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ABSTRACT The result of radar signal sorting directly affects the performance of electronic reconnaissance
equipment. Sorting method based on intra-pulse features has become a research focus in recent years.
However, as the number of extracted features increases, the dimension of the feature vector becomes higher
and higher. And too many dimensional feature vectors would make the complexity of the sorting algorithm
increase geometrically. In this way, feature selection becomes more and more necessary. Combining the
latest research on fuzzy rough sets, this paper proposes two feature selection methods, namely two-steps
attribute reduction based on fuzzy dependency (TARFD) algorithm and fuzzy rough artificial bee colony
(FRABC) algorithm. The TARFD method uses the candidate attribute set as starting point, according to the
definition of the redundant attribute set. Then the less important attributes are successively eliminated. The
FRABC method starts from the dependence degree of fuzzy rough set, and constructs a fitness function that
reflects the importance of the attribute subset and the reduction rate. Based on this function, the artificial bee
colony algorithm is used to reduce the attributes of the dataset. Using the TARFD and FRABC algorithms,
the extracted feature sets, including entropy feature set, Zernike moment feature set, pseudo Zernike feature
set, gray level co-occurrence matrix (GLCM) feature set, and Hu-invariant moment feature set are processed,
then an optimal feature subset was obtained and a sorting test was performed. The results show the
effectiveness of the extracted intra-pulse features and the efficiency of the feature selection algorithm.

INDEX TERMS Feature extraction, feature selection, feature set, support vector machine, support vector
clustering.

I. INTRODUCTION
At present, with the widespread application of complex
radars, the modern electronic countermeasure environment
is becoming more and more complex. The signal density of
the electromagnetic threat environment has reached millions
of orders [1], which mean that the pulse streams from the
same direction are also densely complex. In this case, the per-
formance is greatly depressed when only the RF and PW
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parameters are used for sorting. In view of this problem,
it is necessary to extract new features for characterizing
the intra-pulse data of the radiation source signal, that is,
to augment the conventional parameter set, and to describe the
intra-pulse modulation difference of the radar signal with new
features to solve the sorting problem caused by complex radar
system and the diverse waveform. Radar signal sorting is dif-
ficult with conventional parameters because these parameters
are usually from the single direction and can be changed
in each parameter domain, and even overlap. In recent
years, many new intra-pulse feature extraction methods have
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been proposed, such as wavelet analysis [2], [3], atomic
decomposition [4], time-frequency analysis [5]–[8], and
high-order statistical analysis methods [9]–[11], for example,
extracts entropy feature set [11], Zernike moment feature
set [12], pseudo Zernike feature set [13], [14], gray level
co-occurrence matrix (GLCM) feature set [15] and so on.

However, not all the extracted intra-pulse features contain
necessary information for classifying and sorting radar sig-
nals. Too many features may not only depress the sorting
effect, but also may reduce the sorting efficiency. Therefore,
in view of changing rule, distribution form, anti-noise perfor-
mance and other aspects of the effectiveness of each feature,
we need to study the feature selection methods, that is, select
a set of reliable feature subsets to reduce the intra-pulse
feature dimension effectively and maximize the classification
effect meanwhile [16]. In recent years, the feature selection
(attribute reduction) based on fuzzy rough set (FRS) has
received much attention, and has achieved many research
results [17]–[20]. These methods mainly focus on the use
of distinguishing matrix, dependency and reduction methods
with optimization algorithms.

In this paper, the theoretical and experimental analysis of
the above problems is carried out, that is, the sorting method
based on intra-pulse features is studied, and the minimum
intra-pulse feature subset which could better characterize the
radar signal is obtained, and the intra-pulse feature subset
is utilized. The sorting experiment verifies the effectiveness
of the extracted features and feature selection methods with
the proposed sorting method of modification cone map-
ping support vector clustering (MCMSVC) with similitude
entropy (SE) index (called SE-MSVC) in [21].

II. FEATURE EXTRACTION AND SIGNAL SORTING
BASED ON FEATURE SET
Rough set theory is a mathematical tool capable of handling
inaccurate and incomplete information. Let I = (U , A ∪ Q)
be an information system, where U represents a non-empty
finite set of objects, namely the domain. And A represents
a non-empty finite set of conditional attributes. Unless oth-
erwise specified, attributes refer to conditional attributes.
In the information system, Q represents a non-empty finite
set of decision attributes, that is, a category attribute set.
The attribute set P ⊆ A corresponds to an indistinguishable
equivalent relationship. Without ambiguity, this equivalent
relationship is abbreviated as P, and the following research
is carried out on the premise of this information system.

A. FEATURE SELECTION METHOD
1) FUZZY DEPENDENCY ANALYSIS
In the domain U , objects x may belong to more than one
fuzzy equivalent class determined by fuzzy attributes. There-
fore, the fuzzy equivalent class determined by multiple fuzzy
attributes, that is, the Cartesian product of fuzzy equivalent
classes determined by a single fuzzy attribute.

For the distinct rough sets, U/P determines a cluster set
consisting of different sets composed of all indistinguish-
able objects. Supposing that the attribute set P contains m
attributes {a1, a2, . . . , am}, for the sets B and C , the operator
⊗ is defined as:

B⊗ C = {X ∩ Y : ∀X ∈ B,∀Y ∈ C,X ∩ Y 6= φ} (1)

Then U/P can be calculated by:

U/P = ⊗{ai ∈ P : U/IND (ai) , i = 1, 2, . . . ,m}

= U/ {a1} ⊗ U/ {a2} ⊗ . . .⊗ U/ {am} (2)

Consider the situation at m = 2:

U/P = U/ {a1} ⊗ U/ {a2}

=
{
Xa11 ,X

a1
2 , . . .

}
⊗
{
Xa21 ,X

a2
2 , . . .

}
(3)

This means:

U/P =
{
Xa11 ∩ X

a2
1 ,X

a1
1 ∩ X

a2
2 , . . . ,X

a1
2 ∩ X

a2
1 , ...

}
(4)

The sets
{
Xa11 ,X

a1
2 , . . .

