under.

φ4(f ) =
∑
∀x∈Dn

∑
∀xi∈x

∣∣∣∣xi − f (xi)∣∣∣∣. (41)

In the third stage, the images in the large-volume image
set D may be contaminated with various types of noises.
Accordingly, the aforementioned property of average inten-
sity shows that the average intensity of the reconstructed
image set is similar to that of the clean pixels in the corrupted
image set. This is shown in the fifth term of the stated cost
function φ5 is given as follows.

φ5(f ) =

∣∣∣∣ 1w3

∑
∀x∈D

∑
∀xi∈x

nf

xi −
1
w3

∑
∀x∈D

∑
∀xi∈x

xf (xi)

∣∣∣∣. (42)

So the combination of all the equations results in total cost
function and is given by the formula.

φ(f ) = φ1(f )+ λφ2(f )+ φ3(f )+ φ4(f )+ φ5(f ). (43)

For more information, see [55].

E. WEIGHTED COUPLE SPARSE REPRESENTATION WITH
CLASSIFIED REGULARIZATION FOR IMPULSE NOISE
REMOVAL (M7)
Chen et al. [56] proposed a model for image restoration
having impulsive noise which is given as under.

(â, D̂, Ŷ ) = arg min
a,D,Y

{∑
i,j

1
2

∥∥∥Ri,jW ⊗ (Ri,jX − Dai,j)∥∥∥2
2

+

∑
i,j

1
2

∥∥∥Ri,j(I −W )⊗
(
Ri,jY − Dai,j

)∥∥∥2
2

+
λ1

2

∥∥∥W⊗ (Y−X )
∥∥∥2
2
+λ2

∥∥∥W̄ ⊗ (Y − X )
∥∥∥
1

}
,

s.t ‖ai,j‖0 ≤ L, (44)

where X shows the corrupt image, W is the weighted matrix
generated by a noise detector, D ∈ Rn×K (n < K ) is a
redundant dictionary,Ri,j matrix that is used to extract the
(i, j)th

√
n×
√
n patch from the image, a is the representation

coefficient expected to be sparse, and L is the sparse ratio.
By alternating minimization method is utilized to solve the
model (44) and is given by the given equation.

Ŷ = argmin
Y ,a

{∑
i,j

1
2

∥∥∥Ri,j(I −W )⊗
(
Ri,jY − Dai,j

)∥∥∥2
2

+

∑
i,j

1
2

∥∥∥Ri,jW ⊗ (Ri,jX − Dai,j)∥∥∥2
2

+
λ1

2

∥∥∥W ⊗ (Y − X )
∥∥∥2
2

}
, s.t ‖ai,j‖0 ≤ L.

s.t ‖ai,j‖0 ≤ L. (45)

Similarly, the resultant restoration image can be calculated
pixel by pixel by the given formula.

yi,j =


xi,j if wi,j = 1
zi,j
mi,j

if wi,j = 0

.

For more information, the researchers are refereed to [c] [56].
Experiment 7: In this experiment, we examine the recon-

struction performance of the suggested meshless methods
M2 with the latest state-of-art schemes M5, M6, and M7,
respectively.

In the first example, the two schemesM2 andM5 are exam-
ined concerning image restoration performance on the real
images ‘peppers’ and ‘Lena’ images containing impulsive
noise for the same high noise levels and parameter values
as chosen in [54]. All the reconstruction results are given
in Figures 18 and 19, and displayed in Table 3, respectively.
We can observe from the Figures 18 and 19, and Table 3, that
the visual quality of image recovery (PSNR values) perfor-
mance of the proposed meshless algorithm M2 is far better
than scheme M5 concerning image restoration (PSNR val-
ues), minimization of staircase effect, textures and recovering
edges. The importance of M2 for best reconstruction out-
comes than M5 is due to the MQ-interpolation process which
is responsible for edges preservation. Also due to the lack
of dependence on a mesh or integration procedure and the
Euclidian distance between a noisy pixel and other non-noisy
pixel values applications used in the proposed schemeM2 are
responsible for the unique smooth solution which results for
qualified restoration results.

In the second example, the recommended scheme M2 is
further examined with scheme M6 for the same high noise
levels, image size, and parameters picked in [55] and are
exhibited in Figures 20,21,22, and 23, and Table 4, respec-
tively. In this illustration, repeatedly the suggested algorithm
M2 produces more reliable restoration results than algo-
rithm M6 due to the meshless utilization as discussed in the

VOLUME 8, 2020 88253



M. A. Khan et al.: Total Variation Filter via Multiquadric RBF Approximation Scheme for Additive Noise Removal

FIGURE 18. Restored results on Lena; (a) Original image; (b) Noisy image with salt and paper noise σ2 = 50; (c) Reconstructed
image by M5; (d) Reconstructed image by M2.

FIGURE 19. Obtained results on lena; (a) True image; (b) Noisy image with 50 percent impulse noise; (c) Resultant image by M5;
(d) Resultant image by M2.

