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ABSTRACT Connected and automated vehicles (CAVs) can improve transportation safety and efficiency
based on vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. However, there are
potential cyber threats to the communication systems via on-board unit equipped in CAVs and road-side unit.
Based on existing traffic flow models, we design an evaluation framework for cyber-attacks on CAVs, and
further investigate the impact of proportion of cyber-attacked vehicles, cyber-attack severity, cyber-attack
range and traffic demand. Moreover, performance of the transportation system is analysed based on four
indicators, including efficiency, safety, emissions and fuel consumption. The numerical simulation results
show that with the increase of cyber-attacked vehicles and higher cyber-attack severity, the negative impact
on traffic flow gradually becomes notable with lower capacity, higher risk of rear-end collision, more air
pollutants and fuel consumption. In addition, it may lead to accidents and inefficient traffic operations if
cyber-attacks occur on position rather than speed, and thus the position-attacked traffic system consumes
more energy and emits more pollutants. The findings of this study provide useful information for the
prediction of future cyber-attacked traffic, comprehensive evaluation of transportation systems, as well as
management of automated highway systems from the perspective of network security.

INDEX TERMS Cyber-attack, cooperative adaptive cruise control, connected and automated vehicles, safety
level.

I. INTRODUCTION
In recent years, connected and automated vehicles (CAVs)
has been one of prospective applications within the field of
intelligent transportation systems (ITS) in the future [1]–[3].
To predict potential emergencies about CAVs, simulation
experiments designed for different traffic scenarios are a
fundamental step before launching mature products into the
market. To date, many car-following models have been pro-
posed to describe characteristics of traffic flow from micro-
scopic perspective [4]–[8]. The adaptive cruise control (ACC)
system is one of the most popular applications designed for
the control of longitudinal behaviors [9]–[12]. In addition,
as an enhanced version of ACC, the cooperative adaptive
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cruise control (CACC) system can notably smooth hazardous
traffic flow and improve traffic efficiency [4], [11], [13]–[19].
Li et al. developed an infrastructure-to-vehicle integrated
system that incorporated both ACC and variable speed
limit (VSL) to reduce rear-end collision risks on free-
ways [20]. Shladover et al. analyzed the advantages of
CACC based on vehicle-to-vehicle (V2V) communication,
including higher accuracy, faster response, and shorter gaps,
resulting in enhanced traffic flow stability and possibly
improved safety [17], [18], [21], [22]. In field test, sev-
eral projects have been conducted for the system designs
as well as empirical data analysis [18], [21], [23]. For
example, the California Program on Advanced Technology
for the Highway (PATH) attempted to design longitudi-
nal controllers, providing an ideal basis for the following
studies [11], [13], [14], [21], [24]–[28].
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However, advanced technologies always bring both
opportunities and challenges. In the transportation field,
the opportunities mean improvement of travel efficiency and
traffic safety, while the challenges represent risk of cyber-
attack, cost increase and moral issues when crashes hap-
pen [29]–[33]. In this paper, we focus on the cyber-attack via
communications between on-board units and road-side units.
In the previous theoretical researches, simulations have been
extensively conducted to demonstrate the safety and stability
of the cyber-attacked system [3], [12], [14], [31]–[41]. Partic-
ularly, Li et al. evaluated the influence of slight cyber-attacks
on longitudinal safety of CAVs based on nine-vehicle exper-
iments [14]. Wang et al. proposed an extended car-following
model and analyzed the linear and nonlinear stability of
the traffic flow under cyber-attack [40]. Amoozadeh et al.
demonstrated that insider cyber-attacks could cause signifi-
cant instability of CACC vehicle stream based on simulation,
and then put forward several countermeasures [34]. In the
aforementioned works, CACC is chosen as the only longi-
tudinally automation control system for CAV simulations.
Besides, Petit and Shladover did the first investigation of the
potential cyber-attacks specific to automated vehicles with
their special needs and vulnerabilities [3]. Jia et al. systemat-
ically conducted a survey on platoon-based vehicular cyber-
physical systems [42]. Reilly et al. presented a controllability
analysis of freeways with coordinated metering to evaluate
impact of control system cyber-physical attacks [43]. Gen-
erally, much attention has been paid to the communication
system and safety analysis, and thus the inherent character-
istics of cyber-attack need further explorations. Also, more
investigations should be conducted on its impact on traffic
flow stability, efficiency, emissions and fuel consumption.

In this paper, we differentiate from the previous studies and
emphatically address the following questions:

(1) What factors influence the traffic system under
cyber-attack?

(2) What is the difference between cyber-attacks on
position and speed?

