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ABSTRACT Efficient and accurate segmentation of hippocampi from preterm and aging brain MR images
is one of the most fundamental steps in understanding hippocampal growth and development or diagnosing
and monitoring various clinical conditions. Current hippocampus segmentation methods for preterm and
aging brain are limited due to: 1) they can rarely achieve preterm infant hippocampus segmentation;
2) the computation cost is high; 3) current deep learning models cannot well handle the hippocampal
feature learning; 4) they are not open obtainable. To deal with these problems, we propose an efficient,
open-source algorithm, 3D densely connected fully convolutional network (3D-DCFCN) for the infant
and aging hippocampal segmentation. Specifically, we search for a suitable distribution of the hierarchical
receptive field size and a joint loss function to balance local and global information and lead to better
optimization. In addition, we use image cross-registration for vast augmentation of the infant training data
and incorporate multi-modality infant brain information. We compare the performance of our algorithm
with those of several state-of-the-art methods. The results show that our method outperforms all comparison
methods on infant and aging datasets and achieves much faster speed (less than 0.11s per image). We also
provide a notably comprehensive evaluation of the method. Our experiments further demonstrate our model
can 1) well generalize to the dataset with different magnetic fields; 2) satisfactorily find hippocampal atrophy
in cognitive-decline groups compare with normal controls.

INDEX TERMS Preterm, aging, hippocampus segmentation, hippocampal volume analysis, 3D densely
connected fully convolutional network (3D-DCFCN).

I. INTRODUCTION
Hippocampus plays a critical role in high-order cognition
functions, including memory, spatial location, and navi-
gation. In preterm children born at less than 37 weeks
of gestation, the hippocampus has uniformly been shown
to be smaller relative to term-born controls [1], and this
decrease in the rate of hippocampal development in children
born severely preterm (less than 32 weeks) is associated
with impaired cognition and working memory at 2 years
of age [1], [2] and school-age [3], [4]. In addition, hip-
pocampus is vulnerable to many psychiatric disorders and
neuro degenerative diseases, such as temporal lobe epilepsy,
schizophrenia, and Alzheimer’s disease, especially in the
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aging brain [5]–[8]. Therefore, segmentation and quantitative
analysis of hippocampus for preterm and aging brains are
important to understand and predict hippocampal develop-
ment in neonates or diagnose and monitor various clinical
conditions in aging.

The past ten years have seen increasingly rapid advances
in developing automated methods for hippocampus seg-
mentation, and these methods can be categorized into four
classes and hybrid versions of these classes: (1) Atlas-based
method [9]–[12]. In this method, one or multiple atlases
are directly aligned with the target image to obtain the tar-
get label. This method enables segmentation in individu-
als with great anatomical variability, but the disadvantage
is that it requires many registration operations, which is
computationally expensive, making it impractical for appli-
cation requiring rapid processing speed. (2) Deformable
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models [13]–[15]. In this technique, a contour is initialized
in the image and iteratively deformed to generate a new
contour. For example, certain methods used models such as
the active contour model [15], active shape model [16] and
active appearancemodel [14] for segmentation. Nevertheless,
an obvious problem is that the method is sensitive to con-
tour initialization. (3) Traditional machine-learning method
with handcrafted features [17]–[22]. This type of method
uses various handcrafted features to classify voxels, such
as using spatial and intensity features in a random-forests
model [18], using atlas and appearance features in a sup-
port vector machine method [20]. However, handcrafted
features usually suffer from limited representation capa-
bility, and these methods also require careful engineering
and specific expertise for accurate recognition. (4) Deep
learning-based method [23]–[28]. These approaches allow
models to learn the features that optimally represent the data
for the problem at hand, such as the stacked autoencoder [27],
multiview ensemble 2D convolutional neural network [23],
parallelized long short-term memory (LSTM) [28], or 3D
convolutional neural network methods [24], [25]. These deep
learning-based methods can perform rapidly and obtain accu-
rate segmentation without a manual design of intricate and
specific input features. Most of the current methods cannot
handle hippocampal segmentation for preterm brain.

In recent years, extraordinary improvements have been
achieved by deep learning, especially convolutional neu-
ral networks (CNNs) in image segmentation, including
hippocampus segmentation. Some of these approaches [26],
[27], [29] often replace previous handcrafted image features
in atlas-based methods with representation inferred from the
deep-learning models, but they are also time-consuming and
only focus on 2D images. It should be noted that brain MR
images and many other medical image modalities consist
of volumetric data. As far as we know, two main cate-
gories of end-to-end CNNs are available for volumetric image
segmentation. (1) This type of method applies 2D CNNs
by taking one slice, assembled adjacent slices, orthogonal
planes, or multiple diagonal planes as input to compensate
for spatial information [23], [30]. However, these models
often contain multistream architectures that require longer
training and testing time as well as additional storage. (2) The
other methods apply 3D convolution to extract discriminable
features from volumetric data and have proved attractive
performance [24], [25], [30]. These methods are composed
of many down-sampling layers, which denote an overlarge
and highly sparse distribution of hierarchical receptive field
sizes that are beneficial to the integration of more global
context information than fine-grained or local information.
However, fine-grained or local information is more important
to achieving good voxel-level accuracy of tiny structures such
as the hippocampus.

