
SPECIAL SECTION ON EDGE COMPUTING AND NETWORKING FOR UBIQUITOUS AI

Received April 1, 2020, accepted April 23, 2020, date of publication May 8, 2020, date of current version May 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993506

IKW: Inter-Kernel Weights for Power Efficient
Edge Computing
PRAMOD UDUPA 1, (Senior Member, IEEE), GOPINATH MAHALE 1,
KIRAN KOLAR CHANDRASEKHARAN 1, AND SEHWAN LEE2
1Samsung Advanced Institute of Technology (SAIT), Samsung Research and Development Institute India-Bangalore Pvt., Ltd., Bengaluru 560037, India
2Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., Suwon 16678, South Korea

Corresponding author: Pramod Udupa (pramod.udupa@samsung.com)

ABSTRACT Deep Convolutional Neural Networks (CNN) have achieved state-of-the-art recognition accu-
racy in a wide range of computer vision applications like image classification, object detection, semantic
segmentation etc. Applications based on CNN require millions of multiply-accumulate (MAC) operations to
be performed between input pixels and kernel weights during inference. This work investigates a technique,
which can be used to eliminate redundant multiplications for a subset of kernel weights in a CNN layer by
utilizing identical and/or similar inter-kernel weights (IKW) across kernels. In this work, IKW technique is
used to identify identical and/or similar inter-kernel weights in trained, unpruned/pruned, quantized CNN
kernels before inference phase. After identification of identical and/or similar inter-kernel weights, a subset
of kernel weights termed non-pivot kernel weights are made zero, the other subset called pivot kernel
weights are left unchanged. The multiplication corresponding to non-pivot kernel weights are eliminated,
thus reducing computations. The products corresponding to non-pivot kernel weights are supplied by
multiplication operation of pivot kernel weights, and hence causing no degradation in inference accuracy.
Through experiments on state-of-the-art CNNs, we demonstrate that application of IKW technique enhances
kernel sparsity by 9-37% for 8-bit precision kernel weight and 18-43% for 4-bit precision kernel weight
without degrading the recognition accuracy of the CNN model. Enhanced kernel sparsity can be used to
save power by clock gating the compute unit, or increase execution performance by skipping computations
pertaining to zero valued non-pivot kernel weights. In addition, power savings are achieved by eliminating
redundant power expensive fixed-point multiplication operations. The practical utility of the IKW technique
is demonstrated by mapping it to well-known state-of-the-art CNN accelerator architectures. Mapping of the
IKW technique on existing CNN accelerator architectures shows reduction in power by at least 12% for 8-bit
precision and 19% for 4-bit precision kernel weight. Improvement in execution performance by at least 2%
for 8-bit precision and 13% for 4-bit precision kernel weight is observed.

INDEX TERMS Inter-kernel weights, quantization, multiply-accumulate unit, split accumulator, kernel zero
skipping, convolutional neural network, kernel pruning, identical kernel weights, similar kernel weights.

I. INTRODUCTION
Artificial Intelligence (AI) applications based on Deep
Neural Networks (DNNs) have become pervasive due to
their near human level performance in diverse application
domains [1], [2] such as image classification, object detec-
tion [3], [4], scene understanding [5] etc. DNNs have enjoyed
renaissance [6] after many years due to possible factors like
increased compute capacity for training DNNs which can

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaofei Wang .

process large amounts of data (e.g. graphic processing units)
and availability of huge amount of digital data [7], [8] for
training DNNs. The intersection of above two factors enabled
DNNs to be trained in an end-to-end manner which made the
DNN features learnt more robust compared to hand designed
kernels to extract features from the data.

DNNs use Convolutional Neural Networks (CNN) as the
major workhorse for extracting useful information from
image and video, while Recurrent Neural Networks (RNN)
are heavily used for working with text and voice based
inputs. CNNs have been able to improve their classification

90450 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4943-3643
https://orcid.org/0000-0002-6950-0834
https://orcid.org/0000-0002-0741-6696
https://orcid.org/0000-0002-7223-1030


P. Udupa et al.: IKW for Power Efficient Edge Computing

performance by stacking large number of layers [9], [10]
and process larger inputs, to better extract information
from a bigger dataset. With CNNs getting bigger, require-
ment of multiply-accumulate (MAC) operations needed to
be performed for real-time inference has crossed millions
of operations per second. To be able to perform these com-
pute intensive operations on battery constrained devices like
mobile phones is one of the motivating factors for power
efficient computation [11] of CNNs.

Broadly speaking, the main motivation factor is to enable
power efficient edge computing [12], whichmeans improving
the power efficiency for all computing devices on the edge
of the network. Devices on the edge of network, have lim-
ited compute and battery power, but produce/collect a large
amount of data, which need processing to extract information.
In edge computing, a lot of energy is spent to transmit data
to cloud for processing. Further, it waits for the results to
come back to take some action, which increases latency for
the application on the edge. Privacy is also a concern when
data is being sent to cloud. Since devices at the edge produce a
lot of data, which require real-time inference for enabling AI
applications, supporting power efficient CNN computations
becomes a priority. Considering these motivation factors,
we have concentrated our efforts in finding generalized tech-
niques for improving power efficiency of CNN computations
on edge devices for inference operation.

To meet the requirement of power efficient computations
on edge devices, several algorithmic optimizations and spe-
cialized CNN accelerator hardware architectures have been
proposed for CNN inference [13]–[19]. Algorithmic opti-
mizations for CNN have majorly concentrated on pruning of
kernel weights [20]–[25] to reduce the number of non-zero
kernel weights without significant degradation in accuracy.
Pruning reduces the model size which helps in reducing stor-
age size, thus saving energy for transferring kernel weights
frommemory to compute unit. Pruning increases kernel spar-
sity which can be used by the hardware for skipping inef-
fectual computations for improving performance and power
consumption. But, pruning requires re-training of the CNN
which is computationally demanding and infeasible on edge
devices. Moreover, pruning beyond a particular point results
in significant degradation of accuracy.