(3) How sensitive is the traffic system to different
cyber-attacked scenarios?

The remainder of this paper is structured as follows:
Section II describes the methodology, including the eval-
uation framework for cyber-attacked traffic and simulation
experiment designs. In Section III, the impact of important
factors is analyzed, such as object of cyber-attack, proportion
of cyber-attacked vehicles, cyber-attack severity. Section IV
presents numerical simulation results to indicate the char-
acteristics of the traffic flow under cyber-attack. Sensitivity
analysis of cyber-attack range and traffic demand is con-
ducted in Section V. Finally, some conclusions are summa-
rized in Section VI.

II. METHODOLOGY
A. FRAMEWORK
The framework for evaluation of cyber-attack on traffic flow
is shown in Fig. 1. It consists of four steps:

FIGURE 1. Framework of the study.

• Step 1: Model the cyber-attacked traffic flow. To sim-
ulate longitude control on CAVs, CACC model is
used to characterize the car-following behaviors. More-
over, cyber-attack on traffic flow stability is analyzed
from a theoretical prospective, and then traffic scenar-
ios are designed to provide a basis for cyber-attack
measurement.

• Step 2: Based on CACC model and analysis of traf-
fic flow stability, the microscopic simulation testbed is
established to imitate potential cyber-attacks on CAVs.
Cyber-attacks on position and speed are respectively
considered. Also, proportion of cyber-attacked vehicles
and cyber-attack severity are selected as independent
variables throughout the experiment.

• Step 3: Numerical simulations are conducted to display
the performance of a basic freeway bottleneck in travel
efficiency, traffic safety, emissions and fuel consump-
tion.

• Step 4: Cyber-attack range and traffic demand are two
important parameters, which the transportation system
may be sensitive to. Therefore, sensitivity analysis is
conducted to investigate their impact on simulation
results.

B. TRAFFIC FLOW MODEL
It is well known that the technology of CACC is the most rep-
resentative applied in CAVs’ longitudinal control. The Cali-
fornia Program on PATH developed a CACC car-following
model and calibrated it using production cars equipped with
PATH-Nissan High-Level Controller, which is one of few
realistic models based on experimental data [13], [14], [17],
[21], [22]. The CACC car-following model is expressed as
follows:

vsv(t) = vsv(t −1t)+ kpek (t)+ kd ėk (t) (1)

asv(t) = (vsv(t)− vsv(t −1t))/1t (2)

xsv(t) = xsv(t −1t)+ vsv(t)1t (3)
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where vsv, asv and xsv are speed, acceleration and position of
the subject vehicle, respectively.1t is the time step. kp and kd
are themodel coefficients and gains for adjusting the time gap
between the subject vehicle and the preceding vehicle. ek is
the time gap error and ėk is the derivative. They are described
by the following:

ek (t) = xp(t −1t)− xsv(t −1t)

− thwvsv(t −1t)− Lveh (4)

ėk (t) = vp(t −1t)− vsv(t −1t)− thwasv(t −1t) (5)

where xp and vp are the position and speed of the preced-
ing vehicle, respectively. Lveh is the vehicle length. thw is
the desired time gap of the CACC controller. The units for
distance, speed, acceleration and time are m, m/s, m/s2 and s,
respectively. According to the field tests, the parameters are
calibrated as follows: 1t = 0.01 s, thw = 0.6 s, kp = 0.45,
kd = 0.25.

C. CYBER-ATTACK ON TRAFFIC FLOW STABILITY
CACC is considered as a key enabling technology to automat-
ically regulate the inter-vehicle distances in a vehicle platoon-
ing while maintaining the string stability. However, potential
cyber-attack may have negative impact on the traffic flow
stability [10], [19], [39], [41], [44]. In this case, the stability is
theoretically investigated in terms of cyber-attacked position
and speed. Similarly, the CACC model can be written as:

v̇ =
kp (h− s0 − Lveh − thwv)+ kd1v

1t + kd thw
(6)

where h denotes the space headway. 1v is the speed differ-
ence between the subject vehicle and the preceding one. The
other parameters have the same meanings defined above. (6)
can be written for the cyber-attacked condition:

f =
kp (αh− s0 − Lveh − thwv)+ kdβ1v

1t + kd thw
(7)

where f represents the general expression of traffic flow
model. α and β denote the severity of cyber-attack on position
and speed, respectively. Then, the three partial differentials of
the model with respect to v,1v, and h at the equilibrium state
are presented as follows:

f v = −
kpthw

1t + kd thw
(8)

f 1v =
βkd

1t + kd thw
(9)

f h =
αkp

1t + kd thw
(10)

The value of stability conditionF reflects the general insta-
bility condition of car-following model with the acceleration
function, and it is calculated as (11). The proof follows the
Lyapnuov stability theory and hence is omitted. The readers
can refer to Wilsoon [44] for a complete proof.