The overwhelming majority of these segmentation meth-
ods suffer from at least one of the following restrictions:
(i) almost all of these approaches cannot deal with preterm

brain with underdevelopment of hippocampus; (ii) the seg-
mentation accuracy is restricted to registration error, contour
initialization, or discriminative capability of hand-crafted
features; (iii) the computation cost is high due to complex
models or registration; (iv) current deep learning models
cannot well handle the hippocampal feature learning as these
methods cannot extract enough fine-grained information and
the imbalance of background and small hippocampusmislead
the optimization; (v) the algorithms or the trained models are
not openly obtainable.

In this work, we propose an efficient and openly obtainable
segmentation algorithm based on 3D densely connected fully
convolutional network to deal with the restrictions of segmen-
tation of hippocampi for preterm and aging brain from 3D
MR images. First, we incorporate the 3D densely connected
block introduced by [31] as well as the bottleneck layer and
compression layer [32], [33] in our model. It maximizes
information flow such that context information at a certain
level can be used directly to inform decisions at other levels,
making the model more adaptive to the two segmentation
tasks. Additionally, this block and these layers embody fewer
parameters and leads to implicit deep supervision, which
improves computational efficiency, reduces overfitting, and
makes training easier. We also construct a model with a
suitable distribution of the hierarchical receptive field sizes to
integrate more fine-grained information which is conducive
to the segmentation of tiny structures. We also propose a
joint loss function to balance the background and small
hippocampi and to merge multilevel context information.
Furthermore, we balance the number of training images and
global information using a random cropping method with a
proper cropping size, and we propose the cross-registration
to vastly augment the training data and further improve the
performance of the infant hippocampal segmentation. Finally,
because the infant brain has a much lower tissue contrast,
we incorporate multimodality MR images in our model to
integrate more comprehensive anatomical information. Our
model was trained on 2 datasets consisting of preterm infants
and aging subjects. Our method outperforms all of the state-
of-the-art methods on the same dataset. The findings from
this study make several contributions to the current literature
which can be summarized as follows:

i) We propose an efficient 3D-DCFCN-BC model that is
more adaptive to the two segmentation tasks, more efficient,
easier to train, and reduce overfitting.

ii) We find a suitable distribution of the hierarchical
receptive field sizes to integrate more fine-grained and local
information to cope with the problem of a relatively small
hippocampal size. In addition, we propose a joint loss func-
tion to balance the background and small hippocampi and to
merge multilevel context information.

iii) We propose cross-registration to vastly augment the
infant training data and further improve the performance.
In addition, this is the first end-to-end deep learning method
for preterm infant hippocampus segmentation.

VOLUME 8, 2020 97033



D. Zeng et al.: Hippocampus Segmentation for Preterm and Aging Brains Using 3D-DCFCNs

FIGURE 1. The architecture of our proposed 3D densely connected fully convolutional networks (3D-DCFCN).

iv) Our proposed method outperforms the other hippocam-
pal segmentation methods not only in precision but also in
speed (near real-time, less than 110ms per image).

II. METHOD
Turning now to the description on the proposed 3D densely
connected fully convolutional network (3D-DCFCN),
we first present the architecture of 3D-DCFCN and the
3D-DCFCN-BC, i.e., the extended DCFCN model with
bottleneck layers and a compression layer added. Second,
we introduce our joint loss function for incorporation of deep
supervision and balance of the foreground and background.
Third, we propose a new method of data augmentation for
a small dataset, such as infant data. Finally, we describe
the hyperparameter optimization and the details of network
training and testing.

A. 3D DENSELY CONNECTED FULLY CONVOLUTIONAL
NETWORK (3D-DCFCN)
Our objective is to enable ourmodel to perform preterm infant
and aging hippocampi segmentation tasks by proposing a less
complicated network architecture with significantly fewer
parameters to learn and that can automatically adapt to the
two problems. To achieve this objective, we incorporate the
densely connected block and fuse multilevel context informa-
tion in our carefully designed model.

