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ABSTRACT The case of a user walking with a smartphone in an indoor environment is considered. Instead
of using traditional pedestrian dead reckoning approaches to estimate the user step-length, we define a deep
learning based framework with an activity recognition model to regress the user change in distance and
step-length. We propose StepNet - a family of deep-learning based approaches to regress the step-length or
change in distance. In addition, we propose regressing a time-varying gain instead of a constant one used
for traditional step-length estimation. A comparison is made between the proposed approaches and different
network architectures. Experimental results show that the proposed deep-learning approaches outperform
traditional ones for the examined trajectories.

INDEX TERMS Deep Learning, indoor navigation, pedestrian dead reckoning.

I. INTRODUCTION
Smartphones are a vital instrument in our daily lives for many
reasons such as safety, information sharing and accessing,
sports, positioning and more. Focusing on user latter, deter-
mination of the user position outdoors is usually made by
using one of the global navigation satellite system (GNSS).
However, indoors GNSS is not available and the position-
ing is based on other approaches such as wi-fi [1], [2],
vision [3], [4] or inertial sensors based solutions [5], [6].
Several approaches are available to handle the inertial sen-
sors measurements: 1) inertial navigation system (INS) [7],
[8] 2) shoe mounted INS [9], [10] and 3) pedestrian dead
reckoning (PDR) [11], [12]. Since we consider smartphone
based navigation, the shoe mounted INS approach is not
relevant. The smartphone inertial measurement unit (IMU)
sensors typically contain large error terms allowing only
low-performance navigation accuracy. Thus, using the IMU
measurements in a classical INS algorithm (requires three
integrations on the measured data), results in a large posi-
tion and heading errors, making this approach inappropriate.
Therefore, only PDR is applicable for smartphone based
navigation using inertial sensors.

In traditional PDR algorithms, user steps are detected
(for example by using a peaks approach [34]) using the
accelerometers measurements. Step length is then estimated
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by empirical or bio-mechanical approaches [14]–[16]. In par-
allel, using the gyroscopes measurements the change in head-
ing during the user step is calculated [17]. Given the user
initial conditions at the beginning of the step, together with
the step length and heading estimation, the current user two-
dimensional position can be found. The empirical or bio-
mechanical approaches used to estimate the user step length,
requires a determination of the approach gain (or other param-
eters) before PDR can be applied. This gain remains constant
throughout PDR application. Yet, such gain was shown to be
very sensitive to the user dynamics [18], [19] and smartphone
location [20], [23] and thus an activity recognition (AR)
model was suggested to identify the user dynamics.For the
latter, in [22] time-series based deep learning approaches
were applied. A different method was suggested in [21].
Rather than exploring handcrafted features or a time series
problem, a signal sequences of accelerometers and gyro-
scopes was assembled into a activity image for deep learning.

Later on, the smartphone location on the user was
also shown to effect the PDR performance [23]. To that
end, the authors proposed a smartphone location recogni-
tion (SLR) feature based model. In [33], a deep-learning
based robust (SLR) approach, which was evaluated on
107 people using four smartphone location - talk, text, swing
and pocket, was suggested.

Recently, machine learning and deep learning based PDR
and INS approaches are proposed in an attempt to improve
traditional PDR positioning accuracy. For example, in [24]

85706 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7846-0654
https://orcid.org/0000-0002-4835-2828


I. Klein, O. Asraf: StepNet—Deep Learning Approaches for Step Length Estimation

a deep learning approach was suggested to estimate the
pedestrian velocity instead of integrating the acceleration.
Another approach for velocity estimation was suggested
in [25]. There, a complementing non-linear state estimation
by a deep-learning model was applied.