Quantization of kernel weights to fixed-point precision has
been actively pursued to reduce the cost of hardware compu-
tations during inference. Quantization is complementary to
pruning and generally applied after pruning, to trained CNN
models. In this stage, the trained kernel weights in floating
point numbers are quantized [26] and approximated to low
precision fixed point numbers. Fixed point operations result
in cheaper hardware with respect to power [27] and area,
compared to floating point operations. Lin et al. [28] and Judd
et al. [29], showed that quantizing the trained kernel weights
and IFMs to 8 bits did not result in a major fall in top-1 recog-
nition accuracy in state-of- the-art CNNs during inference.
Similar results for 4-bit quantization are demonstrated [30],
[31] in literature. To further improve the energy efficiency,

FIGURE 1. (a) Illustration of 3-D Convolution operation in CNN layer. W,
H: width,height of IFM, Z: number of IFM/kernel channels, Kw, Kh:
width,height of kernel, N: number of kernels.

there are methods in literature such as quantizing data using
limited number of weights [32], which is hard to generalize
to different CNNs.

In all the CNN hardware accelerator architectures pro-
posed in literature, the CNN accelerator hardware has been
optimized for the 3-D Convolution operation which takes
up nearly 90% of the computations [33], [34] in the CNN.
3-D Convolution operation has a very regular computation
structure where 3-D Input Feature Map (IFM) is convolved
with 3-D kernel to produce an Output Feature Map (OFM)
channel. DianNao [13] and DaDianNao [14] were the ini-
tial works which utilized the parallel computation structure
present in convolution for acceleration. Eyeriss [16] adopted
a row-stationary approach to improve IFM re-use to reduce
the required memory bandwidth and memory access power.
NVDLA [18] was the first architecture to utilize channel-
first storage format to store IFM, kernel and OFM. NVDLA
could reduce the power consumption by switching off the
computation circuitry in case of zero valued IFM or kernel.
Cnvlutin [17] further enhanced the value based usage by using
zero valued IFM to skip ineffectual multiplications which
improved execution performance. This approach is different
compared to architectures like NVDLA, DaDianNao which
do not use zero valued IFM or kernel to improve execution
performance. ZeNA [19], [35] architecture uses both zero
valued IFM and kernel to further improve performance and
reduce power consumption. We see a trend in newer acceler-
ators in using value based approach to eliminate ineffectual
computations to improve performance and reduce power
dissipation.

Considering the compute limitations on devices at the
edge, alternate approaches have been proposed to increase
sparsity of CNNmodel by utilizing the computation structure
of convolution operation. These alternate approaches build
on top of pruning to further enhance CNN sparsity without
degrading the classification accuracy. These methods have
resulted in power savings and improved performance. A good
example for this approach is UCNN [36], which targets to
avoid redundant multiplications of identical kernel weight
within a kernel by factorizing the dot product operation.
UCNN proposes an architecture which stores the dot product
value produced by a repeated kernel weight with an IFM

VOLUME 8, 2020 90451



P. Udupa et al.: IKW for Power Efficient Edge Computing

pixel, inmemory. This dot product is read backwhen repeated
kernel weight needs to be multiplied with the same IFM
pixel. To realize this, repeated weights in CNN kernels are
searched and indexed, which are then utilized during infer-
ence process for avoiding repeated redundant multiplications.
The work in UCNN explored identical kernel weights within
a kernel exposing a limited scope for finding redundant mul-
tiplications. In this work, we investigate possibility of using
identical and similar kernel weights across kernels, termed
inter-kernel weights to increase the sparsity of kernels for
improved power and performance, which to the best of our
knowledge has not been explored before.

In this work, we propose a scheme to detect Inter-Kernel
Weights (IKW) that enhances the kernel sparsity for convolu-
tion and Fully Connected (FC) layers of CNNs. We also pro-
pose hardware architecture for IKW, which uses the metadata
generated during IKW search process to improve execution
performance and reduce power consumption. The proposed
IKW Architecture can be integrated in all state-of-the-art
CNN accelerators with or without kernel zero skipping fea-
ture. The main contributions of our work are as follows:

• We propose a search procedure for detecting Identical
Inter-Kernel Weights (IIKW) and Similar Inter-Kernel
Weights (SIKW) in CNNs for enhancing kernel sparsity.
We describe metadata format for encoding presence of
IKW in kernels.

• We propose IKW Architecture, which is a hardware
architecture supporting the usage of IKW to eliminate
redundant multiplications in MAC operations by using
the metadata generated during the IKW search proce-
dure. We propose two templates of IKW Architecture
depending on whether the underlying CNN architecture
on which IKW Architecture is applied, uses kernel zero
skipping or not.

• We propose split accumulator optimization to reduce the
power consumption in accumulator of MAC operation

• We detail the introduction of the proposed IKW Archi-
tecture templates in state-of-the-art CNN accelera-
tors (NVDLA, Cnvlutin, ZeNA). We measure power,
area and performance for the state-of-the-art CNN accel-
erators with and without IKW Architecture on different
CNNs to quantify the impact of IKW.

The rest of the paper is organized as follows. Section II
introduces the concept of identical and similar Inter-Kernel
Weights (IKW), as forms of IKW, in the context of convo-
lution and FC layers. The section details the IKW search
procedure and generation of metadata for detected IKW in
state-of-the-art CNNs.We discuss in detail results of detected
IKW in unpruned and pruned kernels at 4-bit and 8-bit preci-
sion for standard CNNs like VGG-16 [37], Inception-v3 [1],
Inception-v4 [38]. Section III illustrates the proposed IKW
Architecture templates for utilizing detected IKW to elimi-
nate redundant multiplications in MAC. Sections III-C, III-D
and III-E explain the introduction of the proposed IKW Archi-
tecture in state-of-the-art CNN accelerators like NVDLA,

Cnvlutin and ZeNA respectively. We discuss the impact of
introduction of the proposed IKW Architecture on power,
performance and area for standard CNNs like VGG-16 and
Inception-v4. Section IV concludes the paper.

II. INTER-KERNEL WEIGHTS (IKW)
A. PRELIMINARIES
A typical CNN consists of a series of linear computa-
tion operation layers separated by non-linear operators in
between, which can be represented by a directed acyclic
graph [39]. Each linear computation layer consists of multiple
kernels (filters) working on the same input IFM to extract dif-
ferent features from it. Linear operator layers in the beginning
of the CNN have kernels which extract simpler features [40]
like edge, horizontal line, circle etc., while kernels at the later
layers look for more complicated shapes [40] like human
nose, face, car etc. CNNs extract information from a given
image in a hierarchical manner. Deeper CNNs [9] are able
to extract more information compared to shallow CNNs.
Figure 1 illustrates a typical 3-D Convolution operation in
CNNs, where single 3-D IFM is convolved with N different
3-D kernels to produce N channels of OFM. OFM produced
by set of N kernels together is also 3-D, as shown in Figure 1.

