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ABSTRACT This paper develops an integral reinforcement learning (IRL) controller for a class of high-order
multivariable nonlinear systems with unknown control coefficients (UCCs). A new long-term performance
index is first presented, and then the critic neural network (NN) and the action NN are presented to estimate
the unobtainable long-term performance index and the unknown drift of systems, respectively. By combining
the critic and action NNs with Nussbaum-type functions, the IRL controllers for high-order, nonsquare
multivariable systems are proposed to cope with the problem of UCCs. The analysis are given to illustrate
that the stability of the closed-loop system can be obtained, and the signals of the closed-loop systems are
semiglobally uniformly ultimately bounded (UUB). Finally, one simulation example is provided to show the
effectiveness of the proposed IRL controllers.

INDEX TERMS Nussbaum-type functions, integral reinforcement learning, unknown control coefficients,
nonsquare multivariable systems.

I. INTRODUCTION
Adaptive control of multivariable systems has attracted sig-
nificant attention in the last several decades, where the
design of control laws is much more challenging than
the single-input systems due to the dynamic couplings
of the high-frequency gain matrix [1], [2]. In general,
the high-frequency gain matrix of these works are known
in advance to design controllers. However, some practical
systems can not possess the knowledge of the high-frequency
gain matrix in priori, see for example, in [3]–[5]. Hence, one
of fundamental problems of multivariable systems is how to
deal with the unknown high-frequency gain matrix known as
UCCs, which makes the extension from single-input systems
to multivariable systems far from trivial.

To address the problem of UCCs, one of effective meth-
ods is employing Nussbaum-type functions, which was first
proposed in [6] to deal with single-input systems with
UCCs, and then extended to deal with various single-input
dynamics [7]–[10]. However, when multiple control inputs
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with UCCs are considered, i.e., in multivariable systems,
one critical challenge is how to deal with the problem
of multiple Nussbaum-type functions, where the effects
of Nussbaum-type functions may counteract each other.
Attempts to cope with this problem, the work of [11] pro-
posed an adaptive control scheme for the strict-feedback
system, where a new designed Nussbaum-type function was
introduced to allow multiple Nussbaum-type functions in
a single inequality. However, the method of [11] still can-
not be directly extended to multivariable systems. Further-
more, the authors in [12] suggested to construct a partial
Lyapunov function for each control input where only one
Nussbaum-type function exists. Inspired by this idea, some
extended results were applied to multi-agent systems with
UCCs [13]–[15]. Although the whole multi-agent system
can be regarded as a multivariable system, it still needs
more efforts to make an extension to the case of gen-
eral multivariable systems. To completely solve this issue,
the work of [16] designed a novel adaptive control algorithm
for uncertain multivariable systems with UCCs by using
the backstepping control technique. In addition to employ
Nussbaum-type functions, there are some other methods to
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deal with the problem of UCCs, such as nonlinear PI func-
tions in [17]–[21], switching andmonitoring functions in [22]
and the logic-based switching mechanism in [23], [24].

Recently, along with the advantage of the IRL technique,
the long-term performance index was widely adopted to
evaluate the control performance of control systems, see
for example, in [25]–[28]. Along with the IRL technique,
adaptive controllers were designed in [29] for tracking con-
trol of second-order, square multivariable dynamics with
UCCs, where a long-term performance index was adopted
and the Nussbaum-type function was used to deal with the
problem of UCCs. Nevertheless, the results of [29] focused
on the tracking control problem of second-order, square
multi-input multi-output (MIMO) systems. However, extend-
ing the current results in [29] to the case of high-order,
nonsquare multivariable systems subject to UCCs by employ-
ing the IRL technique is still an unsolved and challenging
problem.

Based on the analysis of the previous literature, the aim
of this work is to present an IRL controller for a class
of high-order multivariable nonlinear systems with UCCs.
The long-term performance index will be first presented,
and then the critic and action NNs are designed to esti-
mate the unobtainable long-term performance index and
the unknown drift of systems, respectively. Combined with
Nussbaum-type functions, we can design IRL controllers
for high-order, nonsquare multivariable systems to cope
with the problem of UCCs. It is shown that all signals
of the corresponding closed-loop systems are semiglob-
ally UUB. The contributions of this paper are presented as
follows.