}
and

{
Xa21 ,X

a2
2 , . . .

}
represent the

divisions of U determined by the attributes {a1} and {a2}
respectively. In the distinct rough set, distinct set is Xaij =
[xj]{ai}. The divisions of U determined by P are all distinct
sets U/P = {X1,X2, . . . ,Xn}, where ∀Xi ∈ X , and the
membership function is used to represent the relationship
with x ∈ U and Xi, then:

µXi (x) =

{
1 x ∈ Xi
0 x /∈ Xi

(5)

When the continuous attribute interval is divided according
to actual needs, in order to determine the fuzzy equivalent
class of each fuzzy attribute, each sub-interval divided by the
fuzzy condition attribute corresponds to a fuzzy equivalent
class of the attribute.

In the fuzzy rough set, a single attribute {ai} still corre-
sponds to the equivalent relationship of an indistinguishable
relationship. It is still briefly described as {ai}. The calcula-
tion of U/P in the fuzzy rough set is similar to the distinct
rough set. The difference is that the sets

{
Xa11 ,X

a1
2 , . . .

}
and{

Xa21 ,X
a2
2 , . . .

}
represent a fuzzy division of U determined

by attributes {a1} and {a2} respectively.
The symbol Xaij represents the jth interval obtained by seg-

menting attribute ai by some attribute interval segmentation
algorithm. All objects in this interval are indistinguishable.
To distinguish them from distinct rough sets, let Faij = Xaij .

Let the fuzzy division of U determined by P is U/P =
{F1,F2, . . . ,Fn}, since ∀Fi ∈ U/P are all fuzzy sets,
the degree to which object xk belongs to Fi can be obtained
by calculating the degree to which object xk belongs to the
intersection of all fuzzy sets forming Fi.
Considering the situation at m = 2 as well, let’s set Fi =

F
ag
r ∩F

ah
t , where g, h, r, t = 1 or 2, and use the membership

function to represent the relationship between x andFi, which
is:

µFi (x) = µFagr ∩Faht
(x) = min

(
µF

ag
r
(x), µFaht (x)

)
(6)
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If m > 2, then the relationship between x and Fi is similar
to the membership function obtained at m = 2.
The distinct positive field in classical rough set theory is

defined as the lower approximation union set. This concept is
extended to the fuzzy positive field to obtain the membership
degree of the object x with respect to the fuzzy positive field:

µPOSP(Q)(x) = sup
X∈U/Q

µPX (x) (7)

According to the meaning of membership and the defini-
tion of fuzzy positive domain, the dependence of decision
attribute Q on conditional attribute set P under fuzzy rough
set conditions can be found [17]:

k ′=γ ′P(Q)=
∣∣µPOSP(Q) (x)∣∣/|U |=∑x∈U

µPOSP(Q) (x)
/
|U |

(8)

where |U | represents the potential of U , that is, the number
of objects in U . Similar to the classic rough set dependency,
the above formula represents the proportion of distinguish-
able objects in the entire data set when only the information
in P is used. According to the above formula, the potential
of µPOSP(Q) is divided by the potential of the universe U . The
above formula also indicates the degree to which Q depends
on P. P determines the value of Q in proportion k ′, that is, P
determines the classification effect. The larger the value k ′,
the better the effect obtained when classifying signals based
on attribute P.
The dependency described by formula (8) can be general-

ized to the dependency between attributes, taking P and Q as
a single attribute set, that is, P = ai, Q = aj, ∀ai, aj ∈ A,
then:

k ′ = γ ′ai,aj = γ
′
ai (aj) =

∣∣∣µPOSai,aj (x)∣∣∣/|U |
=

∑
x∈U

µPOSai,aj (x)
/
|U | (9)

Equation (9) characterizes the degree to which the attribute
aj depends on the attribute ai. And ai determines the value of
aj in proportion. The larger the value k ′, the greater the ability
of ai to determine the value of aj.
The following description uses a simple decision table

as an example to explain the calculation of the fuzzy
dependency. Supposing the original decision table is shown
in Table 1, where a1, a2 and a3 denote the conditional
attributes, and Q denote the decision attributes. Firstly,
the fuzzy lower approximation of a1, a2, a3 are calculated,
and then the dependence degrees of each attribute by for-
mula (9) are calculated.

TABLE 1. Decision table with continuous attribute values.

The attribute values in this table are continuous. Under the
fuzzy similarity relationship, it is still required to divide the
continuous attribute interval to determine the fuzzy equiva-
lent class of each fuzzy attribute. Each sub-interval divided
by the fuzzy condition attribute corresponds to a fuzzy equiv-
alence class of the attribute. The membership function of the
equivalence class generally includes a trapezoidal function,
a trigonometric function, and a normal distribution function.
After the decision table 1 is processed, the interval division
results are obtained:

A′ = {[−0.5, 0] , [0, 0.5]} =
{
Fa11 ,F

a1
2

}
B′ = {[−0.5, 0] , [0, 0.5]} =

{
Fa21 ,F

a2
2

}
C ′ = {[−0.5, 0] , [0, 0.5]} =

{
Fa31 ,F

a3
2

}
(10)

It can be seen that in each two-dimensional Cartesian
sub-interval determined by the above results, the objects
have the same decision value. So, each condition attribute is
divided into two fuzzy equivalence classes.

For convenience, the fuzzy subset Fa11 of a1 is treated the
same as its membership function µFa11

, and the membership

degree of element x with respect to Fa11 is represented by
µF

a1
1
. For other fuzzy subsets, they are processed in the same

way. Figure 1 shows the membership function corresponding
to each fuzzy equivalent class of the attribute determined by
the trigonometric function and the trapezoidal function.

FIGURE 1. Membership function of fuzzy set corresponding to condition
attribute.