As CNNs have evolved, the number of layers in a CNN
has increased from 5 [41] to hundreds of layers [10] in
newer CNNs. Along with the increase in number of layers
in CNN, the number of kernels per layer has also increased
fromAlexNet [41] to latest CNNs to extract more information
in each layer to improve recognition accuracy. Due to these
factors, the computational complexity of CNNs has increased
significantly. One possible way to reduce the computational
complexity is to eliminate redundant computations in convo-
lution operation without affecting the recognition accuracy.
Based on the observation that single 3-D IFM is convolved
with N different kernels in every layer, we see an opportu-
nity to eliminate redundant multiplication of IFM pixel with
kernel weight whose value may be repeated across multiple
kernels. The definition of kernel weight whichmultiplies with
the same IFMpixel across two kernels, termed as Inter-Kernel
Weight (IKW), is formalized in Section II-B

B. IKW CONCEPT
The concept of IKW is based on the observation that kernel
weights having the same co-ordinate and same channel num-
ber across two kernels in a CNN layer multiply with same
IFM pixel. The observation is applicable to convolution and
FC layers used in CNN/RNN. For example, consider convo-
lution with three kernels k0, k1, k2 of dimension 3 × 3×1 as
shown in Figure 2(a) belonging to a single CNN layer. As per
the convolution operation, kernel weight at location (0, 0, 0)
of kernels k0, k1, k2 multiply with the same IFM pixel. If the
kernel weights are identical, as in location (1, 0, 0) of k0
and k1, then the product of multiplication will also be same.
Due to kernel weights being identical, products generated
by weight in location (1, 0, 0) of k0 can be shared with

90452 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

FIGURE 2. (a) Kernels before IKW search procedure. IS: Index Stream, VS: Value Stream, IIKWS: Identical IKW stream,
SIKWS: Similar IKW stream. (b) Kernels after IIKW search procedure showing modified non-pivot kernels and unmodified
pivot kernel. Grey shaded cells in modified non-pivot kernels represent zeros introduced due to IIKW search. IIKW stream
is introduced in non-pivot kernels and is encoded with respect to pivot kernel. (c) Kernels after SIKW search procedure
showing modified non-pivot kernels and unmodified pivot kernel. Grey shaded cells in non-pivot kernels represent zeros
introduced due to SIKW search. SIKW stream is introduced in non-pivot kernels and is encoded with respect to pivot
kernel. Note that number of entries in IIKWS or SIKWS is equal to number of non-zero entries in pivot kernel.

k1 or vice-versa. This helps in reduction of computations,
by avoiding redundant multiplication operations, without
changing the values of the OFM pixels. The reduction in
multiplication is applicable to computation of every OFM
pixel generated by the kernel, which is reusing the product
generated by a different kernel. Hence, identical inter-kernel
weight is able to eliminate multiplications of MAC operation.
We term two non-zero weights in two different kernels as
IKW if and only if
• they have the same channel number
• they have the same planar co-ordinates
IKW is used during CNN inference to minimize number of

multiplications. CNN inference is typically done with lower
bit-width, e.g., 8 bit precision for kernel weight. Since the
number of unique weights possible with 8 bit precision is
256, and the number of kernel weights in a CNN layer is
typically greater than 256 [36], repeated kernel weights are
highly possible across kernels in all the CNN layers. With the
trend of CNN inference moving towards lower precision than
8 bits, the probability of repeated kernel weights increased
significantly. In section II-C, we detail the experimental setup
for detecting inter-kernel weights in state-of-the-art CNNs.
Section II-D explains the search procedure of IIKW in state-
of-the-art CNNs. Section II-E extends the search procedure
to SIKW.

C. IKW EXPERIMENTAL SETUP
For evaluating the idea of IKW in state-of-the-art CNNs,
we have used Caffe [42] tool for extracting the information
about each layer of the CNN and to evaluate the classifica-

tion accuracy of the CNN model. Trained, unpruned Caffe
models of the CNNs were taken from Caffe Model Zoo [42].
We selected VGG-16 [37], Inception-v3 [1], Inception-
v4 [38] for IKW search. Classification accuracy for each of
the selected CNNs was measured by using 50000 images
from the test set of the ImageNet database using the Caffe
framework. Classification accuracy of the unpruned CNN
models on ImageNet database working in floating-point pre-
cision were computed in Caffe, as shown in Table 1.

Next, unpruned CNNmodels were quantized to 8-bit preci-
sion by using Samsung Python libraries for quantization. Dur-
ing quantization, every channel of the kernel was quantized
independently based on the maximum value in that channel.
Maximum value was used to select the number of integer
bits required, while remaining bits were used for fractional
part. Further, unpruned CNN models were quantized to 4-bit
precision except the first and last layers, which were kept
at floating-point precision. Since direct quantization to 4-bit
results in significant dip in classification accuracy, the 4-bit
quantized CNN model was re-trained to reach classification
accuracy close to 8-bit unpruned CNNmodels. Classification
accuracy of both 8-bit and 4-bit quantized CNN models were
measured in Caffe, as shown in Table 1.

To measure IKW in pruned kernels, the unpruned CNN
models were pruned using Samsung Python libraries for
pruning. Pruning was carried out using threshold based
method. This method prunes kernel weights to zero below
a particular threshold. Pruning is an iterative process, where
determination of threshold value is dependent on the target
classification accuracy. Classification accuracy of the pruned

VOLUME 8, 2020 90453



P. Udupa et al.: IKW for Power Efficient Edge Computing

TABLE 1. Top-1 Accuracy of CNNs used for IKW on ImageNet database.

TABLE 2. Variants of quantized CNN models used for IKW search.

model is shown in Table 1. It can be observed that classifi-
cation accuracy of the pruned models is within 0.5% of the
accuracy of floating point unpruned models. Similar to quan-
tization of unpruned CNN models, the pruned CNN models
were quantized to 8-bit and 4-bit precision. Classification
accuracy for quantized, pruned CNN models were noted,
as given in Table 1. We now have four variations of quantized
CNNmodels for IKW search, as shown in Table 2. These four
variations of CNN model were passed through IKW search
module. IKW search module was coded in Python and works
on quantized layers of the CNN model. It should be noted
that IKW search procedure and metadata generation is done
offline after kernel quantization step before inference. The
generated metadata can be used during CNN inference any
number of times. Note that IKW does not degrade classifi-
cation accuracy of the underlying model, since OFM values
produced are exactly same as that produced without using
IKW. Section II-D details the IKW search procedure on CNN
models searching for IIKW.