1) DENSELY CONNECTED BLOCK
The lower-left corner of Fig. 1 shows the 3D densely con-
nected block used in our model. Any layer in the block
directly connects to all subsequent layers, which is the most
distinguishing pattern in this block. Hence, the lth layer
has l inputs containing the feature maps of all preceding

layers and can be expressed as follows:

xl = Fl([x0, x1, . . . ,xl−1]) (1)

where xl represents the feature maps produced in the lth
layer, [x0, x1, . . . ,xl−1] denotes the concatenation of these
feature maps, and Fl is defined as a composite function
of three consecutive operations, namely, batch normaliza-
tion (BN), followed by a rectified linear unit (ReLU) and
a 3× 3× 3 convolution (Conv). The reason for using these
operations is explained later. Each layer produces k feature
maps, the lth layer takes k0+ k×(l−1) feature maps as input,
where k0 is the number of feature maps in the input layer.
Thus, the hyperparameter k is referred to as the growth rate of
the block. We incorporate the densely connected block in our
model because (i) it maximizes information flow and is con-
ducive to the model adaptability for the two tasks that require
context information at different levels; (ii) no need exists to
relearn redundant feature maps at the intermediate layers,
and this can ease the training burden and reduce the risk of
overfitting; (iii) leading to implicit deep supervision [38], and
this makes it easier to train a notably deep neural network.

2) 3D-DCFCN
Fig. 1 shows the overall structure of the 3D-DCFCN.
3× 3× 3 filters Smaller filters are believed to require fewer
parameters and less computational complexity, and they
obtain details better than the larger filters [33]. Because
2× 2× 2 convolution filters cannot maintain the size of
feature-map comparing to the input, we construct our initial
model using the feasible and smallest filters of 3× 3× 3
convolution. In addition, most of the previous hippocam-
pus segmentation methods use pooling as a downsampling
layer [23]–[25], whereas the pooling layer can be viewed
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as performing a feature-wise convolution in which the acti-
vation function is replaced by the p-norm. We use convo-
lution with stride 2 for replacing the pooling layer because
it can add inter-feature dependencies [39]. Because the 3D
deep learning model is more difficult to converge compared
with 2D models [40], [41], batch normalization (BN) is
applied to enable faster and more effective optimization,
i.e., robustness to hyperparameter setting and avoidance of
gradient explosion or vanishing. The smoothing effect of BN
is also believed to facilitate better generalization [42], [43].
In addition, the rectified linear units (ReLU) are applied as
the activation function. Finally, we use upsampling layers
to upscale the output to the original resolution to enable
voxel-wise prediction. Instead of using unpooling or inter-
polation to perform in-network upsampling without learn-
able parameters, we use transpose convolution (which is also
referred to as deconvolution in certain papers) to achieve this
goal [44], [45]. The filter size and stride size of the transpose
convolution are each set to 2 to avoid the uneven overlap issue
and reduce checkerboard artifacts [46].

Similar to most of the deep-learning segmentation models,
our 3D-DCFCN also contains an encoder and a decoder.
At the encoder stage, we first stack two convolutional layers
with kernel size 3× 3× 3, and we use a convolution layer
with the same kernel size and stride 2 to downsample the
feature maps, we also make each preceding convolution layer
outputs 32 feature maps. Later, these feature maps outputted
from the third convolution layer are input to another group of
layers containing two densely connected blocks. Each block
is consisting of 5 layers with a growth rate of 16. A convo-
lution layer with kernel size 3× 3× 3 is applied to connect
the two blocks, and the connection layer outputs 32 feature
maps, which flow into the second block. We zero-pad each
side of the inputs by one pixel to hold the feature-map size
fixed for 3× 3× 3 convolution with stride 1 or downsample
the feature map by a factor of 2 for convolution with stride 2.
At the decoder stage, we use a three-stream fusion network
to integrate multilevel context information. Each stream con-
tains a transpose convolution (the first stream is convolution
due to no downsampling) and a softmax layer as an auxiliary
classifier to produce a probability map of the hippocampus
(p1 (x) , p2 (x), p2(x)). All of these maps are fused to obtain
the finer probability map (p(x)).

3) 3D-DCFCN-BC
Because each layer in the densely connected block produces
16 feature maps, it has many inputs in the relative deep
layer of the block and the connection layer between the two
blocks. Thus, we introduce the 1× 1× 1 convolution before
the connection layer and connection layer are all replaced by
BN-ReLU-Conv-BN-ReLU-Conv. This architecture, which
is referred to as the bottleneck layer and compression layer,
can further improve the computation efficiency and reduce
the number of parameters. We call the model with the bottle-
neck layer and compression layer as 3D-DCFCN-BC.