F =
1
2

(
f v
)2
− f vf 1v − f h (11)

FIGURE 2. Impact of cyber-attack on traffic flow stability.

The traffic flow is instable if the following equation holds.

F < 0 (12)

During numerical simulation, the value of α and β is set to
range from 0 to 2, and the result of stability in cyber-attacked
traffic is shown in Fig. 2.

In Fig. 2, the coordinate origin of x-axis denotes no cyber-
attack. Obviously, the distribution map is divided into three
parts and the middle part represents stable region both for
position- and speed-attacked scenarios. Specifically, the sta-
bility condition of the CACC model holds when the term of
speed is cyber-attacked by 47.3%. In this case, the subject
vehicle has little space to avoid rear-end collision because
of fake information collected from the leading CAV. For the
position, if it is overestimated by over 44.4%, the traffic
flow starts to become unstable. Therefore, underestimation
of speed or overestimation of position can lead to traffic
flow instability, and the lower value 44.4% is taken as the
threshold. This is the reason why the value of cyber-attack
severity is below the threshold during following experiments.

D. SIMULATION EXPERIMENT DESIGN
The topology structure of communications between CAVs
under or without cyber-attacks is expressed in Fig. 3(a). If one
CAV is under cyber-attack, it will transmit imprecise data to
the following vehicle. In this case, we need to answer three
important problems:

(1) How many CAVs are attacked?
(2) What is the quantitative index of cyber-attack severity?
(3) When or where do the cyber-attacks on CAVs start and

finish?
For the first issue, we test different proportions of vehicles

under cyber-attack and evaluate their impacts on traffic flow.
Besides, another relevant variable is traffic demand, which
is analyzed at the end of Section V. To handle the sec-
ond problem, we define the fluctuation ratio of position or
speed as cyber-attack severity. For example, if the speed
of the subject vehicle is 20 m/s and the received imprecise
information by the following vehicle is 16 m/s, the current
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FIGURE 3. Schematic illustration of the study environment. (a) Communications between CAVs under or without
cyber-attacks, and (b) traffic scenario and its coordinate system.

cyber-attack severity is 20%. Because each road-side unit is
responsible for information transmission within a fixed area,
a CAV which enters the cyber-attack area has a chance to be
attacked, as shown in Fig. 3(b). Segment A and D are without
cyber-attacks, while Segment B and C are cyber-attack areas.
We assume that positions and speeds of CAVs in Segment A
and D are iterated only by the car-following model. Corre-
spondingly, those in Segment B and C fluctuate randomly at
a certain severity, i.e. 0.1%, 0.5%, 1%, 2%, 4%, 8%, 16%,
32%. According to the findings in Fig. 2, the specific value
of cyber-attack severity ranges from -44.4% to 44.4%, which
ensures the traffic flow stability. For example, if the severity
is set to 8%, the speed or position will be either over-or
underestimated by 8%.

During simulations, Segment B and C are decided by x1,
x2 and x3. x2 is the central position of attack range and it is
a constant 1300 m. The interval of [x1, x2] identically equals
to [x2, x3]. Therefore, we can easily control the attack range
by changing radius of [x1, x3] during each experiment. The
radius of attack range is limited by technology development
in communication. In this paper, 300 m, 500 m and 700 m
are chosen to represent different levels of communication
technology [13], [45]. The default value 300 m reflects the
current level.

For the other parameter settings, the ranges of speed
and acceleration are [0, 30 m/s] and [−4 m/s2, 2 m/s2],
respectively. In addition, the lengths of road and vehicle are
L = 3000 m and Lveh = 5 m. Each simulation period is
1 h, and we repeat 10 times for average results to reduce the
random errors.

III. EVALUATION INDEX
A. ROAD CAPACITY
The pipeline capacity is defined as the maximum 15-minute
moving average flow rate observed upstream the cyber-
attacked flow. In this paper, the measurement point for road
capacity is chosen at x = 2500 m in Fig. 3(b). The exper-
iments begin with simulating a constant and relatively low

traffic volume for one hour. If the freeway remains free-
flowing, then subsequent simulations are conducted with
slightly higher volume input (e.g., plus 1000 veh/h), until the
highest observed 15-minute moving average flow no longer
increases as the input became larger [21]. The capacity is
finally determined based on 10 replications with different
random seeds.

C = q15min × 4 (13)

where C is road capacity and q15min is the highest 15-minute
flow.