D. IDENTICAL INTER-KERNEL WEIGHTS (IIKW)
We define Identical IKW as IKW whose magnitudes are
identical with same or opposite signs. Consider the example
of three kernels k0, k1, k2 of dimensions 3 × 3×1 as shown
in Figure 2(a). Compressed representation of each kernel is
given below the kernel matrices. The compressed represen-
tation consists of index stream (IS) and value stream (VS).
IS indicates whether the kernel location contains a zero val-
ued kernel weight (indicated by entry 0) or non-zero valued
kernel weight (indicated by entry 1). VS stores only non-zero
valued kernel weights. As can be observed from Figure 2(a),
the length of IS array is same as the kernel dimension, while
length of VS array is variable, depending on the number of
non-zero values in the kernel. Given three kernels of Fig-
ure 2(a), IIKW search procedure is as follows:
• Compare IKW of kernels k0 and k1 with a condition that
magnitude is identical independent of sign. Note down

TABLE 3. IIKW encoding for IIKW stream of non-pivot kernel weight (y )
with respect to Pivot kernel weight (x).

the number of IIKW and update the score for k0, k1.
Score indicates the number of IIKW found during the
comparison. After first comparison, score for k0, k1 is 3,
3 respectively.

• Compare IKW of kernels k0 and k2 and update score of
k0, k2. Score for k0 is 4, k2 is 1 after second comparison

• Compare IKW of kernels k1 and k2 and update score of
k1, k2. Score for k1 is 7, k2 is 4 after third comparison

After all comparisons, IIKW search score of k0, k1, k2 is
4,7,4 respectively. The kernel with highest score is selected
as the pivot kernel, while remaining kernels are designated
non-pivot kernels, as shown in Figure 2(b). Pivot kernel k1
entries are not modified, while IIKW locations in non-pivot
kernels are changed to zero, as shown in Figure 2(b). IS and
VS arrays for non-pivot kernels k0, k2 are updated and IIKW
stream is introduced to indicate locations of IIKW in the
non-pivot kernels. Encoding for IIKW stream of non-pivot
kernel weight is done with respect to pivot kernel weight,
and is described in Table 3. The number of entries in IIKW
stream is equal to number of non-zero kernel weights in
the pivot kernel. Each entry in IIKW stream of a non-pivot
kernel indicates how the pivot kernel weight is related to
the non-pivot kernel weight. The encoding is done to obtain
maximally compressed stream where single bit is sufficient
for non-IIKW values, two bits are required for IIKW values
and transition between them is demarcated implicitly using
encoding of ‘‘01’’ as given in Table 3. Based on IIKW stream
encoding for the non-pivot kernel, product generated using
pivot kernel is broadcasted to adder associated with the non-
pivot kernel with or without inversion. Thus multiplications
for the IIKW in the non-pivot kernel are saved. We can
observe that number of zeros in kernels k0, k2 have increased
by an extra amount of 3,4 respectively due to IIKW search
procedure as shown by grey cells in Figure 2(b). Generalizing
the IIKWsearch procedure, NC2 comparisons are required for
IIKW search in a group of N kernels to find one pivot kernel.

Given a CNN layer with M kernels and IIKW search
procedure running on kernel group of N consecutive kernels,
we explore the effect of size of kernel group on sparsity
enhanced by IIKW. If N is equal to M , then IIKW search
procedure produces a single pivot kernel for entire CNN
layer. Sparsity enhancement due to single pivot kernel for an
entire CNN layer is found to be very less. Further, we have
experimented with values of N = 4, 8, 16 kernel groups per
CNN layer (based on the fact that number of kernels in CNN

90454 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

TABLE 4. CNN kernel sparsity enhanced due to IIKW on unpruned and
pruned CNNs.

layers are generally a multiple of 16) and noted the sparsity
enhancement. Each kernel group will have a pivot kernel
and number of such kernel groups for a CNN layer is M/N ,
whereM is the number of kernels in the layer. Table 4 shows
the average sparsity enhancement on all layers due to IIKW
for different sizes of kernel group on various unpruned and
pruned state-of-the-art CNNs at 8-bit/4-bit precision. It can be
observed that IIKW is able to improve CNN kernel sparsity
across a wide range of state-of-the-art CNNs. Kernel group
size of N = 16 is able to enhance kernel sparsity better than
the other group sizes due to more kernels being available for
comparison. We stopped at kernel group size of N = 16
since routing of the interconnect hardware for broadcasting
to more than N = 16 non-pivot kernels becomes difficult
to meet timing constraints. We can see that IIKW increases
sparsity by at least 6% for 8-bit precision and at least 13%
for 4-bit precision for all unpruned CNNs. For pruned CNNs,
sparsity improvement is at least 1.8% for 8-bit precision and
at least 6.80% for 4-bit precision. Since unpruned CNNmod-
els have more non-zero kernel weights for IKW comparison,
we see that kernel sparsity due to IKW is more in unpruned
CNN models compared to pruned CNN models. For 4-bit
precision, sparsity enhancement is more than 8-bit because
of just 16 unique values available for data representation. It
can be concluded that IIKW can enhance sparsity across all
combinations of quantized, unpruned or pruned CNNmodels,
which makes it generic enough to be applied to various
unpruned/pruned CNNs. We extend the concept of Identical
IKW to Similar IKW which further enhances kernel sparsity,
in Section II-E.

E. SIMILAR INTER-KERNEL WEIGHTS (SIKW)
We define SIKW as IKW which differ by a small magnitude
with same or different signs. SIKW relaxes the constraint
of exact match in magnitude and allows small differences

TABLE 5. SIKW encoding for SIKW stream of Non-pivot kernel weight (y )
with respect to Pivot kernel weight (x).

between IKW for further enhancing the kernel sparsity.
SIKW search procedure is same as IIKW search procedure
of finding a pivot kernel and (N − 1) non-pivot kernels in a
group of N kernels. The differences in magnitude considered
for SIKW are:- 0,±1,±2,±4, since these differences translate
to simple left shift operations during hardware realization.
Figure 2(c) shows the pivot and non-pivot kernels after SIKW
comparison. It can be observed that sparsity introduced due
to SIKW is higher than IIKW, whose locations are indicated
by SIKW stream. Encoding of the SIKW stream with respect
to pivot kernel introduced in each non-pivot kernel is given
in Table 5. In case of SIKW, product produced using pivot
kernel is added/subtracted with IFM pixel used in pivot kernel
to get the modified product, which is given to adders of
non-pivot kernels. The generation of modified product to be
broadcasted using IFM and product generated in pivot kernel
is illustrated as follows: For example, consider co-ordinate
location (0,2) of pivot kernel k1 in Figure 2(c) having kernel
weight of 11.When this kernel weight is multiplied with IFM,
then the product generated corresponds to 11×IFM. But,
the product required for non-pivot kernel k0 is 9×IFM. Hence
product generated using pivot kernel weight is subtracted by
2×IFM to obtain 9×IFM and broadcasted to adder of non-
pivot kernel k0. Thus, we can see that OFM produced using
non-pivot kernel is exactly same as without using SIKW.
Since differences considered are 0,±1,±2,±4, IFM pixel
requires left shift and addition with product generated using
pivot kernel to obtain the modified product.