1) This study first proposes a new long-term performance
index. Different from the existing long-term perfor-
mance index in [29], [30], where a small threshold
should be designed, in this paper, the small threshold
is not necessary.

2) Compared with the existing result [29], where the
IRL controller is designed for tracking control of
second-order, square MIMO dynamics, in this paper,
the obtained results are generalized to high-order, non-
square multivariable systems with UCCs.

We organize the rest of this study in the following. Pre-
liminaries and the problem of this study is presented in
Section II, while Section III mainly presents the IRL control
laws for high-order, nonsquare multivariable systems with
UCCs. One example is provided to show the effectiveness
of proposed results in Section IV, and Section V gives the
conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION
Notation: The notation I denotes an identity matrix with

compatible dimensions.L∞ denotes the bounded signals. For
a vector a, ‖a‖ is the Euclidean norm. ‖A‖F denotes the
Frobenius norm for matrix A. λmin(·) and λmax(·) denote the
minimum and maximum eigenvalues.

A. PRELIMINARIES
Definition 1 [6]: A function N (·) is the Nussbaum-type

function if
limk→∞ sup

(
1
k

∫ k
0 N (τ ) dτ

)
= +∞

limk→∞ inf
(
1
k

∫ k
0 N (τ ) dτ

)
= −∞.

(1)

Lemma 1 [31]: Suppose V (·) and k(·) are smooth func-
tions over [0, tf ) satisfying V (t) ≥ 0 ∀t ∈ [0, tf ), N (·) is
the Nussbaum-type function, and φ is some nonzero constant.
If we have

V (t) ≤
∫ t

0
(φN (k(τ ))+ 1) k̇(τ )dτ + c , ∀t ∈ [0, tf ) (2)

where c ∈ R is a constant, then V (t), k(t) and∫ t
0 (φN (k(τ ))+ 1) k̇(τ )dτ are bounded on [0, tf ).
We will present some basic knowledge on radial basis

function neural network (RBFNN), and by which we can
approximate any continuous nonlinear functions. In view
of [32], we can use the RBFNN to approximate a continuous
function h(x) : Rq

→ R by

hnn(x) = W T9(x), (3)

where x ∈ �x ⊂ Rq is the vector of input, W ∈ Rl is the
vector of weight, l ≥ 1 is the node number of neural network,
and 9(x) = [ψ1(x), ψ2(x), . . . , ψl(x)]T with ψi(x), i =
1, 2, . . . , l being the Gaussian function as

ψi(x) = exp

[
− (x − µ̄i)T (x − µ̄i)

η2i

]
, (4)

where µ̄i = [µi1, µi2, . . . , µil]T is the center of receptive
field and ηi is the width of the Gaussian function. It is
known [33] that if l is sufficiently large, (3) can approximate
any continuous nonlinear functions on �x ⊂ Rq with any
accuracy

h(x) = W ∗T9(x)+ ε, ∀x ∈ �x , (5)

where the ideal weight isW ∗ and ε is the approximation error.
Furthermore, there exist ideal unknown, constant weightsW ∗

such that |ε| ≤ ε∗ with constant ε∗ > 0 for all x ∈ �x .
Furthermore, let Ŵ be the estimate of W ∗, then the weight
estimation error can be defined as W̃ = Ŵ −W ∗.
In order to derive main results of this study, the following

lemmas are needed:
Lemma 2 [29]: For any two matrices A =

(
aij
)
m×n ∈

Rm×n and B =
(
bij
)
m×n ∈ Rm×n, one has tr(ATB) ≤

‖A‖F ‖B‖F . Furthermore, it is known that tr(ATA) = ‖A‖2F
and

∥∥ATB∥∥F ≤ ‖A‖F ‖B‖F . For any a ∈ Rn and b ∈ Rn, one
has

∥∥aT b∥∥F ≤ ‖a‖ ‖b‖ and ‖Aa‖F ≤ ‖A‖F ‖a‖.
Lemma 3 [34]: Let S ∈ Rm×m be a matrix, and x ∈ Rm