Among them, the robust IMU double integration (RIDI)
approach [26] focuses on regressing velocity vectors in the
smartphone coordinate frame, while relying on traditional
sensor fusion methods to estimate device orientations. They
use a support vector machine to identify four smartphone
locations - pocket, bag, text and waist followed by a support
vector regression model to regress the 2D velocity vector.
In turn, it is used to correct the accelerometer measurements
prior to double integration to obtain the user position. The
first deep-learning based PDR approach, IONet [27], uses
only accelerometers and gyroscopes measurements to regress
the change in distance and heading in a predefined time win-
dow. To that they adopt a long short-term memory (LSTM)
network and distinguish between four smartphone loca-
tions: pocket, bag, handheld and in a trolley. In the same
manner, [28] used also accelerometers and gyroscopes mea-
surements as inputs, but in addition, also used the device
orientation. They examined several deep learning architec-
tures to regress the user velocity in 2D. The velocity is then
integrated to obtain the user position. In contrast ot RIDI and
IONet, no AR model was applied and the users participating
in the train and test dataset moved freely equipped with an
unconstrained smartphone location.

Instead of addressing the whole PDR problem in a single
network, as in the previous approaches, another possibility
is to divide the heading determination and the step length
estimation into two separate tasks. In [29], a network archi-
tecture based on spatial transformer networks and LSTM
was suggested for heading estimation. Focusing on step-
length estimation [30] proposed learning the individual user
patters while outdoors using GPS data as ground truth to
train a deep learning model. While indoors, the trained model
is used to regress the user velocity and traveled distance.
There, three smartphone locations were addressed: handheld,
swing and pocket with several deep-learning architectures.
In [31], an LSTM model with denoising autoencoders were
used to regress the user change in distance in each prede-
fined time-window. In addition to the accelerometers and
gyroscopes measurements, they added PDR features to the
input of the network. Their approach, Tapeline, achieved
a walking distance error rate of 1.43%. Yet, this approach
suffers from a significant drawback since it requires the
pedestrians to hold their phone horizontally with their hand in
front of their chest. The same authors follow up paper [32],
focused on estimating the stride length while employing an
AR model to identify the smartphone location before the
regression process. To that end, decision-tree feature based
approaches were used to achieve a walking distance error rate
of 2.62%.

In this paper, step-length estimation of unconstrained
smartphones using deep-learning approaches is considered.

The present paper contributions are as follows:

1) We define a deep learning based framework with an
activity recognition model to regress the user change in
distance both for fixed time windows (regardless of the
step duration) and for varying time windows (aligned
with the step duration).

2) We present StepNet, a family of deep-learning based
PDR approaches able to regress the step-length or
change in distance.

3) A through comparison between the regression
approaches: step length or change in distance? and also
a comparison of deep learning architectures including
with and without predefined features at the network
input.

4) Examine the possibility to regress the step-length
using only accelerometers readings. The motivation
stems form the fact that in traditional PDR, only the
accelerometers readings help to determine the step-
length.

5) A novel approach to regress a time-varying PDR gain
instead of a constant one used for the step-length esti-
mation. In that manner, traditional PDR approaches can
be applied using the regressed time-varying gain.

The rest of the paper is organized as follows: Section II
presents the traditional PDR approach. Section III, present
our StepNet approach and network architectures. Section IV
show the results and Section V gives the conclusions.

II. TRADITIONAL PEDESTRIAN DEAD RECKONING
In general, a traditional PDR algorithm is usually defined in
an horizontal plane (2D). It has four parts: 1) Step detec-
tion: the pedestrian steps are detected using accelerometer
measurements 2) Step length estimation: the pedestrian step-
length can be estimated using several approaches such as
regression-based, biomechanical models or empirical rela-
tionships 3) User heading determination: the walking direc-
tion is obtained from the gyroscope and/or magnetometer
measurements (in some approaches the accelerometers read-
ings are also needed) 4) Position update: the current pedes-
trian position is determined giving initial conditions, heading
estimation (from part 3) and step length estimation (from
part 2). Recently, an activity recognition model was added
as a fifth part to the traditional PDR algorithm. It’s purpose
is to perform user activity recognition and SLR to select a
proper gain for the step length estimation. This procedure is
illustrated in Figure 1

Given the pedestrian initial position xk , yk at step k , the cur-
rent step length sk and heading ψk , the current user position
is given by

xk+1 = xk + sk cosψk
yk+1 = yk + sk sinψk (1)