Table 6 shows the sparsity enhancement due to SIKW
for different sizes of kernel group on various unpruned and
pruned state-of-the-art CNNs at 8-bit/4-bit precision. We can
see that SIKW increases sparsity by at least 32% for 8-bit
precision and 35% for 4-bit precision for unpruned CNNs.
For pruned CNNs, SIKW increases sparsity by at least 9% for
8-bit precision and 18% for 4-bit precision. Similar to IIKW,
SIKW also introduces higher sparsity in unpruned CNNs due
to availability of more non-zeros in kernels. SIKW introduces
significantly more sparsity than IIKW because SIKW is a
super-set of IIKW. It can be concluded that SIKW can sig-
nificantly improve sparsity in all scenarios and can even sub-
stitute pruning. Pruning is computationally intensive, since it
involves re-training of the CNN. Hence pruning cannot be run
on edge devices, due to their limited power and compute bud-
get. IKW search operation is computationally less demanding

VOLUME 8, 2020 90455



P. Udupa et al.: IKW for Power Efficient Edge Computing

TABLE 6. CNN kernel sparsity enhanced due to SIKW on unpruned and
pruned CNNs.

compared to pruning, since it does not involve training and is
a single-pass operation. In Section III, we detail the proposed
IKW Architecturewhich can utilize the enhanced sparsity due
to IIKW or SIKW, and which can be introduced in well-
known CNN accelerators.

III. IKW ARCHITECTURE
In the previous sections, we described how IIKW and SIKW
increase sparsity in the kernels. The detected IIKW/SIKW
will translate to improvement in performance and power
when we have a supporting hardware architecture to utilize
the IKW metadata. We target to come up with architectural
elements that could be introduced in most of the state-of-
the-art accelerators to support IKW computations. In this
section, we propose a hardware architecture termed as IKW
Architecture, which can work on IKW metadata, thus elimi-
nating multiplication operation. Due to elimination of power
hungry fixed-point multiplication, we expect reduction in
power for MAC operation. This power saving is applicable
to computation of every OFM pixel using non-pivot kernels.
The proposed IKW Architecture can be introduced in any
given CNN accelerator architecture, assuming that IFM pixel
is convolved with multiple kernels in parallel, which is true
for most CNN accelerator architectures.

Architecture supporting IKW needs to support transfer of
product generated by the pivot kernel to adders corresponding
to non-pivot kernels as specified by non-pivot kernel meta-
data. For realizing the IKW Architecture, the following two
options are possible:

• to store the products generated by the pivot kernel in a
local buffer, which is then read back later to be consumed
by adders corresponding to non-pivot kernels.

• to broadcast the product generated by the pivot kernel as
soon as it is produced and consumed by adders of non-
pivot kernels.

FIGURE 3. IKW Architecture template for CNN accelerator architecture
(a) without kernel zero skipping feature consisting of 2:1 multiplexer to
select between broadcasted product and product of non-pivot MAC
(b) with kernel zero skipping feature containing adder to add
broadcasted product and product of non-pivot MAC in the same cycle.
Here P1, P2, .., P15 corresponds to products generated by the non-pivot
MAC, BP1, BP2, .., BP15 corresponds to products broadcasted from the
pivot MAC.

FIGURE 4. Function block for IIKW considering kernel group size of 16.
It consists of 2’s complement block and 2:1 multiplexer (MUX) block to
select the product for each non-pivot MAC based on the IIKWS metadata.

In our approach, we chose the second option due to the
following reasons:
• product generated by pivot kernel is needed only once
by adders of non-pivot kernels per OFM pixel

• order of addition in non-pivot kernels can be out of order
as long as the final OFM accumulated value is same as
that without the IKW Architecture

Second option eliminates the need for local buffer and com-
plex read back circuitry in each non-pivot kernel.

Figure 3(a),(b) show the proposed IKW Architecture tem-
plates for CNN accelerator architectures without and with
kernel zero skipping feature respectively. Here, MAC work-
ing on pivot and non-pivot kernels are termed as Pivot MAC
and Non-pivot MAC respectively. The three major compo-
nents of the proposed IKW Architecture template are: IKW
Function, broadcast network and adder/multiplexer before
accumulator in Non-pivot MAC. Product generated by Pivot
MAC is given to Function block. Function block transforms
the product received from Pivot MAC as per IKW stream
for each Non-pivot MAC as shown in Figure 4 for IIKW
and Figure 5 for SIKW. IIKW Function block contains two’s
complement and 2:1Multiplexer corresponding to every non-
pivot MAC. SIKW Function block contains shifters, adders
and 8:1 Multiplexer corresponding to every non-pivot MAC.
Output of Function block is given to broadcast network sup-
plying to each of the Non-pivot MACs. In each of the Non-
pivot MACs, depending on whether the underlying CNN
architecture uses kernel zero skipping or not, adder or multi-
plexer is inserted before accumulator.

90456 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

FIGURE 5. Function block for SIKW considering kernel group size of 16.
It consists of add/subtract block, left shift block, 2’s complement block
and 8:1 multiplexer (MUX) block. Left shift block has to support shifts
of 1 or 2. MUX block selects one of eight inputs for each non-pivot MAC
based on SIKWS metadata.