is a nonzero vector. If we define κ = xT Sx
xT x , then at least

one eigenvalue of matrix S is in (−∞, κ] and at least one
in [κ,+∞).
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B. PROBLEM FORMULATION
Consider a continuous-time high-order nonlinear systemwith
nth-order (n ≥ 1) as

x(n)(t) = f (x(t))+ g (x(t)) u(t)+ d(t) (6)

where x(t) = [x(t), ẋ(t), . . . , x(n−1)(t)]T with x(t) ∈ Rk ,
x(m)(t) ∈ Rk , m = 1, 2, . . . , n − 1 being the mth derivative
of the system state. The smooth function f (x(t)) ∈ Rk

represents an unknown nonlinear drift, g(x(t)) ∈ Rk×l(k ≤
l) is the high-frequency gain, d(t) ∈ Rk is the unknown,
bounded disturbance, and u(t) ∈ Rl represents the control
input.

The aim is to design IRL controllers for high-order nonlin-
ear system (6) such that the stability is guaranteed, i.e.,{

limt→∞ x(t) = 0k×1
limt→∞ x(m)(t) = 0k×1

(7)

for m = 1, 2, . . . , n − 1. Furthermore, all the signals of the
closed-loop system are semiglobally UUB.

III. MAIN RESULTS
In this section, we present IRL controllers for the high-order
nonlinear system with UCCs. To facilitate the design proce-
dure, we first introduce the following state variables,

$ (t) =
(
β +

d
dt

)n−1
x(t)

= C0
n−1β

n−1x(t)+ C1
n−1β

n−2ẋ(t)

+ · · · + Cn−2
n−1βx

(n−2)(t)+ Cn−1
n−1 x

(n−1)(t) (8)

and

ϑ(t) = C0
n−1β

n−1ẋ(t)+ C1
n−1β

n−2ẍ(t)+ · · ·

+Cn−3
n−1β

2x(n−2)(t)+ Cn−2
n−1βx

(n−1)(t), (9)

where β > 0 is a constant, and C j
i s’ are coefficients of the

binomial expansion.
In what follows, the following assumption is needed.
Assumption 1: The matrix g (x(t)) is nonsquare and par-

tially unknown with

g (x(t)) = g0 (x(t)) gu (x(t)) , (10)

where the matrix g0 (x(t)) ∈ Rk×l is known, bounded with
full row rank, and the matrix gu (x(t)) ∈ Rl×l is unknown.
Furthermore, the matrix g0 (x(t))

[
gu (x(t))+ gTu (x(t))

]
gT0 (x(t)) is either positive or negative definite.

According to Lemma 3 with Assumption 1, we have

ρ(t) ‖$ (t)‖2 =
1

2 ‖g0 (x(t))‖
$ T (t)g0 (x(t))

×

(
gTu (x̄(t))+gu(x̄(t))

)
gT0 (x(t))$ (t) (11)

where λmin (t) ≤ ρ(t) ≤ λmax (t), λmin (t) and λmax (t)
are respectively the minimum and maximum eigenvalues of
matrix 1

2‖g0(x(t))‖
g0 (x(t))

(
gTu (x̄(t))+ gu(x̄(t))

)
gT0 (x(t)), and

$ (t) is defined in (8). From Assumption 1 and the definition
of (11), we know that the sign of ρ(t) is nonzero, constant but
unknown.