B. SURROGATE SAFETY MEASURE
Rear-end collision risk indexes (RCRI) establish relation
between longitudinal safety and vehicle dynamic trajectory
data. Previously, various indexes have been proposed and
extensively applied [15], [46]. In this study, we utilize a RCRI
based on safe stopping distance, which has been widely used
in previous researches [4], [11], [20], [47], [48].

Assume that the preceding vehicle takes an emergency
stopping maneuver with the maximum deceleration rate. The
subject vehicle has to react and brake to avoid a collision.
If the stopping distance of the preceding vehicle is larger than
that of the subject vehicle, it is safe; otherwise it is dangerous.
Fig. 4 illustrates the safe stopping distance.

Specifically, the RCRI index based on safe stopping dis-
tances is calculated as follows:

SSDp = h+
v2p
2dm

(14)

SSDsv = vsvtd +
v2sv
2dm

(15)

RCRI =

{
0 if SSDp > SSDsv
1 otherwise

(16)

MRCRI =

T∑
t=1

N∑
i=1

RCRI

T∑
t=1

N∑
i=1

flag

(17)
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FIGURE 4. Rear-end collision risk index.

TABLE 1. Rear-end collision risk criteria.

where SSDp and SSDsv are safe stopping distances of the pre-
ceding and subject vehicles, respectively. dm is the decelera-
tion rate and td is the time delay. In this study, a deceleration
rate of 3.4 m/s2 is adopted and a time delay of 0.1 s is used
for CAVs according to previous studies [6], [17]. T is the total
time and N is the total vehicles. flag is used as the mark of
number.MRCRI is the average RCRI of all space-time points.

Rear-end collision risk criteria for freeway safety can be
stated in terms of the average RCRI, as shown in Table 1 [46].
The clustering results are based on a tremendous amount of
data investigated from freeways.

On the one hand, Level A is considered to be very safe
traffic conditions with lowMRCRI . On the other hand, Level F
would describe the traffic at the highest risk on freeway when
MRCRI exceeds 0.510. Besides, CAVs may choose continu-
ous emergency braking operations under this level, and such
unsafe traffic conditions can lead to the highest possibility of
subsequent accident occurrences.

C. EMISSION AND FUEL CONSUMPTION
Table 2 lists emission and fuel consumption rates for general
cars under four typical traffic conditions [49]. There are
relatively small differences between HC, NOX, CO2, and
fuel consumption under three conditions, including free flow,
transition and congestion. Comparedwith the other three con-
ditions, work zone shows the lowest emission rates for HC,
CO, and NOX. On the contrary, the lower speed in work zone
brings about higher CO2 emissions and fuel consumption.
The formula for calculating emissions and fuel consump-

tion is as

M =
∫ L

0
f (v)dx (18)

TABLE 2. Summary of emission factors and fuel consumption rates.

whereM denotes the weight of a certain emission or fuel con-
sumption. It is an integral of a function from the starting point
to the ending of the road. L is the road length and f (v) is a
function of speed, which can be obtained in Table 2. Because
there are only four discrete values for estimation, a linear
interpolation of the speed within the range is applied to
calculate the total weight of emissions and fuel consumption.
In addition, if the speed exceeds the maximum or minimum
threshold, an effective and convenient solution is taking on
the boundary value.

IV. NUMERICAL SIMULATION RESULTS
In this section, we design extensive numerical simulations to
evaluate impacts of cyber-attacks on traffic flow composed of
all CAVs. P, S, R and Q, which respectively stand for propor-
tion of attacked vehicles, cyber-attack severity, cyber-attack
range and traffic demand, are selected as study objects. Their
influences on the traffic system are tested to predict potential
cyber-attacked scenarios in the future, i.e., efficiency, safety,
emission and fuel consumption.

A. TRAVEL EFFICIENCY
We first investigate the impacts of proportion of vehicles
attacked on positions, as shown in Fig. 5. The proportion P
varies from 0 to 100%with 20-percentage intervals. The other
parameters are set as follows: S = 2%, R = 300 m and
Q = 1000 vehicles per hour (vph).
Obviously, with the increase of proportion of attacked