The variation in IKW Architecture template depends on
whether the underlying CNN accelerator architecture uses
kernel zero skipping feature or not. In case where CNN accel-
erator architecture uses kernel zero skipping feature, then
Pivot MAC and Non-pivot MACs are working at different
rates due to kernels having different sparsity. In this case, the
broadcasted product from Pivot MAC and product in Non-
pivot MAC need to be added with the accumulated sum in the
same cycle, which makes it necessary to have an additional
adder in Non-pivot MAC. In case of kernels working in
lock-step, product from Pivot MAC and product from Non-
pivot MAC don’t need to be added in the same cycle, hence
multiplexer is sufficient in Non-pivot MAC. To reduce the
switching activity in the accumulator registers, we discuss
an optimization technique termed split-accumulator in III-A.
This optimization is applied to accumulator in Pivot and Non-
pivot MACs.

A. SPLIT-ACCUMULATOR OPTIMIZATION
Typical fixed-point MAC using 8 × 8-bit precision con-
sists of multiplier producing 16-bit product which is then
fed to a 32-bit accumulator. Before adding the 16-bit prod-
uct to 32-bit accumulator, it is sign extended to 32 bits.
Every addition involves updating all 32-bits of the accumu-
lator register independent of magnitude of the product. To
eliminate unnecessary updates to accumulator register bits,
we have proposed an optimization called split-accumulator
optimization. Figure 6(a) shows the split-accumulator opti-
mization, where accumulator register is divided into two
equal parts of 16-bit each (Acc_high,Acc_low). The lower
16-bits of accumulator are updated every cycle since it is
directly affected by the incoming product bits. The upper
16-bit update is a function of carry out bit of lower 16-
bit addition and sign of the product as obtained using logic
table in Figure 6(c). It can be observed that upper 16-bits of
accumulator register needs to be updated in two out of four
cases, as shown in Figure 6(c), which leads to lesser updates
in upper 16-bit accumulator register.

FIGURE 6. (a) Two input split-accumulator optimization. ‘‘Acc_high’’
accumulator flop is updated if output of ‘‘Func_out_2inp’’ is non-zero.
(b) Three input split-accumulator optimization. ‘‘Acc_high’’ accumulator
flop is updated if output of ‘‘Func_out_3inp’’ is non-zero.
(c) Func_out_2inp truth table for updating upper 16-bits of two input
accumulator. Bits [31-17,16] together form the 16-bit output from
Func_out_2inp block. Func_out_2inp gives non-zero output in two out of
four cases, thus reducing update frequency of Acc_high.

TABLE 7. Func_out_3inp of three input split-accumulator. X indicates
don’t care, Bits [31-18,17,16] together form the 16-bit output of
Func_out_3inp block of Figure 6(b).

In case of three input accumulator, the addition of three
16-bit inputs can produce 2-bit carry out. Table 7 details the
output which needs to be added to upper 16-bit accumula-
tor as function of 2-bit carry out from lower 16-bit 3-input
addition and sign extension of non-pivot MAC product and
broadcasted product from pivot MAC. Figure 6(b) shows the
split-accumulator optimization for three input adder where
upper 16-bits of accumulator is updated based on the value
of ‘‘Func_out_3inp’’. Section III-B details the RTL imple-
mentation and evaluation methodology used for obtaining
the execution performance and power numbers due to IKW
Architecture on state-of-the-art CNN accelerator architec-
tures.

B. RTL IMPLEMENTATION AND EVALUATION
For evaluating the improvement in power and execu-
tion performance due to IKW Architecture on three

VOLUME 8, 2020 90457



P. Udupa et al.: IKW for Power Efficient Edge Computing

state-of-the-art CNN accelerator architectures (NVDLA,
Cnvlutin and ZeNA), we describe the evaluation methodol-
ogy used in detail. The choice of CNN accelerator archi-
tectures covers three variations with respect to usage of
IFM/kernel sparsity in the architecture. NVDLA uses zero
valued IFM/kernel to switch off the multiplication operation
in MAC, but does not use it for improving execution perfor-
mance by zero skipping. Cnvlutin uses zero values of IFM
to improve execution performance by zero skipping the com-
putation and performing only computation corresponding to
non-zero values of IFM. ZeNA skips computation if either
of IFM or kernel values are zero. Thus, the three architec-
tures have three different variations with respect to usage
of IFM/kernel values for accelerating convolution operation.
We could not find any well-known state-of-the-art architec-
ture using only kernel zero skipping to improve performance.
Hence, impact of IKW Architecture introduction is shown
for three scenarios only. Integrating IKW Architecture to
accelerator architecture using only kernel zero skipping to
improve performance is similar to ZeNA, since IKW is only
dependent on kernels.

We implemented the RTL designs of the three CNN accel-
erator architectures at 8-bit and 4-bit precision. These RTL
implementations are referred to as Baseline Architecture. The
three baseline designs were augmented with IKW Architec-
ture templates and coded in RTL at 8-bit and 4-bit precision.
Along with IKW Architecture template, split-accumulator
optimization was applied to Pivot MAC and Non-pivot MAC.
Baseline architecture augmented with IKW Architecture and
split-accumulator optimization is referred to as Enhanced
Architecture. Enhanced Architectures were created for IIKW
and SIKW separately to study their effect on area, power
and performance. A bit-accurate Python model was built for
Baseline and Enhanced Architectures for generating the ref-
erence OFM pixels. The IFM and kernel values from pruned
VGG-16, Inception-v3/v4 were extracted using Caffe tool
at 8-bit/4-bit precision and given to Python script and RTL
designs. We have used pruned CNNs for power estimation
because sparsity enhanced due to IKW is lesser in them.
We wanted to check the minimum possible power savings
due to IKW. Baseline and Enhanced Architectures using IFM
and kernel values from Caffe were simulated using Synopsys
VCS tool [43] and OFM pixels were compared with Python
reference model to check correctness of RTL implementa-
tion. During VCS simulation, cycles taken by Baseline and
EnhancedArchitectures to complete execution of CNN layers
were noted for measuring the performance improvement due
to IKW Architecture.

Functionally correct RTL implementations of Baseline and
Enhanced Architectures were synthesized using Synopsys
Design Compiler tool [44] with Samsung 10 nm technol-
ogy node and 800 MHz target frequency to generate the
netlist, and area numbers were noted. SRAM database files
at Samsung 10 nm technology node were generated using
Synopsys Library Compiler [44] and used in synthesis. The
netlist generated was used for power estimation using Spy-

FIGURE 7. NVDLA like architecture augmented with IKW Architecture.

glass Power Estimation tool [45] to get module level power
consumption. The input to Spyglass Power Estimation tool
consisted of netlist generated after synthesis, activity factor
file generated using VCS simulation, database of memory
files and technology libraries. Power estimation tool gives
average power consumed for the design within a specified
time period. We report average power consumed per different
layers of CNN, simulated for the three state-of-the-art CNN
accelerator architectures. The above procedure is used for
measuring the impact of IKW Architecture in three state-
of-the-art CNN accelerator architectures. In the following
sections, we augment state-of-the art CNN accelerator archi-
tectures like NVDLA [18], Cnvlutin [17] and ZeNA [19] with
IKW Architecture and demonstrate power and performance
improvement. In section III-F, we discuss about the results
obtained and contrast it with UCNN approach.