1) CRITIC NN DESIGN
A long-term performance index is proposed as

Js(t) =
∫
∞

t
γ

t−τ
T p($ (τ))dτ, (12)

where p($ (τ)) = [p($1 (τ )), p($2 (τ )), . . . , p($k (τ ))]T

with p($i (τ )) = tanh($ 2
i (τ )). To construct the Bellman

error for system (6), we define

Js(t − T ) =
∫
∞

t−T
γ

t−T−τ
T p($ (τ))dτ

= γ−1Js(t)+ γ−1
∫ t

t−T
γ

t−τ
T p($ (τ))dτ

= γ−1 (Js(t)+ psc) (13)

with

psc =
∫ t

t−T
γ

t−τ
T p($ (τ))dτ, (14)

where psc represents the value cost on [t − T , t). It is
known that psc =

[
psc1 , psc2 , . . . , psck

]T with psci =∫ t
t−T γ

t−τ
T tanh($ 2

i (τ ))dτ ≤
∫ t
t−T γ

t−τ
T dτ = T

ln γ (γ − 1),
which implies ‖psc‖ ≤ dpsc with a positive constant dpsc .
Furthermore, it is seen from (12) that Js(t) contains future
dynamical information. Then, the RBFNN is adopted to
approximate it, i.e.,

Js(t) = W ∗Tsc 9sc(xsc(t))+ εsc(xsc(t)), ∀xsc ∈ �xsc , (15)

where the bounded ideal weight is W ∗sc satisfying∥∥W ∗sc∥∥F ≤ dWsc , the RBF vector 9sc(xsc(t)) is bounded with
‖9sc(xsc(t))‖ ≤ d9sc , and the approximation error εsc(xsc(t))
is bounded with ‖εsc(xsc(t))‖ < dεsc . In general, the weight
W ∗sc is unknown. Therefore, we have to estimate Js(t) by

Ĵs(t) = Ŵ T
sc9sc(xsc(t)) (16)

and Js(t − T ) is estimated by

Ĵs(t − T ) = Ŵ T
sc9sc(xsc(t − T )), (17)

where xsc(t) = x̄(t). In what follows, we design the updated
law of weight Ŵsc. A difference error of the long-term per-
formance index is defined as

esc = Ĵs(t)− γ Ĵs(t − T )+ psc
= W̃ T

sc49sc(t)+ psc +W ∗Tsc 49sc(t), (18)

where 49sc(t) = 9sc(xsc(t))− γ9sc(xsc(t − T )) and W̃sc =

Ŵsc −W ∗sc. Then, Ŵsc is updated by

˙̂Wsc=−5sc49sc(t)
[
Ŵ T
sc49sc(t)+psc

]T
−δsc5scŴsc, (19)

where 5sc > 0 and δsc > 0 is to be prescribed. The
first term of (19) is to minimize the critic error ‖esc‖, and
the second term is a modification term to make (19) robust to
the disturbances [35].
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2) ACTION NN DESIGN
To design the action NN, the RBFNN is first established to
approximate the unknown function f (x(t)), i.e.,

f (x(t)) = W ∗Tsa 9sa(xsa(t))+ εsa(t), ∀xsa ∈ �xsa , (20)

where the ideal weight is W ∗sa satisfying
∥∥W ∗sa∥∥F ≤ dWsa ,

the RBF vector 9sa(xsa(t)) satisfies ‖9sa(xsa(t))‖ ≤ d9sa ,
and εsa(t) with ‖εsa(xsa(t))‖ < dεsa is the approximation
error. Since the weight W ∗sa is unknown, we must estimate
f (x(t)) by

f̂ (x(t)) = Ŵ T
sa9sa(xsa(t)), (21)

where xsa(t) = x̄(t). Next, we design the updated law of
weight Ŵsa. The aim of designing the action NN is to let$ (t)
and Js(t) approach to zero, which implies the state x(t) and
its derivatives x(m)(t), m = 1, 2, . . . , n− 1 converge to zero.
In this way, we define the action error as

esa = $ (t)+ Ĵs(t) = $ (t)+ Ŵ T
sc9sc(xsc(t)). (22)

Then, Ŵsa is undated by

˙̂Wsa = 5sa9sa(xsa(t))
[
$ (t)+ Ŵ T

sc9sc(xsc(t))
]T

−δsa5saŴsa, (23)

where 5sa > 0 and δsa > 0 is to be designed. Define W̃sa =

Ŵsa−W ∗sa. Similarly, the first term of (23) is to minimize the
action error ‖esa‖, and the second term is a modification term
to make (23) robust to the disturbances [35].