Variations of 3D-DCFCN. At the encoder stage, instead
of using only classical out-of-the-box CNN architectures
which removed fully connected layers, we design our model
for better suitability to our specific tasks. Note that we can
create variations of this 3D-DCFCN structure by building
different depths of the encoder network and different numbers
of downsampling layers. This process represents an inherent
trade-off between the integration of fine-grained or local
information and global information as well as computation
cost. In this work, we define the scale of the feature maps
in a specific layer as the local patch in the input image on
which the inference of each pixel in the feature maps relies,
and it is also referred to as the receptive field. If we use addi-
tional downsampling layers or deeper networks, the model
acquires feature maps with a larger scale, which means that
it incorporates much information from the global context
of the image. Global context information can resolve local
ambiguities. Nevertheless, this process also leads to using
more parameters, computation, and storage and integration
of less fine-grained or local information critical to achieving
good pixel-level accuracy and vice versa. Experimentally,
we find that the structure displayed in Fig. 1 achieves the
best performance compared with its other variations (details
in Section III-B-1)) because we find a suitable distribution of
the scale of the model layers to balance the local information
and global information, as well as obtain a small enough
computational cost.

Additionally, we suggest that the use of multiscale net-
works at the encoder stage might aid the model in gener-
alizing to different tasks that require different scale feature
maps. Possible architectures [47], [48] are popular models in
the domain of natural image segmentation. This method uses
multistream networks at the encoder stage that target different
scales and subsequently fuse the multiscale feature maps to
produce a single output for subsequent prediction. We have
organized experiments with this method using two-stream
fusion networks designed by us or with the pyramid pooling
module proposed by [47] in the early stage of our exper-
iments. We found that the result indicates a performance
decline for the task of aging hippocampus segmentation. Con-
sidering that the two-stream fusion networks highly increase
the number of parameters, it might harm the training process.
In addition, the pyramid pooling module can supply feature
maps with a larger receptive field, whereas an overly large
receptive field is redundant and weakens the local informa-
tion integration. Consequently, the use of multiscale networks
may hamper the model in learning the effective features of the
hippocampus.

B. JOINT LOSS FUNCTION
In many image segmentation problems such as that pro-
posed in this work, the numbers of voxels/pixels from dif-
ferent classes usually differ, and the object of interest often
occupies a small portion of the image to be analyzed. This
scenario might mislead the optimization procedure to over-
fitting to the classes with many more voxels/pixels, similar to
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the background in our problem. The dice objective function
proposed by [49] is an efficient way to balance the fore-
ground and background. Consequently, we incorporate the
dice objective function into our loss function (see the third
component of (2)). In addition, we also construct the auxil-
iary loss for those previously mentioned auxiliary classifiers,
which indicates deep supervision (see the second component
of (2)) [38], [40]. Finally, the proposed joint loss function that
trains the entire network is written as follows:

L = λ||W ||2 −
∑
k

∑
x∈V

∑
α

wkgα (x) log pαk (x)

−

∑
α

2
∑

x∈V p
α (x)× gα (x)∑

x∈V ((pα(x))2 + (gα (x))2)
(2)

where the first component is the L_2 weight decay regu-
larization, W denotes the weights of our networks and λ is
the trade-off hyperparameter. The second component is an
auxiliary loss, and wk (where k indicates the index of where
the first component is the L2 weight decay regularization,
W denotes the weights of our networks and λ is the trade-off
hyperparameter. The second component is an auxiliary loss,
and wk (where k indicates the index of auxiliary classifiers)
is the trade-off weights of the auxiliary classifiers, which
are set to 0.1 in our experiments. In this work, pαk (x) and
pα (x) denote the probability maps of channel α for voxel
x in volume V produced by auxiliary classifiers and final
fusion, and gα (x) is the one-hot encoded ground truth for the
corresponding voxel.

C. IMAGE CROSS-REGISTRATION FOR
DATABASE AUGMENTATION
Database augmentation plays an important role in training
tasks with limited data. Because deep-learning models con-
tain a large number of parameters to learn, this method can
reduce overfitting and improve generalization. Simple tech-
niques including translating, rotating, flipping and scaling
are widely used and are easiest to apply in classification
tasks. The other methods [50], [51] generate new and also
fake data using neural networks to integrate information from
two or more data samples, but they can only be used in
classification tasks. In this work, we present a new database
augmentation technique using 12 degree-of-freedom (DOF)
linear image registration, including rigid body transformation
and affine transformation. This strategy can vastly augment
the database simply and efficiently: using images after linear
registration as the training data. More details of this technique
are described in Algorithm 2.1.

Using this algorithm, we can expand n training samples
to n2. Fig. 2 shows that these generated fake MR images
combine information from two real brain images using linear
registration such that the shape of the hippocampus and the
other anatomy are reliable, and as a result, they are feasible
for network training. In addition, the generated images are
also different from the two corresponding images because
the operations involve affine transformations, therefore,

Algorithm 2.1 linear image registration for vast augmen-
tation of training data. This algorithm can be applied as a
general strategy for varieties of brainMR image segmentation
using machine learning.
Let n be the number of subjects for training.
Let X1

i , X
2
i , Yi be the original T1 and T2 MR image and

label image of the ith subject, respectively.
for i = 1→ n do
for j = 1→ n do
if j = i then
continue

end if
Transform X1

i to X
1
j by 12 DOF linear registration and

obtain
the transformed image X1

ij and transformation matrix
Tij.
Transform X2

i to X2
j by Tij and obtain the transformed

image X2
ij .