C. IKW ON NVDLA
NVDLA architecture [18] proposed by Nvidia, is an example
of dense CNN accelerator architecture, which does not use
IFM/kernel zero skipping for enhancing execution perfor-
mance. It stores all data (IFM, OFM and kernels) in channel
first storage format i.e. pixels/kernel weights belonging to
same planar co-ordinates but different channels are packed
together in a single location. Compute unit consists of IFM
shared with multiple kernels executing in parallel as shown
in Figure 7, where each column consists of multipliers, adder
tree and accumulator working on a single kernel at 8-bit
precision.We have implemented baseline NVDLA like archi-
tecture with 16 kernels working in parallel sharing single
IFM. Each memory location stores 16 elements in channel
direction at 8-bit precision and 32 elements at 4-bit precision.
16 kernels are stored in 16 kernel buffers and IFM is supplied
from IFM memory. Each column consists of 16 multipliers,
whose outputs are given to an adder tree, which feeds anOFM
pixel accumulator.

Figure 7 shows Enhanced NVDLA like architecture aug-
mented with IKW Architecture to support IKW detected in
kernels. Along with addition of IKW Architecture, OFM
accumulators are optimized using 2-input split accumulator
technique for IIKW and 3-input split accumulator technique

90458 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

FIGURE 8. Power savings for NVDLA like architecture augmented with
IKW Architecture on pruned CNNs.

for SIKW. An extra kernel memory is introduced for storing
the IKW metadata. IKW Architecture template used is from
Figure 3(a) since NVDLA does not use kernel zero skip-
ping feature. The first column consists of pivot kernel, while
remaining columns contain non-pivot kernels. The product
from eachmultiplier of first column is given to IKWFunction
block, which transforms the product as per IKW stream of
non-pivot kernels and broadcasts it to adders in the same
row. Note that each row of multipliers work on the same
IFM/kernel channel and hence broadcast of products is along
the row. Multiplexer present before adder in the non-pivot
kernel column selects between broadcasted product from
pivot kernel or product from it’s own kernel. Since all kernels
move in lock-step, there is never a possibility of both the
inputs of multiplexer (MUX) being valid and non-zero at the
same cycle. IKW Architecture reduces power consumption
in NVDLA like architecture, but does not change execution
performance.

Area, Power estimation of RTL implementation of Base-
line NVDLA like architecture and Enhanced NVDLA
like architecture was done as explained in methodology
Section III-B. Area increase for Enhanced Architecture with
IIKW support is around 6.9% for both 4-bit and 8-bit pre-
cision. Area increase for Enhanced Architecture with SIKW
support is around 9.2% for both 4-bit and 8-bit precision. We
see that area increase is not significant compared to Baseline
NVDLA like architecture. Figure 8 shows the power savings
due to IKWArchitecture over the baseline NVDLA architec-
ture.We observe power savings of at least 14% for 8-bit and at
least 29% for 4-bit due to SIKW for VGG-16 and Inception-
v4 CNNs. In the next section, we map IKW Architecture
to Cnvlutin CNN accelerator which uses IFM zero skipping
unlike NVDLA.

D. CNVLUTIN
Cnvlutin [17] architecture, proposed by Albericio et. al., is an
example of CNN accelerator architecture, which uses IFM
zero skipping for enhancing execution performance. Cnvlutin
is similar to NVDLA, except IFM is decoupled into 16 dif-
ferent streams so that IFM zero skipping can proceed inde-

FIGURE 9. Cnvlutin architecture augmented with IKW Architecture.

FIGURE 10. Power savings for Cnvlutin architecture augmented with IKW
Architecture on pruned CNNs.

pendently in each of the streams. Each stream corresponds to
separate channel and hence the product after multiplication
can be added using adder tree. The IFM zero skipping is
handled by using encoding IFM in Zero-Free Neuron Array
Format that enables it to skip zero valued IFM computations
and supply only non-zero IFM values to multipliers. The
kernel weights are chosen based on the offset for each non-
zero IFM pixel. The back-end part of 16 multipliers, adder
tree and OFM accumulator per kernel is same as NVDLA.

Figure 9 shows the Cnvlutin architecture augmented with
IKWArchitecture template (Figure 3(a)). Integration of IKW
Architecture to Cnvlutin is very similar to NVDLA, except
that IKW stream is addressed by the offset of IFM. Offset
is used to index the kernel weight as well as IKW stream to
decide to which non-pivot kernel, the product generated by
pivot kernel needs to be broadcasted to. IKW Architecture is
introduced in each Subunit, where Filter Lane 0 is the pivot
kernel in all of the subunits. Filter Lanes 1 - 15 correspond to
non-pivot kernels.

Area, Power estimation of RTL implementation of Base-
line Cnvlutin architecture and Enhanced Cnvlutin architec-
ture were done as explained in methodology Section III-B.
Area increase for Enhanced Architecture with IIKW sup-
port is around 6.9% for both 4-bit and 8-bit precision. Area
increase for Enhanced Architecture with SIKW support is
around 9.2% for both 4-bit and 8-bit precision. We see

VOLUME 8, 2020 90459



P. Udupa et al.: IKW for Power Efficient Edge Computing

FIGURE 11. ZeNA architecture consisting of 16 parallel processing
elements (PE) consisting of MAC units working on sixteen kernels in
parallel producing 16 OFMs. Kernel running in PE0 is Pivot kernel which
broadcasts the product to remaining 15 PEs. Proposed IKW Architecture
consists of IKW Function block and broadcast network. IKW Function
block can be IIKW or SIKW. IIKW function block uses only product from
Pivot MAC to generate products to be broadcasted to non-pivot MACs.
SIKW function block uses product and IFM from pivot MAC to generate
products to be broadcasted to non-pivot MACs.

that area increase is not significant compared to Baseline
Cnvlutin architecture. Figure 10 shows power savings due to
IKW Architecture for VGG-16 and Inception-v4 CNNs. We
observe power savings of at least 13% at 8-bit and at least
28% at 4-bit due to SIKW.