Based on the above critic and action NNs, the IRL con-
troller for nonsquare multivariable systems with UCCs can
be proposed as

u(t) = N (χ (t))
gT0 (x̄(t))$ (t)$ T (t)ū(t)

‖g0(x̄(t))‖ ‖$ (t)‖2
(24)

with {
χ̇ (t) = $ T (t)ū(t)
ū(t) = ξ (t)+ ϑ(t)+ Ŵ T

sa9sa(xsa(t))
(25)

and {
ξ (t) = ϕ(t) tanh ($ (t)λt)+$ (t)
ϕ̇(t) = $ T (t) tanh ($ (t)λt) ,

(26)

where λt = 1 + t2, and tanh(·) is the hyperbolic tangent
function. Then, the stability results for the controller (24) are
summarized as follows:
Theorem 1: Consider a continuous-time nonsquare multi-

variable system with UCCs given in (6) satisfying Assump-
tion 1. The IRL controller (24), (25) and (26) with the critic
NN (16) and (19), and the actionNN (21) and (23) can achieve
the objective (7) if the designed parameters are properly
chosen, i.e., {

δsa ≥ d29sa
δsc ≥ d29sc

(27)

Furthermore, all signals of the closed-loop system are
semiglobally UUB.

Proof: Considering the following positive definite func-
tion

Vs(t) =
1
2
$ T (t)$ (t)+

1
2
tr
(
W̃ T
sa(t)5

−1
sa W̃sa(t)

)
+
1
2
tr
(
W̃ T
sc(t)5

−1
sc W̃sc(t)

)
+

1
2
ϕ̃2(t), (28)

where we have defined W̃sa(t) = Ŵsa(t) − W ∗sa, W̃sc(t) =
Ŵsc(t) − W ∗sc, ϕ̃(t) = ϕ(t) −

(
D+ dεsa

)
and D > 0 is the

unknown upper bound of the two-norm of ‖d(t)‖. Further-
more, the elements of vector $ (t) are defined as $i(t) for
i = 1, 2, . . . , k .
Let define V1(t) = 1

2$
T (t)$ (t) + 1

2 ϕ̃
2(t), V2(t) =

1
2 tr(W̃

T
sa(t)5

−1
sa W̃sa(t)) and V3(t) = 1

2 tr(W̃
T
sc(t)5

−1
sc W̃sc(t)).

By employing (24), (25) and (26) with the critic NN (16) and
(19), and the action NN (21) and (23), we have

V̇1(t) = $ T (t)$̇ (t)+ ϕ̃(t) ˙̃ϕ(t)

= $ T (t) [f (x̄(t))+ g(x̄(t))u(t)+ d(t)+ ϑ(t)]

+
[
ϕ(t)−

(
D+ dεsa

)]
ϕ̇(t)

= [ρ(t)N (χ (t))+ 1] χ̇ (t)−$ T (t)$ (t)

−$ T (t)W̃ T
sa(t)9sa(xsa(t))

+$ T (t) [d(t)+ εsa(t)]

−$ T (t) tanh ($ (t)λt)
(
D+ dεsa

)
≤ [ρ(t)N (χ (t))+ 1] χ̇ (t)

−$ T (t)W̃ T
sa(t)9sa(xsa(t))+

(
D+ dεsa

)
×

k∑
i=1

[|$i(t)| −$i(t) tanh ($i(t)λt)]

≤ [ρ(t)N (χ (t))+ 1] χ̇ (t)+
0.285
λt

k
(
D+ dεa

)
−$ T (t)W̃ T

sa(t)9sa(xsa(t)), (29)

where we have used |y| − y tanh (yλt) ≤ 0.2785/λt . Further-
more, we have from V2(t) = 1