vehicle, the average speed decreases gradually, especially in
the cyber-attack area. When the proportion is less than 60%,
CAVs travel along the road at almost free-flow speeds. The
slight congestions caused by speed drop behaviors exist only
in a short-range section from 1000 m to 1600 m. Such an
oscillatory jam always lasts for several minutes until the next
jam is observed. However, when the proportion increases to
60% or a higher percentage, CAVs in the cyber-attack area
start to slow down, and this delay triggers heavier congestions
caused by position fluctuations. Each oscillatory jam tends
to be close to the next one and gather into a mass. Then,
deceleration movements become more frequent. Meanwhile,
the phenomenon of speed reduction is more and more evi-
dent, as presented in Fig. 5(d)-(f). It is worth noting that the
congestions in Fig. 5(f) are much heavier than the others.
On the one hand, the yellow and red color lumps indicate
significant speed drops, which result in queues and delay.
On the other hand, the severe congestions propagate upstream
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FIGURE 5. Spatiotemporal dynamics of average speed with position
attacked. (a) P = 0, as a reference group, (b) P = 20%, (c) P = 40%,
(d) P = 60%, (e) P = 80%, and (f) P = 100%.

with a certain speed, and the influence area even exceeds
1000 m. From this point of view, practical suggestions for
freeway control and management are enforcing anti-cyber-
attack abilities and making sure less vehicles under attack if
it is unavoidable.

The similar experiments are conducted on the traffic sce-
nario with speed attacked, as shown in Fig. 6. It is obvious that
vehicles keep a high speed when the proportion of attacked
vehicles is less than 80% during the whole simulations. Even
though the proportion rises to 80%, the congestions caused
by attacked speeds are still rare and dissipate quickly in a
short time. When the proportion is 100%, the congestions
form upstream of the cyber-attack area and have few nega-
tive effects on its downstream area. Notice that the average
speeds of CAVs in the severest congestions are approximately
10 m/s, as shown in Fig. 6(f), which leads to relatively less
delay than other conditions (Fig. 5(d)-(f)). Generally, from
the perspective of influence area, the range of speed reduc-
tion by cyber-attack is around [1000 m, 1300 m]. Compared
with the position-attacked traffic, the scenario with the same
proportion of speed-attacked vehicles performs much better
both in speed drops and influence area of congestions.

Table 3 presents the impacts of cyber-attack severity and
proportion of attacked vehicles on speeds. It is apparent that
with the increase of severity, the average speeds decrease
remarkably when the CAVs’ positions are attacked. On the
contrary, the amplitudes of oscillation in average speeds

FIGURE 6. Spatiotemporal dynamics of average speed with speed
attacked. (a) P = 0, as a reference group, (b) P = 20%, (c) P = 40%,
(d) P = 60%, (e) P = 80%, and (f) P = 100%.

under speed-attacked conditions are much smaller, especially
with small proportions of attacked vehicles. In terms of spe-
cific values, the speed ranges of the traffic attacked on speed
are nearly between one-fourth and one-third of that under
position-attacked conditions. For instance, the best case is
the condition with the lowest severity and the smallest pro-
portion of attacked vehicles. And then, the speed ranges for
position- and speed-attacked traffic are−2.25% and−0.81%,
where the latter is approximately one-third of the former.
In addition, the biggest change of position-attacked traffic is
over−55% while that is less than−20% with speed attacked
among all conditions summarized in Table 3. So, it is a quan-
titative proof that the transport system controlled by CACC
has an inherent function of defending cyber-attacks on speed.

Fig. 7 shows the road capacity changes with proportion of
cyber-attacked vehicles and cyber-attack severity. The sever-
ity level is 2% in Fig. 7(a) and 50% of vehicles on are consid-
ered to be cyber-attacked in Fig. 7(b). Basically, the capacity
keeps dropping when more vehicles are cyber-attacked or
the severity becomes higher. However, the difference in the
traffic scenarios with cyber-attacked position and speed can
be clearly observed. Specifically, the traffic reaches higher
capacity if the speed is on cyber-attack, and the jerk tends to
be zero when the proportion of cyber-attacked vehicles is over
60%, as shown in Fig. 7(a). However, during the investigation
of cyber-attack severity in Fig. 7(b), two values of the jerk are
both positive, which indicates that the transportation system
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TABLE 3. Statistics summary of speed reductions caused by cyber-attacks on position and speed. Six values of cyber-attack severity and three
proportions of attacked vehicles are selected to evaluate the impacts on speeds. The reference group is the stable traffic flow without cyber-attack.

FIGURE 7. Impact of cyber-attack on road capacity.

TABLE 4. Changes of risky RCRI.

is more sensitive to the severity, especially when its value
exceeds 4%.