Transform Yi to Yj by Tij and obtain the transformed
label image Yij.

end for
end for
Collect all X1

i , X
2
i , Yi, X

1
ij , X

2
ij , Yij to form the new aug-

mented database.

FIGURE 2. First two columns denote sagittal images from T1-weighted
and T2-weighted MR of two infants with identity numbers 02 and 08. The
two latter columns denote the MR images generated by the 12-DOF linear
image registration between subjects 02 and 08. The 02-08 denotes the
transformed image obtained by transforming 02 to 08.

this algorithm can add reasonable uncertainty and varia-
tion to the training set, which aids the model in improving
performance.

The 12 DOF linear registration is implemented by
FLIRT, a fully automated robust and accurate tool of FSL
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) in our experiments.
The number of histogram bins is set to 256, and we use the
nearest neighbor interpolation and correlation ratio as the cost
function.

D. MODEL TRAINING
Previously, random cropping was simply applied as a
data augmentation technique in the various training tasks,
although in segmentation task it is different from the
other data augmentation technique mentioned before. This
approach can effectively reduce the contribution of the
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background in the model decision and focus more attention
on the object, and thus we find that it is quite useful for
our segmentation model by improving the precision and the
stability. If we use smaller patches instead of the whole image
to train the model, the model can use the background regions
as negative examples in many cases with little foreground to
reduce the contribution of the background. Obviously, when
patches with little background are fed into the model, it is
conducive to learning the foreground. However, if we use
patches that are too small, it can harm the model to integrate
information with a necessarily semantic range. Experimen-
tally, we find a compromise between global information and
the number of different training samples with random crop
patches of size 32× 32×32.

In this study, all of the learnable weights and biases
were initialized by a Gaussian (0, 0.01) and a constant (0),
respectively. We trained our model by mini-batch gradient
descent with momentum, the batch-size was set to 8, and
the weight of the previous velocity of updating was set to
0.9. Additionally, we used polynomial decay as the learning
rate policy, where the effective learning rate is calculated
by base_lr∗(1-iter/max_iter)^(power), and the learning rate
approaches zero by the end of the training (max_iter) with
this policy, we set power to 0.9 here. Because the training
performance can be improved by increasing the max_iter
within a certain range due to the learning rate policy, we set
max_iter to 51840 (40 epochs) for the infant dataset and
172800 (800 epochs) for the aging dataset experimentally
to achieve the best and most stable performance. For the
hyperparameters of the base learning rate and weight decay,
we used the random search method [52] to select a group
of optimized values. We defined a uniform distribution on
a log-scale for the 2 hyperparameters, and each of the ran-
domly sampled groups of hyperparameters was used to train
the model on a small dataset randomly selected from the
original dataset. Specifically, all of our methods and exper-
iments are implemented using MATLAB and Caffe [53]
with minor modifications for incorporating the dice objective
function. Our trained models and algorithms can be found at
https://github.com/DebinZeng/Hippo_seg.

III. EXPERIMENTAL RESULTS
We display the experimental analysis of model design and
hippocampal volume analysis and comparisons of the pro-
posed method with state-of-the-art algorithms. We first
describe the two datasets and evaluation metrics and subse-
quently display the experimental analysis for model design.
Then we present a comparison of the popular algorithms on
the infant and aging, respectively. Additionally, we further
tested the model (trained by aging dataset) on the inhouse
dataset without any adaptive dataset-specific manipulation.
Finally. volumetric analysis of the hippocampus on infant and
aging dataset is conducted for volumetric correlation com-
parison among certain related methods, and cognitive-decline
biomarker validation on the aging brain.

A. TWO DATASETS AND PREPROCESSING PROCEDURE
In this paper, we used two datasets composed of preterm
infant and aging brain MR images to validate our proposed
method.

TABLE 1. Demographic information for the infant dataset (ALBERT, 20
subjects, 2 modalities including T1-weighted and T2-weighted MR
images).

The infant dataset known as ALBERT (https://brain-
development.org/brain-atlases/neonatal-brain-atlases/ neon-
atal-brain-atlas-gousias/) is composed of 15 preterm and
5 term-born neonates that were all scanned at term [34]. The
demographic information for the infant dataset is displayed
in TABLE 1. The MR images were obtained using a 3.0T
Philips Achieva scanner. The voxel size of the preprocessed
T1-weighted image is 0.82mm×0.82mm×0.82 mm, and the
T2 images were coregistered in identical fashion onto the
same preprocessed T1 image and resampled to the same
voxel size. The images were segmented into 50 regions of
interest (ROI) including the hippocampus. A comprehensive
and detailed illustration of the segmentation steps can be
found in [34]. We extracted the hippocampus mask from
the 50 ROIs. Similar to the aging dataset, we also used two
bounding boxes with a size of 64×64×48 around the left and
right hippocampus to extract the image patches. The boxes
were also located at two-fixed locations in the image. Finally,
we split the infant dataset into ten groups to adopt a 10-fold
cross-validation strategy in which five term-born infants were
randomly assigned to different groups.