TABLE 3. Comparison of the two algorithms regarding PSNR.

FIGURE 20. Obtained results on boat; (a) Real image; (b) Noisy image with 80 percent impulsive noise; (c) Reconstructed image
by M6; (d) Reconstructed image by M2.

FIGURE 21. Denoised results on clock; (a) Original image; (b) Noisy image with 90 percent impulsive noise; (c) Restored image
by M6; (d) Restored image by M2.

above-mentioned case first. More importantly, the homoge-
neous regions in the color images are also recovered sharply
in this experiment.

In the third example, again the reconstruction performance
of the meshless schemeM2 is excellent over schemeM7 [56]
in image restoration completion presented in Figures 24, 25,
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FIGURE 22. Restored results on color bird; (a) True image; (b) Noisy with 80 percent impulsive noise; (c) Denoised image by M6;
(d) Obtained image by M2.

FIGURE 23. Reconstructed results on color barbara; (a) True image; (b) Noisy image with 90 percent impulsive noise; (c) Restored
image by M6; (d) Restored image by M2.

FIGURE 24. Obtained results on a part of Peppers; (a) True image; (b) Noisy image with with 50 percent impulsive noise;
(c) Denoised image by M7; (d) Denoised image by M2.

TABLE 4. Comparison of the two algorithms regarding PSNR.

and 26, and displayed in Table 5, respectively. Repeatedly
the meshless applicability of meshless scheme makes the
meshless scheme M2 more active in image restoration in all
perspectives than M7.

To summarize this experiment, we can observe that the
achievements of image restoration concerning image restora-
tion (PSNR values), minimization of staircase effect, tex-
tures and recovering edges of the recommended meshless
scheme M2 is stable than M5, M6, and M7 due to the
meshless application of MQ-RBF approach used in proposed
method M2.
Experiment 8: In this experiment, we have imple-

mented the recommended algorithm M2 for varying additive
Gaussian noise levels on 15 randomly selected images from
the Berkeley images database BSD500 for image restoration

TABLE 5. Comparison of the two algorithms regarding PSNR.

in terms of the average PSNR SSIM values. All the infor-
mation concerning the average PSNR and SSIM values is
recorded in Table 6.

VI. SENSITIVITY ANALYSIS OF PARAMTERS
In this section, we will briefly discuss the selection of shape
parameters shape parameter c and fitting parameter λ used
in the proposed meshless scheme and their impact on image
restoration. Since from experimental results, we can say
the best-selected value chosen in meshless method M2 is
quite complicated. Nevertheless, its best-selected values are
adjusted and tuned according to the noise variance, image
size, etc. It has been noticed that the range of values allowed
is: c ∈ [0.37,0.79] and λ ∈ [0.245,0.502], for natural and
artificial images. This shows that both the parameters c and λ
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FIGURE 25. Reconstructed results on a part of barbara; (a) True image; (b) Noisy image with 50 percent impulsive noise;
(c) Obtained image by M7; (d) Obtained image by M2.

FIGURE 26. Denoised results on a part of barbara; (a) True image; (b) Noisy image with 80 percent impulsive noise; (c) Obtained
image by M7; (d) Obtained image by M2.

TABLE 6. The average SSIM and PSNR values of 15 images chosen from the Berkeley image database BSD500 by proposed meshless scheme M2 for
different additive Gaussian noise levels.

TABLE 7. Comparison in percentage change in PSNR value of real
‘Cameraman’ image of size (3602) for percentage increase in best
selected values of parameters used in M2.

TABLE 8. Comparison in percentage change in PSNR value of real
‘Cameraman’ image of size (3602) for percentage decrease in best
selected values of parameters used in M2.

used in M2 are valuable for enhancing the denoising perfor-
mance. Likewise, the range of iterations to improve the PNSR
results is [20, 90]. Thus, the availability of information about
the uncertainty of the denoising result on the user-chosen

parameters is helpful to avoid incorrect decisions. For brief-
ness, Tables 7 and 8 shall be denoted by

1. (•)% increase − ↑, (•)% decrease − ↓ .
2. For instance (0.22) ↓ denotes 0.22% decrease in PSNR.
3. (0.27) ↑ denotes 0.27% increase in PSNR.

VII. CONCLUSION
In this article, the meshless collocation scheme was intro-
duced in which DTV filter was applied in combination with
Multiquadric RBF to solve nonlinear equation for the smooth
solution and to remove the additive noise from the images.
The proposed meshless scheme was investigated on various
real and artificial images grayscale and color artificial images
and the achieved results were compared with the existing
traditional state-of-art schemes.

Our numerical experiments revealed that the proposed
methodology produced not only good quality of image
restoration but also sharply resolved the discontinuities and
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improved overall accuracy. It was observed that the perfor-
mance of themeshless schemewas better in image restoration
quality (PSNR, SSIM, SNR, minimization of staircase effect
and preservation of edges, texture, and homogeneity), itera-
tion numbers, and computation time required for convergence
compared with existing methods. The parameter sensitivity
analysis was also discussed.
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