B. SAFETY ANALYSIS
Taking the position-attacked scenario with 0.1% severity as
reference group, changes of risky RCRI are summarized
in Table 4. With the increase of severity, cyber-attack pro-
duces at least a 4-fold decrease in terms of RCRI when
there is only 10% of vehicles are cyber-attacked. If all CAVs
are on cyber-attack, changes of risky RCRI range from
27.5 to 79.4 times when cyber-attack severity increases from
0.1% to 32%. Generally, the higher the cyber-attack sever-
ity, the worse the traffic condition. Similarly, more attacked
vehicles inevitably cause the serious deterioration of safety
condition. For example, the cyber-attack severity increases to

0.5% or more and the proportion of cyber-attacked vehicles
reaches 60%, the times of RCRI changes are all more than
50 in comparison with the reference group.

Based on RCRI values, the evaluation of safety level is
distributed in Fig. 8. Cyber-attack severity is tested from
0 to 32%, as shown on the abscissa axis. The average safety
levels of all CAVs with cyber-attacked position are summa-
rized in Fig. 8(a), and Fig. 8(b) presents the traffic condition
only under speed-attack. The most intuitive performance is
that Level E/F is observed with high-proportion of cyber-
attack vehicles and high-level severity, since more attacked
CAVs with high-level severity result in lower speeds. In this
case, the following vehicles has less time to react in response
to sudden deceleration of preceding vehicles. Fortunately,
the traffic is still at lower risk, and safety level remains A
in speed-attack scenarios, as shown in Fig. 8(b). Additionally,
safety of the worst condition is assessed as Level C. It may be
an acceptable result because of rare accidents under C-level
driving conditions.

Moreover, the critical value of cyber-attack severity for
position is around 0.5% while 8% for speed. It is also directly
proved that the transport system is much more sensitive to
cyber-attacks on position than speed, which is consistent with
the above findings. For example, when the proportion of
attacked vehicles is 50% and the cyber-attack severity is 8%,
average safety levels of the traffic under position and speed
attacks are approximately C and A, respectively. In regard
to the ordinate axis, boundary points for the two scenarios
are P = 40% and P = 70%, which are similar to the
phenomena drawn in Fig. 5 and Fig. 6. Moreover, the safety
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FIGURE 8. Impact of cyber-attack on safety level.

TABLE 5. Summary of pollutant emissions and fuel consumption.

levels in Fig. 8(b) rise rather less than that in Fig. 8(a) with
the same amplitude in proportion of attacked vehicles.

C. RESULTS OF EMISSIONS AND FUEL CONSUMPTION
Nowadays, there is no doubt that traffic-related pollutants
have direct impact on the globe climate and public health.
Table 5 shows four main pollutants emitted by vehicles and
fuel consumptions in 11 groups of traffic scenarios. Although
tiny differences of emission rates are observed in Table 2,
the total emission of four pollutants and fuel consumption
keep monotonically decreasing during one type of exper-
iments. The scenarios designed for various proportions of
cyber-attack vehicles have a similar trend to that with differ-
ent cyber-attack severities.

Specifically, emissions of HC and NOx are less than
1 g/veh while the mass CO2 is always more than 520 g/veh.
So, CO2 is absolutely the main pollutant of vehicles. From
the perspective of sum, the emission is increased by 70 g/veh
when the proportion of cyber-attacked vehicles rises from
20% to 100%. The same phenomena can be observed in

FIGURE 9. Cyber-attack impact on emission and fuel consumption.

FIGURE 10. Impact of cyber-attack range on average speeds.
(a) Cyber-attacks on positions, and (b) cyber-attacks on speeds. AVG on
the abscissa axis stands for average, and each of the three horizontal
lines in the sub-graphs represents the average level.

the test for cyber-attack severity. However, only 10 g/veh
fuel consumption compensates for cyber-attack. For exam-
ple, the fuel consumption increases from 189.54 g/veh to
198.31 g/veh when the proportion of cyber-attacked vehicles
is increased by 80%. The gap for fuel consumptions in two
traffic scenarios is only 8.77 g/veh. Therefore, the transporta-
tion system still maintains relatively stable performance in
total emissions and fuel consumption, although cyber-attack
has negative but limited impact on these indexes.

To this end, further investigations are conducted to assess
the changes of emissions and fuel consumption due to cyber-
attack. As shown in Fig. 9, whether the cyber-attack occurs
on position or speed, the magnitudes of increase are generally
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FIGURE 11. Distribution of safety level along the roadway.

below 20%. Obviously, changes of fuel consumption increase
faster than emissions, meanwhile the gap widens gradually.
Additionally, the maximum increases of fuel consumption
exceed 16% both in the tests for two separate groups. In con-
trast, there is a 2%-13% increase during emission evaluation.
Compared with the values of proportion of cyber-attacked
vehicles P and cyber-attack severity S, the magnitudes of
increase in emissions and fuel consumption are relatively
smaller.