The aging dataset consists of harmonized protocol
(HarP) data. This dataset contains 135 T1-weighted
images obtained from the ADNI database [35] with man-
ual hippocampal labels supplied by the EADC project
(http://www.hippocampal-protocol.net/). The MR images
were balanced by magnetic field strength, scan manufacturer,
diagnosis, qualitative medial temporal atrophy (MTA), and
age ranges [36]. The ADNI images were reoriented along
the AC-PC line by six-parameter linear registration before
manual delineation, and an MNI ICBM152 template with
1mm×1mm×1 mm voxel dimension was used as the refer-
ence space. The hippocampi were segmented by expert raters
based on the harmonized hippocampal protocol [37]. The
demographic information for the aging dataset is displayed
in TABLE 2. Because the hippocampus occupies only a
small proportion of the whole brain, we used two bounding
boxes with a size of 72 × 72×48 around the left and right
hippocampus to extract image patches and largely reduce
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TABLE 2. Demographic information for the elderly dataset (EADC-ADNI,
135 ADNI subjects, T1-weighted MR images).

the computation burden. Note that the boxes are located at
two fixed locations according to the image edge. Finally,
we split this dataset into five groups with similar distribution
of diagnosis and magnetic field strength to implement a
5-fold cross-validation policy.

All training MR images ware augmented 8 times by four
rotations (90 degrees) and one flip after each rotation. These
images were normalized to zero mean and unit variance to
accelerate the learning process.

B. EVALUATION METRICS
1) DICE SIMILARITY COEFFICIENT (DSC)
In our experiments, the dice similarity coefficient (DSC) was
used as the performance metric, which measures the overlap
ratio between the manual labels and automatic segmentation
results, and it is computed as follows:

DSC = 2×
|M ∩ A|
|M | + |A|

(3)

where M and A denote the manual and automatic binary
segmentation labels, respectively; |M ∩ A| is the number of
overlap positive elements betweenM and A; |M | refers to the
number of positive values in M.

2) INTRACLASS CORRELATION COEFFICIENT (ICC)
The regression coefficient and the intraclass correlation coef-
ficient (ICC) [54] are used to evaluate the volumetric similar-
ities between the manual labels and automatically segmented
results.

3) COHEN’S D-EFFECT SIZE
Cohen’s d-effect size is obtained by computing the distance
between two normal distributions:

d = |x̄1 − x̄2|/s (4)

s =

√
(n1 − 1) s21 + (n2 − 1)s22

n1 + n2
(5)

where x̄i and si are mean and standard deviation, respectively.
According to the definition for the magnitudes of d sug-
gested by Cohen, the small, medium, and large effect sizes
are defined as d< 0.5, 0.5 <d< 0.8, and d> 0.8, respec-
tively [55].’’ Thus, we can compute Cohen’s d-effect size

based on the automatically andmanually segmented volumes,
and thesemetrics will show the sensitivity of each approach in
detecting a hippocampal volume difference between different
diagnosis groups.

C. EXPERIMENTAL ANALYSIS OF MODEL DESIGN
1) IMPACT OF THE DISTRIBUTION OF SCALE OF THE MODEL
LAYERS
As mentioned in Section II-B, the distribution of the scale
(receptive field size) of themodel layers can affect the contex-
tual knowledge integration that is crucial to achieving good
accuracy. Thus, we conducted experiments to investigate the
impact of different scale distribution. We constructed five
DCFCN models that contain different numbers of downsam-
pling layers or depth. The largest possible theoretical recep-
tive field of each layer in every model is listed in TABLE 3.
We conducted several experiments using these models on
both the infant and aging datasets.

The experimental results are displayed in Fig. 3. From
the figure, we observe that these models show varying per-
formance on the infant datasets and that the 3D-DCFCN43
achieves the best segmentation accuracy. On the aging
dataset, the results of these models are similar, and
3D-DCFCN33 has slight advantages. The results indicate that
infant hippocampus segmentation is more sensitive to the dis-
tribution of hierarchical receptive field size and needs addi-
tional local information because the infant brain has a much
lower tissue contrast and a much smaller hippocampal size.
In addition, we also supply the computation time per image of
each model in the figure, and it can be observed that the seg-
mentation speed of 3D-DCFCN43 is much faster than those
of 3D-DCFCN25 and 3D-DCFCN33 and similar to those
of 3D-DCFCN59 and 3D-DCFCN131. Therefore, to achieve
both better segmentation precision and computational effi-
ciency, we chose the scale distribution of 3D-DCFCN43 to
conduct all further experiments.