Before the step-length can be estimation a step event needs
to be determined. One of the common ways to detect a
step is by using a peak detection algorithm [34], commonly
based on the magnitude acceleration value threshold and
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FIGURE 1. Overview of pedestrian dead reckoning algorithm [23].

minimum step period. A step is then defined between two
successive peaks. To estimate the step-length two approaches
are employed in this paper - Weinberg’s [15] and Kim’s [14].
The Weinberg’s approach is based on the amplitude of the
vertical acceleration during the step (we use the measured
specific force magnitude )and is given by

sW = GW (max(f )−min(f ))1/4 (2)

where GW is a gain which needs to be calibrated prior to
PDR application, f is the set of specific force magnitudes
during the step and sW is the Weinberg-based step-length.
Kim’s approach is based on the average acceleration during
the current step and defined by

sK = GK

(∑N
j=1 |fj|

N

)1/3

(3)

where N is the number of acceleration samples during the
current pedestrian step, GK is a gain which needs to be
calibrated prior to PDR application and sK is the Weinberg-
based step-length.

In order to calculate each of the approaches gains (prior
to PDR application), the user needs to walk across a known
distance which is equal to the step-lengths sum. Given the
accelerometers measurements and known distance, the gain
can be calculated by using (2) or (3). For accurate gain
estimation this procedure must be repeated several times
for any pedestrian dynamics. For example, there will be a
different gain value for normal walking speed and a gain
for fast walking. In that manner for any user dynamics and
smartphone location. The use of inaccurate gain will result
in an erroneous step-length estimation which in turn will
cause an error in the user position estimation. There are
many approaches dealing with the heading estimation, yet
in this paper we are only focus on step-length estimation
and therefore those approaches are not presented here. The
interested reader is referred to a recently published paper
comparing several heading estimation approaches [35].

FIGURE 2. CNN/LSTM network architecture used for the SLR model [33] in
the StepNet framework.

III. DEEP-LEARNING BASED STEP LENGTH ESTIMATION
We define the deep-learning based step-length estimation
framework to include the IMU raw data, deep-learning based
activity recognition model and deep-learning based regressor
to output the change in distance of the user.

The IMU raw data consists of the measured specific force
and angular velocity vectors. The AR model can hold a
classifier to identify the user dynamics and another one to
determine the location of the smartphone on the user. In this
research, it is assumed the user is walking and thus we employ
only a SLR AR model. The smartphone location and IMU
raw data are then passed to our proposed StepNet to yield the
change in distance of the user.

We consider two approaches to regress the user change
in distance in our proposed StepNet: 1) fixed time windows
(regardless of the step duration), were the raw IMU data is
passed directly to the network, and 2) varying time windows
aligned with the step duration, were features are calculated
on the raw IMU measurements and are feed to the network.
Notice, that in the second approach although deep-learning
approaches perform automatic feature extraction, handcraft
features are computed and used as input to the network.
The motivation for this combination of features and deep
learning enables a simple way of working with a varying
window size aligned with the varying step duration. As a
result, the dataset (features) is much smaller than a dataset
containing the sensors raw data which leads to a much faster
training period and requires less network parameters. Both of
the approaches are described in the following sections.

A. SMARTPHONE LOCATION RECOGNITION
We follow [33] and employ a one-dimensional convolutional
neural network (CNN) and a Long- and short-term mem-
ory (LSTM) in an architecture combines both of them; CNN
as the first layer followed by an LSTM layer. The moti-
vation for such architecture lies in the fact CNN has the
ability to extract features from the data while LSTM can
explore temporal dependencies in the time series problem.
The CNN/LSTM architecture that was used for the evaluation
of SLR is presented in Figure 2. This architecture obtained
the best performance as described in [33]. The input to the
first CNN layer, C1, is the specific force and angular velocity
vectors. C1 has 32 units with an ReLU activation. The next
layer is also a 1D-CNN, C2, with the same parameters as
C1. After dropout of 0.6, the next layer is a polling layer of
size 2 followed by LSTM layer with 32 units. The last layer
D1 has 4 units with Softmax activation. The loss function was
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FIGURE 3. Proposed StepNet architecture to output the step length.

categorical cross entropy (CCE) for a single label categoriza-
tion. The optimization was performed with the RMS propa-
gation algorithm (RMSProp), which divides the gradient by
a running average of its recent magnitude.