Themembership functions of fuzzy equivalent classes Fa11 ,
Fa12 of attribute a1 are defined as:

µF
a1
1
(x) =

{
1, x ≤ 0.5
max{−2x, 0}, x > 0.5

µF
a1
2
(x) =

{
max{2x + 1, 0}, x ≤ 0
max{−2x + 1, 0}, x > 0

(11)

This gives:

µF
a1
1
(x) = {0.8, 0.8, 0.6, 0, 0, 0}

µF
a1
2
(x) = {0.2, 0.2, 0.4, 0.4, 0.6, 0.6} (12)

The attribute reduction algorithm based on fuzzy rough set
dependency includes two steps. The first one is to determine
the candidate attribute set, and the second one is to deter-
mine whether there are redundant attributes in the candidate
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attribute set. Based on the above analysis, this paper gives two
definitions. The attribute reduction based on fuzzy depen-
dency is mainly carried out by these two definitions.

2) REDUCTION METHOD 1
Definition 1: Supposing aj ∈ A, for ai, it satisfies: ai =

max{aj|γ ′aj (Q), 1, 2. . .m }. For a given threshold Th, when
calculating γ ′aj (Q) (j 6= i), if γ ′aj (Q) > Th, then aj is called
as the first candidate attribute. However, if γ ′aj (Q) ≤ Th and
γ ′
{ai,aj}

(Q) ≤ γ ′ai (Q), aj is called a redundant attribute. But
if γ ′aj (Q) ≤ Th and γ ′

{ai,aj}
(Q) < γ ′ai (Q), then aj is called a

second candidate attribute. The set consisting of the first and
second candidate attributes is called a candidate attribute set.
Definition 2: Let the determined candidate attribute set

be C , supposing ai ∈ C , for ∀aj ∈ C (i 6= j), if
γ ′ai,aj = 1, γ ′aj,ai = 0 or γ ′ai,aj ≈ 1, γ ′aj,ai ≈ 0, then the
attribute aj is called the first redundant attribute, otherwise
aj is called a dependent attribute. For the dependent attribute
aj, if γ ′aj (Q) ≤ γ ′ai (Q) and γ

′
aj,ai > γ ′ai,aj , then aj is a non-

redundant attribute. And if γ ′aj (Q) ≤ γ ′ai (Q) and γ
′
aj,ai ≤

γ ′ai,aj , then aj is called the second redundant attribute. The
set of the first and second redundant attributes is called a
redundant attribute set.

Based on the above analysis, a two-steps attribute reduction
based on fuzzy dependency (TARFD) algorithm is proposed.
The algorithm starts with the candidate attribute set and
deletes the less important attributes one by one according
to the redundant attributes obtained in Definition 2 until
the termination condition is met. From this we can see that
the feature reduction algorithm of TARFD belongs to filter
method.

Algorithm TARFD
Step 1 Let Th = 0, and determine the candidate attribute set C
by definition 1. For attribute ai ∈ C , calculate the dependency
γ ′ai (Q) of decision attribute Q on ai;
Step 2 Sort {γ ′ai (Q)|i = 1, 2. . .m, m = |C|} in descend-
ing order to get a set of attributes, denoted as T , T =
{γ ′atl (Q)|γ

′
at1 (Q) ≥ γ ′at2 (Q) · · · ≥ γ ′atl (Q) · · · ≥ γ ′atm (Q)},

where {t1, t2, . . . tl. . . , tm} is one arrangement of i;
Step 3 Let k = 1;
Step 4 Let j = 1, if j ≥ m−k , terminate the algorithm and go
to step 7;
Step 5 Calculate the dependency between attributes.
If γ ′atj (at(j+k)) ≥ γ ′at(j+k) (atj), remove the attribute at at(j+k),
that is, T = T\ {at(j+k)};
Step 6 Let j = j+ 1, if j < m− k , go to step 5, otherwise let
k = k + 1, go to step 4;
Step 7 Finally the T is a relative reduction of conditional
attribute P relative to Q.

3) COMPLEXITY ANALYSIS OF TARFD
As we known, Jensen proposed a quick reduction algorithm
for attribute reduction based on fuzzy rough dependency, and

achieved good reduction results with a small dataset dimen-
sion [17]. However, the computational complexity of the
algorithm increases sharply with the increase of the condition
attribute set. Assuming that the attribute set P contains m
attributes, and the partition ofU determined by each attribute
includes n fuzzy classes, then the partition of U determined
by attribute set P includes nm fuzzy classes. The approximate
computational complexity of the dependency of decision
attribute setP can be expressed asO((nmn)) = O(N (nm+1)) in
the worst case, which means the algorithm does not terminate
until the last attribute is calculated.

For example, suppose P = {a, b}, and the partition deter-
mined by each attribute contains 3 fuzzy classes, then the
dependency of Q with respect to P needs to calculate 9 fuzzy
classes. In fact, it is normal for the number of attribute sets to
be greater than 10. Therefore, if we set |P| = 15, It is needed
to calculate 315 fuzzy classes for the dependency of Q with
respect to P. It can be seen that the computational complexity
of this algorithm is quite large.

For the TARFD algorithm, it only needs to calculate the
single attribute dependency in the attribute set and the depen-
dency of any two attribute combinations. That is, the com-
plexity of the dependency of the attribute set P in the worst
case can be expressed as O(2n2C2

m + nC1
m) ≈ O(2n2C2

m).
If |P| = 15 is set as mentioned above, then it needs to calcu-
late 1935 fuzzy classes. So, compared with quick reduction
algorithm, TARFD algorithm improves the execution effi-
ciency by 315/1935= 7415 times in the worst case, indicating
that the algorithm is efficient.

4) ANOTHER CALCULATION OF FUZZY ROUGH
APPROXIMATION
Let (U , P) be the fuzzy approximation space, that is, P is
the fuzzy equivalence relation on the universe U . Assuming
I represents the edge implication operator and T represents
the t-module, then (I , T )-fuzzy rough approximation on the
fuzzy approximation space (U , P) represents such amapping:

AprI ,T : F(U )→ F(U )× F(U ) (13)

For ∀X ∈ F(U ), Apr I ,T (X ) =
(
PIX , P̄TX

)
is holded. Where

F(U ) represents the whole of the fuzzy subset on U .
The fuzzy set PIX and P̄TX are respectively called the

I - low fuzzy rough approximation and the T - up fuzzy
rough approximation for X in the fuzzy approximation space
(U ,P), and their membership functions are determined by
equations (14) and (15) respectively:

µPIX (x) = infy∈U I (µP (x, y) , µX (y)) , ∀x ∈ U (14)

µP̄TX (x) = supy∈U T (µP (x, y) , µX (y)) , ∀x ∈ U (15)

For ∀y ∈ U , if y ∈ X , then µX (y) is 1, otherwise it is 0.
µP(x, y) indicates the similarity between the objects x and
y determined by the fuzzy relationship P. The implication
operator and t-module are taken respectively:

I (x, y) = min (1− x + y, 1) (16)

T (x, y) = max (x + y− 1, 0) (17)
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Based on the concept of fuzzy equivalence relation P,
the fuzzy equivalence class of an object can be defined.