2) IMPORTANCE OF THE JOINT LOSS FUNCTION
We have described the joint loss function for training our
networks in Section II-C. The loss function contains three
auxiliary losses of cross-entropy and one dice objective func-
tion. To show the effectiveness of the dice objective func-
tion and auxiliary loss, we ran the same 3D-DCFCN model
on the aging dataset using 5 different loss functions: one
cross-entropy loss (without auxiliary loss), one dice loss
(without auxiliary loss), four cross-entropy losses, four dice
losses, and the proposed joint loss. The experimental results
are presented in Fig. 4. The figure shows that the joint loss
function outperforms all the other loss functions. Surpris-
ingly, the performance of the four cross-entropy losses is
better than one whereas the four dice losses are slightly worse
than one. In the former case, the results might occur because
the auxiliary loss can help the model to integrate more local
information to improve the problem of overfitting to the
background. In the latter case, because the dice objective
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TABLE 3. Architecture and scale distribution of the five constructed 3D-DCFCN models.

FIGURE 3. Comparison of the five constructed 3D-DCFCN models with
different scale distributions on infant and aging datasets. We present
both the accuracy (left) and computation time per image (right) of these
models.

function can efficiently balance the foreground and back-
ground, the auxiliary dice loss might hamper the integration
of local information. The proposed loss function contains
three auxiliary losses of cross-entropy and one dice loss
achieves the best performance.

Besides, we also organized some experiments to investi-
gate the importance of random cropping with proper crop
size, the results show that the model gains the best DSC when

FIGURE 4. Comparison of 3D-DCFCN with five different loss functions on
aging dataset.

using 32 × 32 ×32 as crop size. Details can be found in
Supplementary Materials and Fig. S1.

D. EXPERIMENTAL RESULTS ON INFANT DATASET
1) IMPACT OF INTEGRATED MULTIMODALITY DATA
The current methods for integrating multimodality informa-
tion can be categorized into three main classes: (i) the multi-
modality data are concatenated and fed into one model, and
the multimodality information is subsequently fused during
forward propagation; (ii) multistream networks are used to
process multimodality data separately, and the output feature
maps of each stream are subsequently fused to predict the
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TABLE 4. Segmentation performance on infant dataset using different methods.

result; and (iii) multimodality data are processed separately
as independent data, and the results of the same hippocampus
are averaged to obtain a finer result. To use more training data
and construct a lighter-weight algorithm, we choose the third
strategy. As shown in Fig. 5, the DSC results of 3D-DCFCN
using two modalities show the highest values. Additionally,
using T2-weighted images achieves better performance than
the case of T1-weighted images. This result indicates that
T2-weighted images can supply more hippocampal contour
information.

FIGURE 5. DSC results of 3D-DCFCN with respect to different
combinations of two imaging modalities.

2) CONSEQUENCE OF THE NEW DATASET
AUGMENTATION STRATEGY
As described in Section II-D, we used 12 DOF linear cross-
registration to further augment the infant training dataset. The
method can vastly augment the number of training samples
from n to n2. We used 3D-DCFCN and 3D-DCFCN-BC
to conduct several experiments to reveal the effect of this

FIGURE 6. Comparison of 3D-DCFCN and 3D-DCFCN-BC with and without
the CR (cross-registration) data augmentation strategy.

new dataset augmentation strategy. The experimental results
can be found in Fig. 6. As shown in the figure, all of the
results with this dataset augmentation strategy outperform
those without this technique. We find that this strategy
also reduces the performance gap between 3D-DCFCN and
3D-DCFCN-BC, which might indicate that the regularization
effect of dataset augmentation is stronger than that of model
parameter reduction.

3) COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
After the optimal scheme was obtained, the proposed
3D-DCFCN and 3D-DCFCN-BC were used to segment the
infant hippocampus with the 10-fold cross-validation strat-
egy to present the generalization ability. It takes approxi-
mately 4.75 hours to train our designed model on a Titan
Xp GPU. We use the dice similarity coefficient (DSC) to
evaluate the segmentation performance. The results pro-
duced by our methods and different state-of-the-art algo-
rithms can be found in TABLE 4. From TABLE 4 we can
see that the 3D-DCFCN-BC achieves the best performance,
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TABLE 5. Segmentation performance on elderly dataset using different methods.

yielding a mean DSC of 0.8536 for the left hippocampus,
0.8579 for the right hippocampus, and 0.8557 for the over-
all hippocampus. We also supply the sagittal views and 3D
views of hippocampal segmentation results produced by four
automatic segmentation methods for a typical hippocampus
in Fig. 7.