B. STEP-LENGTH ESTIMATION
As in traditional PDR, we design a network to regress the step
length as illustrated in Figure 3. We employ a peak based
step detection algorithm as in [34]. A step is then defined
between two successive peaks. The raw IMU data within
the step duration is passed to the SLR model and to the
feature extraction model. The classified smartphone location
and calculated features are plugged to the StepNet network to
output the step length.

In [32], a similar feature approach was suggested. There,
features were calculated both on accelerometer and gyro-
scopes outputs and the regression was on the stride length
using classical machine learning (CML) approaches like
Gradient Boosting or K-Nearest Neighbor. In our approach,
deep-learning (not CML) is employed for the regression of
the step length (instead of stride) and we examine the possi-
bility of using only the accelerometers features.

1) FEATURE EXTRACTION
The specific force vector fj at time index j be defined as

fj = [fx,j fy,j fz,j]T (4)

and the angular velocity vector ωj at time index j be defined
as

ωj = [ωx,j ωy,j ωz,j]T (5)

Features were calculated on each specific force and angular
velocity vector components and also on the magnitude of the
specific force vector

fm(j) =
√
f 2x (j)+ f 2y (j)+ f 2z (j) (6)

and the magnitude of the angular rate vector

ωm(j) =
√
ω2
x (j)+ ω2

y (j)+ ω2
z (j) (7)

That is, features are calculated on the dataset X ∈ R8 where

X =
{
x| fx fy fz fm ωx ωy ωz ωm

}
(8)

The following statistical features were calculated for all
components in (8)
• Mean. The mean of a signal x of length n is defined as

x̄ =
1
n

n∑
j=1

xj (9)

• Standard deviation. The square root of the variance
(measure of the spread of data around the mean) is
defined as

σx =

 1
n− 1

n∑
j=1

(xj − x̄)2

1/2

(10)

• Average Absolute Difference. Measure of the spread
of data around its mean, taking the absolute difference
between values and the mean.

AADx =
1
n

n∑
j=1

|xj − x̄| (11)

• Maximum Value. The maximum value in the window
of the signal.

• MinimumValue. The minimum value in the window of
the signal.

• Amplitude. The absolute difference between the maxi-
mum value and minimum value.

AMPx = |max x−min x| (12)

In addition, for the specific force components and magnitude
also the gravity crossing rate is calculated
• g-crossing rate. A count of how many times within
a window the accelerometer signal crosses the gravity
value.

Finally, two PDR features are also calculated
• Weinberg. The measured part from Weinberg’s step-
length formula (2)

Wf = (max(f )−min(f ))1/4 (13)

• Kim. The measured part from Kim’s step-length for-
mula (3)

Kf =

(∑N
j=1 |fj|

N

)1/3

(14)

To summarize, six features are calculated for each member
in the dataset (8) (specific force and angular velocity magni-
tudes and components) and an additional three can be calcu-
lated only on the specific force magnitude and components.

2) NETWORK ARCHITECTURES
Two CNN based architectures are considered for the
step-length regression task CNN1 and CNN2. The base archi-
tecture, CNN1, is presented in Figure 4. The input to the
first layer, C1, is the features calculated on the sensors mea-
surements. C1 has 32 units with an ReLU activation. The
next layer, C2, is identical to C1. Next, is a polling layer
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FIGURE 4. StepNet CNN1 architecture.