Then µP(x, y) can be determined by the iterative for-
mula (18):

µP(x, y) = ∩T (µa(x, y)) , a ∈ P (18)

For example, if P = {a1, a2, a3}, then µP(x, y) =(
µ{a1,a2} ∩T µ{a3}

)
(x, y), where

µ{a1,a2}(x, y) =
(
µ{a1} ∩T µ{a2}

)
(x, y)

= T
(
µ{a1}, µ{a2}

)
(19)

For attribute a ∈ P,µa(x, y) could be determined by the fuzzy
similarity relationship, which is expressed by formula (20),
(21) and (22):

µa(x, y) = 1−
|a(x)− a(y)|
amax − amin

(20)

µa(x, y) = exp

(
−
(a(x)− a(y))2

2σ 2
a

)
(21)

µa(x, y)= max
(
min

(
a(x)−a(y)+σa

σa
,
a(y)−a(x)+σa

σa

)
,0
)

(22)

In the formula, a(x) and a(y) represent the values of objects
x and y on feature a respectively, and σa represents the
standard deviation of the values of all objects on feature a.
After many experiments, the equation (22) is used to calculate
the fuzzy similarity relationship between the objects.

5) ARTIFICIAL BEE COLONY ALGORITHM
The artificial bee colony (ABC) algorithm is an intelli-
gent optimization algorithm for the actual parameter clus-
ters [22], [23]. This algorithm is based on the foraging behav-
ior of bee swarms. In the bee swarms, the employed, onlook-
ers and scouts could maximize the nectar through different
functions. Based on this principle, the optimal solution of the
objective function can be solved. Compared with ant colony
algorithm (ACA) [24], [25], ABC algorithm has faster con-
vergence speed and higher estimation accuracy. In the ABC
algorithm, the position of the solution in the optimization
problem is equivalent to the food source, and its value is
determined by the fitness value. To indicate that the initial
solution is equal to the number of leading bees or following
bees, of which the leading bee and the following bees each
account for 50% of the colony, and the detection bee is
converted by the leading bee after abandoning a food source.
The main search process is as follows:

Firstly, randomly generate N initialization solutions, each
solution xi is composed of a d-dimensional vector, denoted
as xi = [xi1, xi2, . . . , xid ], where d represents the number
of parameters included in the solution for the optimization
problem, i = 1, 2, . . .,N ;

Secondly, set the maximum number of cycles of the ABC
algorithm Cmax , and set the maximum searchable number of
feasible solutions at a location t . If the updated solution at this

position still cannot improve the fitness value after searching
t times, then the feasible solution at this position would be
discarded. Let the number of leading bees and following bees
in each cycle be N , the number of cycles C = 1, start the
cycle according to the following steps:

Step 1 Let i = 1, and perform a search for lead bee Ei
according to step 2 until i = N ;
Step 2 Correct the food source solution xi according to

the randomly updated solution vi. If vi improves the fitness
value, replace the original solution with vi, and also record
the replaced solution as xi; otherwise, record the position of
solution xi which is one of the N initialized solutions, and the
solution at this position is called candidate drop solution. vi
is determined by (23):

vij = xij +8ij(xij − xkj) (23)

where xij represents the jth parameter randomly selected in
the solution xi, vij represents the parameter of the candidate
solution vi generated by modifying xij, xkj represents the jth
parameter in the randomly selected solution xk , k is in the
neighborhood of i, and k 6= i,8ij is a random number related
to xij, 8ij ∈[−1,1].

Step 3 Calculate the probability pi of the following bee
selecting the food source xi. The larger the value of pi is,
the better the fitness value could be obtained by xi, and the
greater the probability of being selected by the following bee
is. pi is determined by (24):

pi =
fiti∑N
n=1 fitn

(24)

where fiti represents the fitness value proportional to the
amount of nectar of the food source xi, that is, the value of
the objective function, it is meaning the fitness value of the ith
solution. In the formula, N denotes the number of solutions.
Step 4 Let j= 1, remember that the food source selected by

the follower Oj is xi, and perform a search on Oj according to
step 2 until j = N , where i ∈{1, 2, . . . , N};
Step 5 The detection bee compares the relationship

between the number of records hi and t of each candidate
discarded solution in step 2. If hi > t , the solution would be
discarded, also let hi = 0 and a new random feasible solution
is generated according to formula (25):

rij = xmin
i + ϕij(xmax

i
− xmin

i ) (25)

where rij represents the jth replacement parameter in the solu-
tion xi, xmax

i
and xmin

i represent the maximum and minimum
values of xi, respectively, and φij denotes the random number
associated to rij, φij ∈[0,1], i ∈{1, 2, . . . , N}, j = 1, 2, . . .,N .
Step 6 Record the optimal solution at this time;
Step 7 Determine whether the algorithm has reached the

maximum number of cycles or meets the termination con-
ditions. If any of the conditions are met, the algorithm is
terminated, otherwise C = C+ 1 and the cycle is restarted
from step 1.

Finally, when the algorithm terminates, the solution
obtained in step 6 is the global optimal solution.
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6) FITNESS FUNCTION DESIGN
The fitness function is themost important element in the ABC
algorithm. A food source, that is, the fitness value of the
solution can be understood as the degree to which the solution
is close to the objective function. For function optimization
problems, the fitness function is the objective function. For
attribute reduction problem, there is no ready-made objective
function available, so it is necessary to design a fitness func-
tion suitable for the problem.