FIGURE 7. Sagittal views and 3D views of hippocampal segmentation
results by four different methods for a typical infant subject. In the 3D
views, the overlapping areas between ground truth (yellow) and
automatic segmentation (red) are shown in blue. The DSC values for the
hippocampus are listed below each method.

We additionally executed multiple experiments to analyze
the infant hippocampal volumes. The results show that our
model has a good volumetric correlation with manually seg-
mented volumes. Detailed information can be seen in Supple-
mentary Materials and Fig. S2, Fig. S3.

E. EXPERIMENTAL RESULTS ON THE AGING DATASET
Similar to the infant dataset, we used the optimal scheme
of 3D-DCFCN and 3D-DCFCN-BC to segment the aging

hippocampus with the 5-fold cross-validation strategy. This
process takes approximately 16.4 hours to train our designed
method on a Titan Xp GPU. The performance compared
with the state-of-the-art algorithms is reported in TABLE 5.
As shown in the table, the proposed 3D-DCFCN and
3D-DCFCN-BC outperform all of the other methods. Specif-
ically, 3D-DCFCN-BC achieves a mean DSC of 0.8995 for
the left hippocampus, 0.9008 for the right hippocampus, and
0.9002 for the overall hippocampus.

FIGURE 8. Sagittal and 3D views of hippocampal segmentation results on
four different methods for a typical subject in aging dataset. In the 3D
views, the overlapping areas between ground truth (yellow) and
automatic segmentation (red) are shown in blue. The DSC values for the
hippocampus are listed below each method.

We also produce a qualitative illustration of the advantage
of our method on this dataset. Fig. 8 show the sagittal views
and 3D views of the hippocampal segmentation results pre-
dicted by four automatic segmentation methods for a typical
hippocampus.
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We further conduct several experiments for statistical anal-
ysis of hippocampal volume and validation the power of
that volume as a cognitive-decline biomarker. The results,
which can be found in the Supplementary Materials and
Fig. S4, Fig. S5, Fig. S6, and TABLE S1, show that our
methods can satisfactorily reveal hippocampal atrophy in
cognitive-decline groups compared with normal controls.

F. GENERALIZATION ACROSS DATASETS WITH DIFFERENT
MAGNETIC FIELDS
We further evaluate the generalization capacity of our
method. We first split the aging dataset into two groups with
different magnetic fields. Second, we train our models on one
group and test it on the other one, and vice versa. The results
in terms of DSC are displayed in TABLE 6, and it shows that
our method could better generalize across the two different
magnetic fields.

TABLE 6. Generalization performance across elderly datasets with
different magnetic field.

G. TIME, STORAGE COST AND MODEL COMPLEXITY
The computation time of model predicting takes a more
important role in evaluation of its performance than offline
training time. TABLE 7 shows the parameters, forward time
per image, and memory of our models. Note that our method
was trained on a workstation with the following settings:
memory: 8 × 16 GB DDR4; GPU: Nvidia Titan Xp; CPU:
Xeon E5-2667v4; and operating system: Ubuntu 16.04.

Compared with the other methods of TABLE 5 and
TABLE 4, where [9] reported a requirement of 40 seconds per
image, and [29] required approximately 4 min, our proposed
method is at least 40 times faster than these methods.

H. LIMITATION OF OUR METHOD
One of the main limitations of this study is that it
shows slightly over-segmentation of the hippocampal head
and under-segmentation of the hippocampal tail, perhaps
because the different levels of semantic information are
not sufficiently fused. The process might be improved

TABLE 7. Parameters, forward time per image and memory of our models.

by incorporating denser connected networks. Additionally,
the coupling effects of various factors in the model design
are not considered. Therefore, our method might not be able
to exploit a more detailed engineering design of the model on
various tasks. Finally, themethods need to be tested in a larger
cohort. Further research will be undertaken to investigate
these issues.

IV. CONCLUSION
This study proposes the 3D-DCFCN and 3D-DCFCN-BC
techniques for preterm infant and aging hippocampus seg-
mentation of MR brain images. Our methods have a much
faster, more accurate, and stable performance than previ-
ous methods. We incorporate the densely connected block
to make the model more adaptive to the two segmentation
tasks. We also propose a suitable distribution of the hierar-
chical receptive field size to balance the local information
and global information as well as obtain a small enough
computational cost. Additionally, a joint loss function was
presented to improve optimization. Furthermore, we integrate
multimodality MR images and present a new dataset aug-
mentation technique to improve the precision and robustness
on the infant dataset. By comparing our algorithm with the
state-of-the-art approaches, we can see that our method out-
performs all comparison approaches both in accuracy and
speed on the two main datasets. Moreover, our method can
satisfactorily find hippocampal atrophy in cognitive-decline
groups compared with normal controls. Overall, this study
provides a precise and efficient hippocampus segmentation
method and a notably comprehensive evaluation of that.
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