FIGURE 5. Proposed StepNet architecture to output the PDR gain to use
in the PDR step length estimation.

of size 2 followed by a dense layer D1 with 128 units. The
regression layer D1 has 1 units with linear activation. The loss
function usedwasmean square error and the optimizationwas
performed with the Adam stochastic algorithm. The second
CNN architecture, CNN2, has an additional layer, C3, with
64 units after C2. Also, instead of 128 units in D1, it has only
64. All other network parameters are identical to CNN1.

3) PDR GAIN ESTIMATION
Similar to the direct step length estimation approach
described in III-B, in this section we propose a deep learning
network to estimate the Weinberg PDR gain, GW. The Setp-
Net architecture to output the gain is presented in Figure 5.
After a step is detected (Section III-B), the raw IMU data
within the step is passed to the SLR and feature extraction
models. The classified smartphone location and calculated
features are plugged to the StepNet network to output the
Weinberg gain, which in turn is substituted into (2) to cal-
culate the step-length. In that manner, the only difference
to traditional PDR is an online regressed gain instead of a
constant gain.

C. CHANGE IN DISTANCE ESTIMATION
In contrast to the step-length estimation, the change in dis-
tance calculation occurs in a predefined time interval - the
window size. Thus, a step detection algorithm is not required.
In this approach, the raw IMU measurements within the
window size are passed to the SLR model to determine the
smartphone location which in turn is passed combined with
the IMU raw data to a StepNet architecture to regress the
change in distance estimation. The proposed approach as
shown in Figure 6.

In the literature, two leading approaches were suggested to
regress the change in distance: 1) [27] using accelerometer
and gyroscope readings as input to a LSTM network. This
was the first deep-learning PDR approach, however they do

FIGURE 6. Proposed StepNet architecture to output the change in
distance.

FIGURE 7. StepNet modified ResNet-18 architecture.

not use an activity recognition model and provide the change
in distance every 2s which is much larger than a typical step
duration. In our approach, we use 0.5s window size to allow
more the network to be more robust to the user time varying
step-length 2) [28] uses in addition the device attitude as input
to the network in order to regress the velocity, which requires
an iteration to obtain the change in distance. Also, they do not
distinguish between different user dynamics and smartphone
locations. In our approach, we assume the user is walking and
apply activity recognition to identify the smartphone location.
Also, the device attitude is not used at all in our approach.

1) NETWORK ARCHITECTURE
The network architecture, shown in Fig (7), is based on a
modified 2D ResNet-18 [36] network. Since our input data is
constructed from stacked 1D IMU readings, we have replaced
the Conv1 layer to receive single channel input instead the
original published version. The structure of our network is
similar to ResNet-18 truncated before the last average pooling
layer. We add a single fully-connected layer to regress the
change in distance.

IV. ANALYSIS AND RESULTS
The RIDI [26] dataset is employed for the evolution of the
StepNet architectures. It contains recordings from eight peo-
ple for a time duration of about 56 minutes. For the pocket
mode, 10 trajectories exists, while for the texting mode 19.
For each mode three trajectories were used for the test set and
the rest for train set. The distance, time duration and number
of steps for each trajectory in test set are presented in Table 1.
The three pocket trajectories are denoted as P1, P2 and
P3 while the texting trajectories are T1, T2 and T3. All of
the trajectories contain turns and most of them have a square
shape. Since we are addressing only the estimation of the
step-length, we assume the heading is known perfectly and
the trajectories are addressed as if they were a straight line.
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TABLE 1. Test trajectories parameters.

To evaluate the performance of the proposed approaches we
examine the distance error at the end of the trajectory. For
the direct step-length and PDR gain PDRNet architectures the
error is defined as

ej =

∣∣∣∣ m∑
i=1

Ŝi −
n∑
i=1

SGT ,i

∣∣∣∣
n∑
i=1

SGT ,i

(15)

where ej is the error of trajectory j, n is the number of the
actual steps taken, m is the number of steps identified, Ŝi is
the estimated ith step length and SGT ,i is the nominal ith step
length. Similar to (15), for the change in distance PDRNet
architecture is

ej =

∣∣∣∣ k∑
i=1
1L̂i −

n∑
i=1

SGT ,i

∣∣∣∣
n∑
i=1

SGT ,i

(16)

where k is the number of times the change in distance was
calculated during the trajectory and 1L̂i is the estimated ith
distance.