V. SENSITIVITY ANALYSIS
Sensitivity analysis is provided to study the effect of the
parameters on simulation results. The parameters include
cyber-attack range and traffic demand, which may affect both
efficiency and safety of the transportation system. So, it needs
a further exploration. Emissions and fuel consumption are not
chosen as evaluation indexes in this section because the mag-
nitude of changes caused by cyber-attack range and traffic
demand is stably less than 20%, which is proved by the above
experiments.

A. CYBER-ATTACK RANGE
Signal transmission is one of core technologies in the CAV
industry, and the transmission range for communications
between CAVs is the key performance indicator. We assume
that if one road-side unit is cyber-attacked, there is a possi-
bility of being attacked for all CAVs within the transmission
range. On this basis, cyber-attack ranges are equal to the
transmission distances. Three typical values are chosen to
evaluate the impacts of cyber-attack range on average speeds,
as shown in Fig. 10. They respectively represent the current,
short-term and long-term levels in transmission technology.

Based on the above simulation results, we can draw sev-
eral conclusions. Firstly, the longer the cyber-attack range,
the lower the average speeds. It is interesting that improve-
ment in transmission technology results in more negative
effects on travel efficiency. Because long transmission dis-
tance leads to a large amount of CAVs under attack, it is
reasonable that the average speeds decrease with the increase
of cyber-attack range. Secondly, the traffic flow is more sen-
sitive to the attacked position than speed, which is consistent

with the above-mentioned experiments. Judging from the
average level, CAVs in speed-attacked traffic are faster than
that in position-attacked by 5 m/s-10 m/s. This is a big
advantage in traffic efficiency and transport economy in terms
of saving time. So, from a long-term perspective, improving
the security of signal transmission becomes more vital in
the future. Thirdly, the critical severity for distinguishing the
speeds from the average is different from each other. Taking
Fig. 10(a) as an example, we can easily find that themaximum
severity of speeds below average for three traffic scenarios
with different cyber-attack ranges is 2%, 2% and 4%, respec-
tively. Therefore, avoiding severe cyber-attack on traffic flow
becomes highly important when advanced communication
technologies help more CAVs improve cooperation within a
longer transmission range.

Identifying unsafe areas provides theoretical guidance for
the management of automated highway systems in the fore-
seeable future. Fig. 11 shows the distribution of safety level
along the influence area [800 m, 2000 m]. For each scenario,
there is a noticeable difference between Level A and F.
Specifically, safety level A is normally distributed upstream
or downstream the bottleneck, while safety level F is cen-
tralized in the middle part with over 500-meter cyber-attack
ranges ranged from 900m to 1900m. On the one hand, longer
cyber-attack ranges directly lead to risky driving condition
because it can bring about shorter time or space headway for
the following vehicles and cause potential rear-end collisions
in the same lane. On the other hand, it also avoids provid-
ing enough room for congestion dissipation and makes the
driving situation worse over a longer period.

For each scenario with the same cyber-attack range, safety
level shows a moderate decrease after a fast increase, and
reaches the peak around x = 1500 m. From the perspective
of location, the driving condition becomes more and more
risky, and still maintains the momentum of worsening. There-
fore, some control methods like VSL can be applied along
the influence area for enough reaction time. Additionally,
road-side units may send warning massages to CAVs and
remind drivers to keep safe distance if allowed. From this
point of view, traditional control technologies are a necessary
complement for emergencies in the foreseeable transportation
systems.

B. TRAFFIC DEMAND
With the popularity of CAVs, the increasing traffic demand
will bring great pressure on transport system. In this section,
we focus on the impact of traffic demand on travel efficiency
and safety. For the sake of brevity, experiment results of
position-attacked scenarios are only presented.

As shown in Fig. 12, with the increase of traffic demand
from 1000 vph to 2000 vph, the average speeds decrease
over 10 m/s under the same cyber-attack severity. The similar
conclusion can be made if the cyber-attack severity is treated
as independent variable. Specifically, all speeds in Fig. 12(a)
are over 20 m/s while those are below 20 m/s in Fig. 12(c).
Moreover, with the same increase of 500 vph, the 2000-vph
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FIGURE 12. Characteristics of average speed and standard deviation versus traffic demand and cyber-attack severity. (a) Q = 1000 vph, (b) Q = 1500 vph,
and (c) Q = 2000 vph.