The purpose of attribute reduction is to find the smallest
set of conditional attribute whose dependency is equivalent
to the original conditional attribute set, which means the
maximum dependence and the smallest number of attributes
are required. Therefore, the increase of the dependency in the
fitness function or the decrease of the number of attributes
should be beneficial to the increase of the overall fitness.
In order to make the contributions to the fitness function
of the dependency of the attribute set and the number of
attributes in the solution equal, it is necessary to constrain
the contributions of these two conditions to the fitness to the
same order of magnitude. The fitness function in the design
attribute reduction problem is as follows:

fiti = 1
/
(1− fi) (26)

where

fi = (1− α)(
|A| − |Pi|
|A|

)+ α
γPi (Q)
γA(Q)

(27)

where fiti represents the fitness value of the attribute subset
Pi determined by the leading bee Ei, fi represents the target
value determined by the subset Pi, and according to Pi 6= ∅,
it can be known that 0< fi <1. In formula (27) mentioned
above, (|A| − |Pi|)

/
|A| represents the reduction rate, and

γPi (Q)
/
γA(Q) represents the normalization dependency of

decision attribute Q to the subset Pi. And where α represents
the weight factor, is used to adjust the flexibility of the fitness
function.

Equation (27) shows that reduction rate and normalized
dependency are positively related to fi, that is, as the reduction
rate and the normalized dependency increase, the fi increases.
However, there is not a positive correlation between the
reduction rate and the normalized dependency. So how to
obtain the maximum dependency and the minimum number
of attributes on the premise of maximizing the target value is
exactly the problem that this article is to solve.

7) REDUCTION METHOD 2
Based on the above analysis, this paper uses the ABC algo-
rithm to complete the attribute reduction of the dataset. This
method is based on the bee colony randomly selecting a
subset of attributes. By calculating its fitness function through
fuzzy rough sets, finally the best subset could be found during
the iteration process. It is called the fuzzy rough artificial bee
colony (FRABC) algorithm. By its processing we can see that
the feature reduction algorithm of FRABC belongs to filter
method. The specific steps of the algorithm are as follows.

Step 1 The hired bee randomly generates a subset of
attributes. Supposing the attribute set P contains d attribute
values {a1, a2,. . . , ad}, the number of hired bees is N ,
and the number of randomly generated food source is N ,
and also the food source is considered as the initial solu-
tions. xi is composed of a d-dimensional vector, that is,
xi = [xi1, xi2, . . . , xid ], d represents the number of attributes
included in the attribute set P, and i = 1, 2, . . .,N .
Step 2 Perform the operations of rounding and merging the

same items for the generated solutions. For example, if d =
8, the randomly generated solutions are: {5.75, 6.30, 6.20,
3.75, 5.59, 2.20, 5.94, 1.22}. The same items are combined
into: {6,4,2,1}, which represents the 6th, 4th, 2nd, and 1st
attributes in the attribute set P are selected to form a subset
of attributes.

Step 3 Calculate the dependency of the N attribute subsets
on the decision attributes according to the formula (8), that
is, the importance of the attribute subsets, so as to obtain the
fitness function of the ABC algorithm.

Step 4 Run the ABC algorithm based on the fitness func-
tion and N subsets of attributes.
The global optimal solution is the reduced attribute subset

of the data set.

B. FEATURE EXTRACTION METHOD
In paper [15], [26] and [27], we extracted several feature sets,
including gray level co-occurrence matrix (GLCM) feature
set, entropy feature set, Zernike moment feature set and
pseudo Zernike feature set, they are introduced as follows.

For the entropy feature set, the sample entropy Se and fuzzy
entropy Fe are extracted as follows [26]:

(1) Pre-processing the intra-pulse data of the radiation
source signal to reduce the entropy features affected by the
carrier frequency and noise;

(2) To avoid the influence of the difference in signal length
on the entropy feature extraction, the signal is normalized and
resampled;

(3) Determine the parameters used in estimating the sample
entropy Se, that is, take the scale parameter m = 2 and the
tolerance parameter r = 0.2

√
2 · σ ;

(4) Obtain the optimal parameters a, b, c of the fuzzy
entropy Fe and the value of the sum by obtaining the entropy
maximum of the fuzzy set;

(5) Calculate Se and Fe use the sample entropy estimation
algorithm and the fuzzy entropy formula, respectively.

The normalized energy entropy features Pe can be
extracted as follows [27]:

(1) Endpoint extension of the data sequence according to
the mirror closure extension method and resampling;

(2) Determine an EMD component of the signal sequence
according to a convergence criterion;

(3) Find the normalized energy of each IMF component
according to the formula;

(4) Calculate the normalized energy entropy Pe of the
radiation source signal using the Shannon formula.
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Finally, the entropy feature set FE = [Se,Fe,Pe] is
obtained.

The bispectral quadratic feature extraction algorithm is
mainly performed as follows [15]:

(1) Resample the intra-pulse data to maintain the same
length of each signal;

(2) Use the bispectrum estimation direct method to solve
the bispectrum of the intra-pulse sequence of the radiation
source signal;

(3) Use the symmetry of the real-signal bispectrum, deter-
mine the following regions containing all the information of
the bispectrum:

w2 ≥ 0,w1 ≥ w2,w1 + w2 ≤ π (28)

In the condition, w1 and w2 represent the frequency axis
of the bispectrum, the subsequent algorithm of the bispectral
quadratic feature extraction is performed in this region;

(4) Convert the bispectrum in the above region into a
grayscale image;

(5) Calculate the feature sets, including Zernike moment
feature set F [12]

Z , pseudo Zernike feature set F [16]
P , gray

level co-occurrence matrix (GLCM) feature set [15], and
Hu-Invariant moment feature set Fϕ for comparison, respec-
tively, based on the calculation formulas of Zernike moments,
pseudo-Zernike moments, gray-scale co-occurrence matrices
and Hu-invariant moments.