A. STEP LENGTH
Employing the two networks architectures described in
Section III-B.2, we examine the influence of the feature
dimension input (8) by comparing three feature-set possi-
bilities. Two of them, are based only on the accelerometers
data. In the first set (FS1), the statistical features (9)-(12) and
g-crossing feature are calculated only on the specific force
vector magnitude (6) (8 features) while in the second, (FS2),
also on the specific force components (4) (28 features). In the
third set, (FS3), the gyroscopes readings are also employed
and also the PDR features (13)-(14) are used (54 features).

For each set, 50 Monte-Carlo (MC) runs were made and
mean error at the end of the trajectory, calculated using (15),
is used as a measure to evaluate the accuracy performance.

For the Weinberg gain estimation, only CNN2 architecture
results are presented, since CNN1 produces poor perfor-
mance.

1) SPECIFIC FORCE MAGNITUDE FEATURES
The mean error, as calculated from 50 MC runs, at the
end of the trajectory is presented in Table 2. For the direct
step-length estimation, in pocket mode, CNN2 architec-
ture obtained slightly better results than CNN1 but still the
mean error is above 10% for two out of three trajectories.
The accuracy for the texting mode is much better than the
pocket mode for the two networks, where the maximum
error is 5.8%. The Weinberg gain estimation (WG) approach,

TABLE 2. Mean error for feature set FS1 (8 features).

TABLE 3. Mean error for feature set FS2 (28 features).

TABLE 4. Mean error for feature set FS3 (54 features).

gave the poorest results with two trajectories obtained more
than 23% error.

2) SPECIFIC FORCE MAGNITUDE AND COMPONENTS
FEATURES
In FS2, the same features as in FS1 are calculated also
on the specific force components. The mean error, as cal-
culated from 50 MC runs, at the end of the trajectory,
using 15, is presented in Table 3. Improvement in both pocket
and texting modes was obtained compared to SF1 in five
out of six trajectories in the direct step-length estimation
approach. CNN2 network has obtained an accuracy less
than 5% in those five trajectories while on the sixth perfor-
mance was not change compered to SF1. The performance
of WG approach was improved by more than 50% in the
texting mode. Improvement was also in the pocket mode. Yet,
except for the P3 trajectory, the direct step-length estimation
obtained much better performance.

3) SPECIFIC FORCE, ANGULAR VELOCITY
AND PDR FEATURES
In addition to the specific force features, in FS3 angular
velocity and PDR features are also added. The mean error,
as calculated from 50 MC runs, at the end of the trajectory
is presented in Table 4. For the direct step-length estimation,
except, for trajectory P1 where a 15% of improvement was
achieved and T1 that obtained slight improvement, in all
other trajectories 10 − 25% degradation was achieved.As a
consequence, we can state that the addition of the angular
velocity features degraded the performance obtained with
FS2. Thus, it is better to use FS2 set, which depends only
on the accelerometer features.

However, when considering WG approach we observe that
FS3 improved FS2. In T1 the error was reduced to 0.7%,
the best accuracy obtained so far. In all other trajectories, both
pocket and texting, the accuracy was improved.

We observe, based on the results in Tables (2)-(4),
that in pocket mode the direct StepNet architecture (using
CNN2) which estimates the step-length obtained the best
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TABLE 5. Mean error for feature set FS4 (six features) for pocket and FS5
(five features) for texting modes.

TABLE 6. End of the trajectory error for the change in distance approach.

performance using FS2 while for texting mode, the WG
StepNet architecture with FS3 was the best approach.