2 tr
(
W̃ T
sa(t)5

−1
sa W̃sa(t)

)
that

V̇2(t) = tr
(
W̃ T
sa(t)5

−1
sa
˙̂Wsa(t)

)
= tr

[
W̃ T
sa(t)9sa(xsa(t))$ T (t)

]
−δsatr

[
W̃ T
sa(t)Ŵsa(t)

]
+tr

[
W̃ T
sa(t)9sa(xsa(t))9T

sc(xsc(t))Ŵsc(t)
]

≤ tr
[
W̃ T
sa(t)9sa(xsa(t))$ T (t)

]
+d9sad9sc

∥∥∥W̃sa(t)
∥∥∥
F

∥∥∥W̃sc(t)
∥∥∥
F

−δsatr
[
W̃ T
sa(t)W̃sa(t)

]
+ dV2

∥∥∥W̃sa(t)
∥∥∥
F
, (30)
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where dV2 = d9sad9scdWsc − δsadWsa . In addition, we have
from V3(t) = 1

2 tr
(
W̃ T
sc(t)5

−1
sc W̃sc(t)

)
that

V̇3(t) = tr
(
W̃ T
sc(t)5

−1
sc
˙̂Wsc(t)

)
= tr

[
W̃ T
sc(t)49sc(t)

(
Ŵ T
sc49sc(t)+ psc

)T]
−δsctr

[
W̃ T
sc(t)Ŵsc

]
≤ −δsctr

[
W̃ T
sc(t)W̃sc(t)

]
− dV3

∥∥∥W̃sc(t)
∥∥∥
F
, (31)

where dV3 = (1+ γ ) d9scdpc + (1+ γ )2 d29scdWsc +

(1+ γ ) δscd9scdWsc . Then the derivative of Vs(t) is given as

V̇s(t) = V̇1(t)+ V̇2(t)+ V̇3(t)

≤ [ρ(t)N (χ (t))+ 1]χ (t)+
0.285
λt

k
(
D+ dεa

)
−$ T (t)W̃ T

sa(t)9sa(xsa(t))+ dV2
∥∥∥W̃sa(t)

∥∥∥
F

−δsatr
[
W̃ T
sa(t)W̃sa(t)

]
− δsctr

[
W̃ T
sc(t)W̃sc(t)

]
+tr

[
W̃ T
sa(t)9sa(xsa(t))$ T (t)

]
− dV3

∥∥∥W̃sc(t)
∥∥∥
F

+d9sad9sc
∥∥∥W̃sa(t)

∥∥∥
F

∥∥∥W̃sc(t)
∥∥∥
F

≤ [ρ(t)N (χ (t))+ 1]χ (t)+
0.285
λt

k
(
D+ dεa

)
−
1
2

(
δsa − d29sa

) ∥∥∥W̃sa(t)
∥∥∥2
F
+

d2V2
2δsa

−
1
2

(
δsc − d29sc

) ∥∥∥W̃sc(t)
∥∥∥2
F
+

d2V3
2δsc

−
δsa

2

[∥∥∥W̃sa(t)
∥∥∥
F
−
dV2
δsa

]2
−
δsc

2

[∥∥∥W̃sc(t)
∥∥∥
F
−
dV3
δsc

]2
−
1
2

[
d9sa

∥∥∥W̃sa(t)
∥∥∥
F
− d9sc

∥∥∥W̃sc(t)
∥∥∥
F

]2
≤ [ρ(t)N (χ (t))+ 1]χ (t)+

0.2785
λt

k
(
D+ dεa

)
+
d2V2
2δsa
+

d2V3
2δsc

, (32)

where we have used δsa ≥ d29sa and δsc ≥ d
2
9sc

given in (27).
Since Vs(t) and χ (t) are smooth functions on

[
0, tf

)
with

Vs(t) ≥ 0, using Lemma 1 we have

Vs(t), χ(t),
∫ t

0
[ρ(t)N (χ (τ ))+ 1] χ̇ (τ )dτ (33)

are semiglobally UUB on
[
0, tf

)
.