It is worth noting that when calculating the features of the
gray level co-occurrence matrix, the co-occurrence matrix
of the four main directions is first obtained, and then the
smoothing process is performed to extract the features, and
the step size is taken as 1.

Before the sorting experiment, the data set is needed to
be pre-processed, that is, the attributes of the data set would
be blurred. For the sake of brevity, the standard ambiguity
technique is used to obtain the TARFD fuzzy equivalent
class determined by a single attribute, and the trapezoidal
function and the trigonometric function are used to determine
the membership of the objects in each data set with respect
to the single attribute. Thus the similarity between objects
of a single attribute are obtained, and then the membership
degree ofmultiple fuzzy attributes in the TARFD and FRABC
algorithms are determined by formulas (6) and (18), respec-
tively. Based on the above analysis, the block diagram of radar
signal sorting method based on feature extraction and feature
selection is shown in Figure 2.

In order to verify the effectiveness of the extracted features
and the algorithms of TARFD and FRABC, 6 typical radar
signals widely used in international literature are selected
for simulation experiments. These signals are: conventional
wave radar signals (CW), linear frequency modulated radar
signals (LFM), nonlinear frequency-modulated radar signals
(NLFM), two-phase coded radar signals (BPSK), four-phase
coded radar signals (QPSK), and frequency-coded radar sig-
nals (FSK). The signal carrier frequency is 850MHz, and its
pulse width and sampling frequency are 10.8µs and 2.4GHz
respectively. The frequency offset of the linear frequency

FIGURE 2. Radar signal sorting based on feature extraction and feature
selection.

modulated radar signal (LFM) is set to 45MHz. The fre-
quency of the non-linear frequency modulated radar signal
(NLFM) is sinusoidally modulated. The coded radar signal
(BPSK) uses a 31-bit pseudorandom code, the four-phase
coded radar signal (QPSK) uses a Huffman code, and the
FSK signal uses a Barker code. For these 6 type radar signals,
100 samples were generated within a typical SNR range
(SNR = 15dB), for a total of 600 samples. The 200 samples
generated were randomly selected for feature extraction and
used for classifier training, and the remaining 400 samples
were used for feature extraction and used as a test set for sig-
nal classification. The sample distribution is shown in Table 2.

TABLE 2. Distribution of the 6 typical radar signals.

The experiments were performed on a Pentium (R) dual-
core E5300 personal computer. The computer configuration
is: CPU frequency is 2.6GHz, memory is 2GB, and hard disk
is 250GB.

In order to ensure the data is comparable, each dimension
feature sequence needs to be normalized. Here, it is processed
according to the interval value method represented by for-
mula (29).

f (i) =
f (i)−min(f (i))

max(f (i))−min(f (i))
, i = 1, 2, . . . ,N (29)

In the formula, f = [f (1), f (2), . . . , f (N )] represents a
feature vector, N indicates the length of the vector.
In view of the fact that the radar radiation source training

database is usually not complete and applied in the actual
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battlefield environment, it is necessary to adopt a classifier
that is suitable for training with fewer training samples, and
has a faster training and classification speed, and is not easy to
fall into local minimums. The support vector machine (SVM)
has these advantages. Therefore, the SVM is selected here as
a learning algorithm for classification and recognition. The
SVM can not only solve many problems existing in previous
machine learningmethods, such as practical problems of non-
linearity, small samples, high dimensions, local minimum
points, over-learning, etc. Compared with the neural network
learning (NNL) algorithm based on the principle of empirical
risk minimization (ERM), the support vector machine (SVM)
has better generalization ability and stronger theoretical basis.
The SVM uses a kernel function to complete the mapping
of the input feature vector from a low-dimensional fea-
ture space to a high-dimensional feature space. With this
method, the nonlinear separable problem of the original space
can be transformed into the linear separable problem in a
high-dimensional space. Through this process, the purpose of
classification and identification of the radiation source signal
can be achieved.

The comparison of classification accuracy is shown
in Table 3. In Table 3, the AN represents the number of condi-
tion attributes, the Acc represents the classification accuracy,
and the ET represents the execution time of reductionmethod.

TABLE 3. Statistical results of classification of different feature subsets.

The results in Table 3 show that the TARFD algorithm
can obtain the smallest average feature subset without sig-
nificantly reducing the average classification accuracy rate.
The average number of features in the subset is 2.2. For the
FRABC algorithm, the average number is 2.6. In addition,
compared with the TARFD reduction algorithm, the FRABC
algorithm has a higher average accuracy rate, reaching
87.20%. For the execution time of the algorithms, the average
execution time of the TARFD algorithm is 9.293s and of the

FRABC algorithm is 10.055s. Compared with the FRABC
algorithm, the TARFD is more efficient.

In addition, from the comparison of the classification accu-
racy of different intra-pulse feature subsets in Table 3, it can
be seen that the classification results of the reduced subsets
obtained by the TARFD and FRABC algorithms are close
to the classification results before the reduction, indicating
that the feature subsets selected by these two algorithms can
obtain most of the classification information of the original
feature set. Therefore, the subsets of these feature sets are
used for cluster sorting in the following, and the relationship
between the accuracy rate and the classification precision is
comprehensively considered.

The FRABC algorithm obtains the following feature sub-
sets to characterize the intra-pulse information of the radi-
ation source signal: sample entropy, fuzzy entropy and nor-
malized energy entropy features in the entropy feature, that
is, F ′E = [Se,Fe,Pe], Zernike moment feature subset
F ′Z = [Z42,Z62], and pseudo Zernike moment feature subset
F ′P = [P21,P53,P54], the bi-spectrum smooth gray level
co-occurrence matrix feature subset F ′G = [f4, f14] and the
first-order and second-order moments F ′ϕ = [ϕ1, ϕ2] of
Hu-invariant moments, of which F ′ϕ is still used for the exper-
imental comparison later.

After extracting the intra-pulse features by the above
method and pre-treating, the feature distribution of each fea-
ture subset of the experiment is shown in Figure 3.

III. SIGNAL SORTING BASED ON FEATURE SET
A. RADIATION SOURCE SIGNAL PARAMETER SETTING
Assume that the parameters of these 6 radar emitter signals
used in the paper are shown in Table 4, and the pulse flows
are assumed to be in the same direction.