4) FEATURE SELECTION
To further improve the performance, feature selection is
applied on the FS2 set using CNN2 architecture. To that end,
the Ridge regression approach [37], which uses the l2-norm
for regularization, is applied. New feature sets were found
for the pocket and texting modes. For the pocket mode the
feature set, FS4, was found to include only statistical features
from the specific force components: fx , fy, fz mean using (9),
fy average absolute difference using (11), amplitude fx and fy
using (12). For the pocket mode the feature set, FS5, includes
the amplitude of fx , fy, fz, fm using (12) and the g-crossing rate
for the specific force magnitude fm. That is, instead of using
28 features (as the original dataset FS2), FS4 has six features
while FS5 has five. Themean error, as calculated from 50MC
runs, at the end of the trajectory is presented in Table 5.

Results show that the accuracy was improved in all three
texting trajectories between 21− 65%. For the pocket mode,
P1 accuracy remains the same while P3 was improved by
78%. Yet, P2 accuracy was degraded by a factor of 2.5.
In summary, using feature selection improved the accuracy
relative to the original feature set.

B. CHANGE IN DISTANCE
The change in distance estimation is made used the
modified ResNet-18 (MRES18) architecture described in
Section III-C. The error at the end of the trajectory as calcu-
lated using (16) is presented in Table 6. The network inputs
the raw specific force and angular velocity vectors within a
predefined window size. The accuracy results at the end of
the six trajectories are presented in Figure 6 for window sizes
of 50 (WS50), 100 (WS100) and 200 (WS200) samples. The
sampling rate of the recorded data is 200Hz, thus we address
the user change every 0.25, 0.5 and 1 seconds. The error in all
trajectories was less than 6.4% and the results of all window
sizes are much better compared to those of the step-length
approach. In particular, for trajectory P3 the accuracy was
lowered from 12.7% to less than 1.0%. The average error of
the six trajectories is 2.3% for WS50, 2.1% for WS100 and
2.7% for WS200.

C. COMPARISON
Traditional PDR algorithms versus the three approaches for
StepNet architectures, change in distance, step-length and

TABLE 7. Comparison of the end of the trajectory error between
traditional PDR to the family of StepNet approaches.

gain regression, are compared. For the PDR, Kim’s (3) and
Weinberg’s (2) approaches are used for the evaluation. The
appropriate gains were calculated based on the train dataset,
separately for each of the two modes - pocket and texting. For
the StepNet step-length architecture, the feature set FS2 cal-
culated only on the specific force vector are used for the
compassion, while in the gain approach FS3 is used. In the
StepNet change in distance architecture, we compare the case
with window size of 100 samples. Although,WS200 obtained
better accuracy in the pocket mode, one second duration is
too long when considering heading changes in practical real-
life scenarios. The comparison is presented in Table 7. All
three StepNet architectures obtained better accuracy than tra-
ditional PDR approaches. Out of three, the change in distance
StepNet architecture is the best approach. In five trajectories,
its accuracy is less than 2.5%. Taking the average on all six
trajectories, it had 2.1% of error while, StepNet step length
is the second best architecture with an error of 4.8%. With
almost the same performance, StepNet Gain achieved an error
of 3.2%. Weinberg PDR error was 12.7% while Kim PDR
was 13.1%.

V. CONCLUSION
A deep learning based framework with an activity recogni-
tion model to regress the user change in distance/step length
was suggested. It addresses two scenarios, the change in
distance estimation for fixed time windows (regardless of the
step duration) and step-length estimation for varying time
windows (aligned with the step duration). We proposed a
family of three StepNet architectures for the regression task:
1) direct step-length 2) change in distance and 3) Weinberg
gain regression for step-length estimation.

A through comparison between the three regression
approaches on the same dataset was made with the same data
used as input to the networks, i.e., the accelerometers and
gyroscopes raw measurements or calculated features.

We show that the StepNet architecture to regress the change
in distance obtained the best performance with an average
error of 2.1% on the examined six trajectories. When using
only the accelerometer measurements, the StepNet archi-
tecture which regresses the step length obtained the best
performance with an average error of 3.2%. As a conse-
quence, we observe that the gyroscopes measurements help
to improve the change in distance accuracy. This conclu-
sion is in contrast to traditional PDR approaches where
the step-length is determined only by the accelerometer
measurements.
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