If the designed parameters of the closed-loop system
are properly chosen, i.e., the inequality (27), there exists
a compact set � being the domain of attraction. Note
that the compact set can be made to include any ini-
tial conditions by designing parameters. Therefore, the sig-
nals of the closed-loop system are semiglobally UUB.

It is seen that $ T (t)$ (t) ∈ L∞, ‖$ (t) ‖ ∈ L∞,∥∥∥Ŵsa(t)
∥∥∥
F
∈ L∞,

∥∥∥Ŵsc(t)
∥∥∥
F
∈ L∞, and ϕ(t) ∈ L∞, which

implies $i(t), V̇1(t), V̇2(t), V̇3(t) ∈ L∞. Thus, we have
d
(
$T (t)$ (t)

)
dt = 2$ T (t)$̇ (t) = 2

[
V̇1(t)− ϕ̃(t) ˙̃ϕ(t)

]
∈

L∞, which means $̇i(t) ∈ L∞. Meanwhile, it is
seen from (29) that

∫ t
0 $

T (τ )$ (τ )dτ ∈ L∞, which
implies

∫ t
0 $

2
i (τ )dτ ∈ L∞. Therefore, by using Barbalat’s

lemma with $i(t), $̇i(t),
∫ t
0 $

2
i (τ )dτ ∈ L∞, we have

limt→∞$i(t) = 0 for i = 1, 2, . . . , k .
Let xi(t), i = 1, 2, . . . , k be the elements of x(t). Similarly,

let x(m)i (t), m = 1, 2, . . . , n − 1, i = 1, 2, . . . , k be the
elements of x(m)(t), m = 1, 2, . . . , n − 1. Suppose ϑi(t),
i = 1, 2, . . . , k are the elements of ϑ(t). It is seen from (8)
and (9) that the elements$i(t) and ϑi(t) are represented as

$i(t) =
(
β +

d
dt

)n−1
xi(t)

= C0
n−1β

n−1xi(t)+ C1
n−1β

n−2ẋi(t)+ · · ·

+Cn−2
n−1βx

(n−2)
i (t)+ Cn−1

n−1 x
(n−1)
i (t) (34)

and

ϑi(t) = C0
n−1β

n−1ẋi(t)+ C1
n−1β

n−2ẍi(t)+ · · ·

+Cn−3
n−1β

2x(n−2)i (t)+ Cn−2
n−1βx

(n−1)
i (t). (35)

Therefore, according to Lemma 3 in [36], since limt→∞
$i(t) = 0 for i = 1, 2, . . . , k , the elements xi(t) , i =
1, 2, . . . , k and its derivatives x(m)i (t),m = 1, 2, . . . , n−1, i =
1, 2, . . . , k converge to zero as t →∞, i.e., the objective (7)
is achieved.
Remark 1: Compared with existing results [29], where the

IRL controller is designed for tracking control of second-
order, square multivariable dynamics, in this paper, the pro-
posed controllers are developed for high-order, nonsquare
multivariable systems.

In what follows, wewill consider the system (6) in a special
case, namely, the g (x(t)) is assumed to be a square matrix.
In this case, the following assumption is needed.
Assumption 2: The matrix g (x(t)) + gT (x(t)) is either

positive or negative definite.
According to Lemma 3 with Assumption 2, we define

1
2
$ T (t)

(
gT (x̄(t))+ g(x̄(t))

)
$ (t) = ρ(t) ‖$ (t)‖2 , (36)

where λmin (t) ≤ ρ(t) ≤ λmax (t), λmin (t) and λmax (t)
are respectively the minimum and maximum eigenvalues of
matrix 1

2

(
gT (x̄(t))+ g(x̄(t))

)
, and $ (t) is defined in (8).

From Assumption 2 and the definition of (36), we know that
the sign of ρ(t) is nonzero, constant but unknown.