TABLE 4. Radiation source signal parameters.

In the intra-pulse modulation mode, the frequency offset
of the LFM requires B · τ keeping at 100MHz µs, where B
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FIGURE 3. Feature distribution of each feature subset.

is bandwidth and τ is the pulse width; BPSK and FSK use
13 bit Barker code, QPSK uses 16 bit Frank code, and NLFM
bandwidth is 6∼10MHz, using sine frequency modulation.

It can be seen from Table 4 that the 6 radar signals to be
sorted have complex and variable features in addition to the
inter-pulse parameters with severe overlap.

Let the receiver have an intermediate frequency of 30MHz,
a bandwidth of 20 MHz, and an ADC sampling frequency
of 150 MHz. The TOA of the starting pulse of a radiation
source with a uniformly distributed random number from
0 to the total interception time Tint is simulated. When the
total intercept time is Tint = 50ms, a typical experiment
(SNR = 15dB) produces a total of 476 pulses for the 6 type
radar signals in Table 4. The details of the generated pulses
and residual pulses are shown in Table 5.

TABLE 5. Simulation generates pulse loss.

It should be pointed out that in the experiment, each pulse
contains many intermediate frequency (IF) sampling data.
Feature extraction is performed on these sampling data of
each pulse. According to different algorithms, feature sets of
different dimensions are obtained. For example, for a pulse
of Rd1 with a pulse width of 15µs and a sampling frequency
of 150 MHz, the number of data obtained after this pulse
is sampled is 2250. Entropy feature extraction is performed
on these data to obtain a three-dimensional feature vector
F ′E = [Se,Fe,Pe]. Further, for the 152 pulses generated by
Rd1, the total data generated is 152 × 2250. After entropy
feature extraction is performed, the resulting feature matrix
row × column is 152 × 3, that is, there are 152 samples in
Rd1 in total. Each sample generates three entropy features
and composes the entropy feature vector F ′E . It’s all like this
for Rd2, Rd3, Rd4, Rd5, and Rd6.

B. EXPERIMENT OF SIGNAL SORTING
The following 5 kinds of feature subsets are used for repre-
senting signal sorting, and the MCMSVC algorithm is still
used for clustering, and the SE index is used to adjust the
clustering parameters. The initial value is set C = 1 during
simulation, and the parameter adjustment of q is similar to
the step of adjusting with the inter-pulse parameter sorting
according to formula q = 1/maxij

∥∥gi − gj∥∥2. In addition,
as can be seen from Table 5, the actual pulse numbers of the
radiation sources Rd1-Rd6 for sorting are 138, 54, 59, 101,
29 and 51, respectively, and the radiation source signals rep-
resented by each feature subset are classified by SE-MSVC.
The results are shown in Table 6. The results in the table are
the statistical average of 20 sorting results, ni indicating the
actual number of pulses of ith radiation source signal, NCSP
means number of correct sorting pulses, NMPmeans number
of misselected pulses and TSA means total sorting accuracy.
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The following conclusions can be drawn from Figure 3
and Table 6:

TABLE 6. Comparison of results when sorting with each feature subset.

(1) The distribution of feature subsets shown in Figure 3(b)
shows that the three-dimensional entropy feature of Rd1,
Rd2 and Rd5with CW, LFM andNLFMmodulationmodes is
better, so when using entropy feature sorting, the three types
of radiation source signals have fewer misselected pulses,
especially the radiation source Rd2 is selected correctly,
while Rd1 and Rd5 also have only 1 and 4 misselected
pulses respectively. Relatively speaking, Rd3, Rd4 and Rd6
misselected more pulses. The result is determined by the
modulation mode that the signal itself has. The analysis is
corresponding to the items F ′E listed in Table 6.
(2) When the sorting method based on the bispectral

quadratic feature, that is, using the feature subset F ′P, F
′
Z , F

′
G

andF ′ϕ for sorting, since the bispectral gray image determines
that each feature subset exhibits a characteristic distribution
with a certain trend, the sorting accuracy rate is lower than
the characteristic sorting result with 87.50% correct rate using
F ′E , as shown in Table 6. However, the average sorting accu-
racy rate of more than 80% is also the same as the sorting
result obtained by using the inter-pulse parameters, which
means this method is effective. In addition, the results in the
table also show the sorting effect of several feature subsets
F ′P,F

′
Z ,F

′
G are better than that obtained when the subset F ′ϕ

is used.
(3) Comparing the results obtained by using the inter-pulse

parameters in [28], it can be seen that both Rd2 and Rd5 have
more misselected pulses. In addition to the corresponding
results, Rd5 has more misselected pulses using F ′Z . And
the remaining feature subsets are significantly less misse-
lected pulses than the number of Rd2 and Rd5 caused by
the inter-pulse parameter sorting, indicating that the feature

subsets obtained by these feature extraction methods effec-
tively compensate for the disadvantage that some signals
cannot be sorted efficiently with the inter-pulse parameters.
At the same time, this point can be explained by comparing
the distribution of the parameters of the inter-pulse param-
eters in [28]. It can be seen from [28] that the RF-PW
feature distribution of the radiation source Rd1 and Rd2,
Rd5 and Rd6 overlaps severely, so that the SE-MSVC clus-
tering method with excellent sorting performance can not
achieve satisfactory results. Among them, Rd2 and Rd5 have
more misselected pulses. In general, the extracted features of
the intra-pulse data supplement the new features for sorting
except for the conventional parameters. Thus the characteris-
tic representation of the signal is performed from a new view,
and a better sorting effect could be obtained.

Although the Hu-invariant moment feature set and subset
are not as good as other feature sets in classification and
clustering, considering the effectiveness of the feature set
in characterizing the bispectral information of the radiation
source signal, the feature set is still added to the total feature
vector for clustering experiments.