FIGURE 13. Impact of cyber-attack severity and range on speed with
different traffic demands. (a) 5 values of cyber-attack severity are chosen,
i.e. 0.1%, 0.5%, 2%, 8%, 32%. (b) Three typical radiuses of cyber-attack
range are selected, including 300 m, 500 m and 700 m.

traffic performsmuchworse than the 1500-vph one according
to the serious decline in speed. It explains that a large number
of CAVs on the road are a big threat to traffic safety, and
route guidance in advance is an effective measure to avoid
the phenomenon. In addition, the trend of standard deviation
of speed is same as the average. The maximum standard
deviation reaches 18.6 m/s and is nearly equal to the average,
as shown in Fig. 12(c). And thus, the big fluctuations in speed
caused by cyber-attack appear frequently, which can reduce
travel efficiency and traffic safety.

In order to imitate the real world, the experiments with
consecutive traffic demand are conducted versus cyber-attack
severity and range. As shown in Fig. 13, the lines for each
scenario can be divided into three sections. First, the trend
line of speed shows an approximately linear decreasing rela-
tionship with the flow before dropping, where the traffic
still can be considered as the free flow. Second, the speeds
drop sharply with the increase of traffic demand owing
to the high-frequency cyber-attacks on CAVs. Ultimately,
the average speeds all tend to reach a certain constant value.
It’s remarkable that the sensitive traffic demand always lies
within the range [1000 vph, 2000 vph], where marginal utility
is diminishing. What’s more, the jam speeds in Fig. 13(a)
range from 10 m/s to 18 m/s while the speed drop is only
4 m/s in Fig. 13(b). Therefore, compared with cyber-attack
range, the severity should attract more attention from road
administrators, and be controlled within a certain level if it
happens.

The traffic demand is set to vary from 500 vph to 2500 vph
with a 500-vph interval. Fig. 14 illustrates the safety level

FIGURE 14. Safety evaluation in various traffic demands.

for five scenarios. The total and partial results respectively
represent the whole road and the influence area [800 m,
2000m]. Generally, the total road has at least two levels ahead
of the partial. The safest level is A for the total while C for the
partial. Moreover, the safety of the partial road is deteriorated
to Level F when the traffic demand increases to 2500 vph.
So, it should account for the high safety level of the total
road, which indicates that solving local problems can improve
safety the performance of overall situation.

VI. CONCLUSION
In this paper, we first design the traffic flow simulation
experiment for cyber-attacks on CAVs, and then analyze
impact of the proportion of attacked vehicles, cyber-attack
severity, cyber-attack range and traffic demand. According to
the performance on efficiency, safety, emissions and fuel con-
sumption under different traffic conditions, the major results
are concluded as follows:

(1) Traffic congestions occur frequently and have sig-
nificant negative effects on the cyber-attack area when the
proportion of attacked vehicles are over 60% under position-
attacked conditions. In contrast, the speed-attacked traffic is
not sensitive to the proportion of attacked vehicles. The criti-
cal values of cyber-attack severity for the position- and speed-
attacked traffic are respectively 1% and 8%, from which the
speeds decline dramatically. Compared with the stable traffic
without cyber-attack, the decreases in average speed under
speed-attacked conditions are nearly between one-fourth and
one-third of that with attacked positions.
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(2) In the influence area caused by cyber-attack, the safety
condition gets worse and leads 2-3 levels than the whole
road, especially in the position-attacked scenarios. Moreover,
cyber-attack causes more 2-20% emissions and fuel con-
sumption with the increase of cyber-attacked vehicles and
cyber-attack severity.

(3) The longer cyber-attack range caused by the improve-
ment of transmission technology results in more negative
effects on traffic efficiency and safety. The average speeds
approximately drop by 5 m/s with a 200-meter increase of
cyber-attack range.

(4) Compared with the traffic below 1500 vph, the
2000-vph traffic demand results in striking decreases and big
fluctuations in speeds. In addition, [1000 vph, 2000 vph] is
the sensitive range for traffic demand management, where
route guidance in advance may be necessary.

(5) From the view of attackers, vehicle’s position may be
the most potential attack target, and its severity over 1%
can cause significant negative effects on travel efficiency
and traffic safety. For the defenders, some control methods
like VSL can be applied along the influence area for enough
reaction time. Additionally, road-side units may sendwarning
massages to CAVs and remind drivers to keep safe distance
if unknown attack occurs. There, if the security cannot be
guaranteed completely, the control right of CAV should be
controlled by the driver to support emergency response.

In our future work, the following aspects need special
attention: (1) This study only focuses on one-lane road, and
hence, other types of highway shall be analyzed in future
research, including on-ramps and off-ramps. (2) The traf-
fic system contains many variables. Future research could
investigate the scenarios that both positions and speeds are
attacked. (3) Lane-changings are a common phenomenon in
the realistic world, and further research is required to explore
impacts of lane-changings on the cyber-attacked traffic
system.
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