It is easy to see that the Assumption 2 can be regarded
as a special case of Assumption 1. Therefore, following the
similar design procedure of nonsquare multivariable systems,
the IRL controller for the square multivariable system with
UCCs can be proposed as

u(t) = N (χ (t))
$ (t)$ T (t)ū(t)

‖$ (t)‖2
(37)
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FIGURE 1. The state trajectories xi (t) and ẋi (t) of the multivariable
system.

with (25) and (26) Then, the stability results are summarized
as follows:
Corollary 1: Consider a continuous-time square multi-

variable system with UCCs given in (6) satisfying Assump-
tion 2. The IRL controller (37), (25) and (26) with the critic
NN (16) and (19), and the actionNN (21) and (23) can achieve
the objective (7) if the designed parameters are properly
chosen, i.e., the conditions (27) are satisfied. Furthermore,
all signals of the closed-loop system are semiglobally UUB.

Proof: It is seen that the Assumption 2 can be regarded
as a special case of Assumption 1. Therefore, the result of this
corollary is a direct consequence of Theorem 1.

IV. SIMULATION EXAMPLES
In this section, one example is adopted to illustrate the effec-
tiveness of the proposed controllers. We consider a system
with second-order dynamics (k = 2) described by (6), where

g (x(t)) = g0 (x(t)) gu (x(t)) ,

in which

g0 (x(t)) =
[

1 2 0
−2 0 1

]
is the known, bounded matrix with full row rank, and

gu (x(t)) =

 2 0 0
0 4− cos(x1) 1
0 1 3− sin(x2)


is the unknown matrix. It is seen that g (x(t)) ∈ R2×3

is a nonsquare and partially unknown matrix. Let d(t) =
[sin(t), sin(2t)+ 1]T . Therefore, this is a nonsquare mul-
tivariable system satisfying all the imposed conditions in
Section III. The initial condition of the system is x(0) =
[−1, 3], ẋ(0) = [2,−5], γ = 0.8 and T = 0.4. The
NN terms Ŵ T

sa9sa(x̄) and Ŵ T
sc9sc(x̄) with input vector x̄ =

[x(t), ẋ(t)]T have 21 nodes with centers µl , l = 1, 2, . . . , 21,
evenly spaced in [−4, 4]× [−4, 4]× [−4, 4]× [−4, 4], and
widths ηl = 4, l = 1, 2, . . . , 21. Furthermore, to satisfy the
conditions in Theorem 1, let the parameters δsa = δsc = 2.
The Nussbaum-type function is N (χ (t)) = χ (t)2 cos(χ (t)),
the initial states of χ (t) and Ŵsa(t) are zero, the initial state
Ŵsc(0) = I21×2, and the parameters 5sa = 5sc = 0.3I21.
The simulation results are given in Fig. 1-4, where it is shown
that the objective (7) can be achieved. Moreover, the signals
of the closed-loop system are all bounded.

FIGURE 2. The weight norms
∥∥∥Ŵa(t)

∥∥∥
F

and
∥∥∥Ŵc (t)

∥∥∥
F

of the multivariable
system.

FIGURE 3. The Nussbaum parameters χ(t) and N(χ(t)) of the
multivariable system.

FIGURE 4. The estimated performance index Ĵ(t) of the multivariable
system.

V. CONCLUSION
In this paper, we have developed an IRL controller for
a class of high-order multivariable nonlinear systems with
UCCs. A new long-term performance index is first proposed
to estimate the control performance, where a critic NN is
designed since the long-term performance index contains
unknown future states. Then, the action NN is prescribed to
approximate the unknown drift of systems. By designing the
critic and action NNs with Nussbaum-type functions, the IRL
controllers of high-order, nonsquare multivariable systems
can solve the problem of UCCs. It is proven rigorously that
the signals of the closed-loop systems are semiglobally UUB.
Finally, one example has been employed to illustrate the
effectiveness of the proposed IRL controllers. Future work
may focus on input saturation, sampled-data and time-delay
with dynamics subject to UCCs.
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