The following considers the comprehensive use of
these several intra-pulse features for signal sorting,
that is, the SE-MSVC sorting of the interleaved pulse
stream is completed by using the feature vector G =

[Se,Fe,Pe, ϕ1, ϕ2, f4, f14,Z42,Z62,P21,P53,P54]. At this
time, the pulse data shown in Table 6 is still taken, and the
clustering sorting correctly rate using G is shown in Table 7.
The result in the table is the statistical average of 20 sorting
results.

TABLE 7. Results when sorting using feature vectors G.

As can be seen from Table 7, at the same typical signal-
to-noise ratio, the correct rate of 91.67% is only about 4%
higher than the average correct rate obtained by using the
sorting parameter F ′E , Compared with the results obtained
by using the feature subsets shown in Table 6, except for the
Zernike moment feature subset F ′Z , the other sorting results
are less than the number of Rd5 misselected pulses obtained
by usingG. The reason for this phenomenon is that there is an
interaction relationship between the features included in the
vector G, so that the sorting effect of some of the radiation
sources is rather reduced.

IV. FEATURE SELECTION AND SIGNAL SORTING
BASED ON FEATURE SUBSET
Considering the above factors and the relatively low computa-
tional complexity of the TARFD algorithm, the feature set G
is selected again by TARFD.Under the typical signal-to-noise
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ratio, the experiment is performed according to the pulse data
shown in Table 4, and the feature selection of the TARFD
algorithm is adopted. The process is as follows.

According to the proposed algorithm of TARFD, first
makes the decision attribute Q ∈ {1, 2, 3, 4, 5, 6}, for the
convenience of the narrative, the candidate feature set is:

G = [Se,Fe,Pe, ϕ1, ϕ2, f4, f14,Z42,Z62,P21,P53,P54]

= [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12] (30)

The membership is then calculated from the fuzzy func-
tion. Through a large number of experiments, it is found
that the characteristic membership degree of each radiation
source signal calculated by using trapezoidal function and
trigonometric function is more favorable for feature selection.
Therefore, the membership function corresponding to the
condition attribute is calculated by using the membership
function.

Then, according to formula (9), the dependence γ ′ai (Q) of
each feature is calculated, and ai denotes the ith feature in
the feature set G, i = 1, 2, . . . , 12. The obtained feature
dependence is shown in Table 8.

TABLE 8. Dependence of each dimension feature.

Once the threshold Th is determined, it is needed to judge
according to the threshold whether the feature needs to be
reduced in advance. In the experiment the Th is set to Th = 0,
so the next step is directly performed.

Then calculate the degree of interdependence between
features ai and aj according to formula (9) to obtain the
interdependency relationship as shown in Table 9.

After obtaining the dependency degree between attributes,
it is needed to judge whether the feature is redundant accord-
ing to the condition: if γ ′aj (Q) ≤ γ ′ai (Q) and γ ′aj,ai ≤ γ ′ai,aj ,
the redundant feature aj is eliminated, wherein i, j =
1, 2, . . . , m, m = |G| , i 6= j, |G| represents the dimension
of the feature set, and γ ′ai,aj represents the interdependency of
the ith row and j column in table 9.

For example, as can be seen from Table 7 and Table 8, for
the features a1 and a2, we have γ ′a1 (Q) = 0.1693, γ ′a2 (Q) =
0.0786, γ ′1,2 = 0.1212, γ ′2,1 = 0.2361, obviously, the redun-
dancy condition is not satisfied. But for features a3 and
a4, there are γ ′a3 (Q) = 0.0906, γ ′a4 (Q) = 0.0902, γ ′3,4 =
0.1130, γ ′4,3 = 0.0929, and at this time we have γ ′a4 (Q) <
γ ′a3 (Q) and γ

′

4,3 < γ ′3,4 therefore a4 is the redundant features,
and it should be eliminated.

After the redundant features are removed, a subset of the
feature setsG is obtained. Table 10 lists the different levels of
feature subsets obtained during the reduction process, where
the last result refers to the reduced subset obtained from the
TARFD algorithm to the termination condition.

TABLE 9. Interdependence relationship between features.

TABLE 10. Feature subsets obtained from different reductions.

Thus an optimal subset of the feature set is obtained:

G′ = [Fe,Pe, f4,Z42,P53] (31)

The results in Table 10 show that the Hu-invariant moment
feature subset belongs to the redundant feature set, while
the fuzzy entropy feature Fe, the normalized energy entropy
feature Pe, the correlation feature of the bispectral gray level
co-occurrence matrix f4, and the Zernike moment feature Z42
with the repetition degree of 2 and 4 order, and the pseudo
Zernike moment feature P53 with the repetition degree of 3
and 5 order belong to the optimal feature determined by the
algorithm.

Using the feature subset G′ for sorting, the results
of 20 sorting statistical averages are shown in Table 11, also ni
indicating the actual number of pulses of ith radiation source
signal.

The results in Table 11 show that the results obtained by
using subsets G′ are slightly lower than the results obtained
by using subsetsG, and the average correct rate differs by less
than 1%.

Compared with the results in Table 7, the misselected
pulses of Rd4 increase by using subsets G′, but the misse-
lected pulses of Rd5 are obviously less. This shows that the
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TABLE 11. Results when sorting using feature subsets G′ .

sorting results of the two feature sets are not much different,
indicating that the method of sorting by using subsets G′

is effective. In addition, considering the feature dimension,
the feature subset G′ only contains 5-dimensional features.
Compared with the feature set G containing 12-dimensional
feature vectors, the feature dimension is obviously reduced,
and the sorting result with little difference from the feature
set G is obtained. The result illustrates the effectiveness of
the feature selection method proposed in the paper.

V. CONCLUSIONS
This paper studies and verifies the feature extraction and
feature selection methods using for radar signal sorting.
In the experiment, only the case of intra-pulse noise at
typical signal-to-noise ratio (SNR = 15dB) is considered.
The results show that with the proposed two-step attribute
reduction (TARFD) method based on fuzzy dependence and
the fuzzy rough artificial bee colony (FRABC) algorithm, the
selected optimal subset of features can effectively sort the
radar signals. At the same time, after reducing the dimension
of the feature subset efficiently, the sorting result with little
difference from the feature set G is obtained, and the correct
rate is 90.97%.
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