E. ZeNA
ZeNA [19] architecture, proposed by Kim et. al., is an exam-
ple of CNN accelerator architecture, which uses both IFM and
kernel zero skipping for enhancing execution performance.
In ZeNA CNN architecture, each processing element (PE)
unit has its own IFM buffer and kernel buffer so that MAC
unit execution time is independent of other MAC units. Since
each MAC unit has its own IFM and kernel zero skipping
logic, each PE completes OFM execution at a different rate
compared to other PEs. To counter this rate imbalance within
PEs and across PEs, authors have proposed zero-aware ker-
nel allocation and work stealing approaches. Work stealing
approaches deal with PEs which have completed their work
and are borrowing work from PEs which still have work
remaining. Zero-aware kernel allocation rearranges kernel
channels according to increasing density and distributes them
inside PE clusters working on the same kernel.

To map IKW on the ZeNA architecture, considering zero-
aware kernel allocation and work stealing approaches, IKW

FIGURE 12. Power savings for ZeNA architecture augmented with IKW
Architecture on pruned CNNs.

FIGURE 13. Performance improvement in percentage of cycles in ZeNA
architecture due to IIKW and SIKW on unpruned CNNs.

search process is applied to find pivot and non-pivot ker-
nels before organizing kernel channels as per density. Since
IKW search process affects kernel density by introducing
zeros in non-pivot kernel, IKW search process has to be run
before kernel allocation. During zero-aware kernel allocation,
along with kernel channel, IKW stream for the corresponding
channel are also rearranged. Since order of accumulation of
OFM is not important as long as final OFM value remains
unchanged, IKW can be applied to zero-aware kernel alloca-
tion process. In case of work stealing approach, the restriction
due to IKW is that PE working on non-pivot kernel cannot
steal work from PE working on pivot kernel. This is because
broadcast network can only send data from PE working on
pivot kernel to other PEs. If PEs working on non-pivot kernel
steal work from pivot kernel, they cannot broadcast products
to other PEs.

A single cluster of ZeNA architecture without the work-
stealing logic, considered as Baseline for evaluation, was
implemented in RTL. The Baseline Architecture was then
augmented with IKW Architecture at the level of PE as
shown in Figure 11. IKW Architecture template shown in
Figure 3(b) is used, which contains an adder before the accu-
mulator, since the underlying CNN architecture uses ker-
nel zero skipping feature. Area, Power estimation of RTL
implementation of Baseline ZeNA architecture and Enhanced

90460 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

FIGURE 14. Performance improvement in percentage of cycles in ZeNA
architecture due to IIKW and SIKW on pruned CNNs.

ZeNA architecture were done as explained in methodology
Section III-B.

Area increase for Enhanced Architecture with IIKW sup-
port is around 9.5% for both 4-bit and 8-bit precision. Area
increase for Enhanced Architecture with SIKW support is
around 14.7% for both 4-bit and 8-bit precision. We see
that area increase is not significant compared to Baseline
ZeNA architecture. Figure 12 shows the power savings due
to IKW Architecture over the Baseline ZeNA architecture
for VGG-16 and Inception-v4 CNNs. We observe power
savings of at least 12% for 8-bit and at least 19% for 4-bit
due to SIKW. Further, IKW Architecture enhances execution
performance due to more kernel skipping opportunities in
non-pivot kernel compared to original kernel. Performance
improvement is limited by the slowest kernel among a set
of pivot and non-pivot kernels. Figure 13 shows the per-
formance improvement in percentage of cycles in ZeNA
for unpruned VGG-16 and Inception-v4 CNNs. Figure 14
shows the performance improvement in percentage of cycles
in ZeNA for pruned VGG-16 and Inception-v4 CNNs. We
observe performance improvement of at least 2% for 8-bit and
13% for 4-bit across VGG-16 and Inception-v4 CNNs. Since
IKW improves execution performance and reduces power
consumption, it gives double benefits for architectures using
kernel zero skipping feature.

F. DISCUSSION
In the previous sections, we have seen IKW Architecture
templates introduced in well-known CNN accelerator archi-
tectures for improving power efficiency and execution per-
formance of CNNs. IKW Architecture was able to deliver
power savings across multiple fixed-point bit precision (8-bit,
4-bit) formats, and execution performance improvement in
case of ZeNA architecture. We can conclude that power
savings validate the idea that power saved due to fixed-point
multiplication is more than power spent in IKW Function
block, broadcast network and adder/multiplexer in non-pivot
MAC. The amount of power savings achieved per layer
is a function of sparsity enhanced due to IKW. We have
observed that kernels with higher enhanced sparsity due to

IKW deliver more power savings. Next, we comment on
extending SIKW concept using different relation between
kernel weights, introduction of IKW Architecture on systolic
array architecture and impact of IKW Architecture on power
efficiency of the CNN accelerator architecture.

The concept of SIKW can be extended to other possible
relations between the kernel weights. For example, if kernel
weight is half or 2× or 4× the other kernel weight, product
generated using pivot kernel needs to be right-shifted by 1 or
left-shifted by 1 or 2 respectively, to get the value which
can be broadcasted for accumulator working on non-pivot
kernel. If the relation between kernel weights allows a cost-
effective way to compute the product which needs to be
broadcasted, then such a relation will result in power savings
using IKW.

We address introduction of IKW Architecture in systolic
array architecture [46], where there is a tight temporal align-
ment between arrival of IFM and kernel at each Processing
Element (PE). As described by Kwon et al. [46], a typical
systolic array architecture consists of 2-D grid of PEs, where
each PE performs MAC operation for computation of OFM
pixels. In the 2-D grid of PEs, each PE is connected to
four neighbouring PEs, except at the grid boundaries. IFM
is streamed horizontally to PEs starting from left to right,
kernels are streamed to PEs from top to bottom. OFMs are
collected from the bottom row of the grid. Kernels are shared
column wise, while IFMs are shared row wise. A single PE
row works on the same IFM window, with columns comput-
ing different OFM channels. Different IFM window is given
to each PE row. IKW Architecture is applied to every row of
PEs, where pivot kernel can be mapped to leftmost column
of 16 PEs, with remaining 15 columns working on non-
pivot kernels. If the number of columns exceed 16, then total
columns are divided into groups of 16 and IKW Architecture
is applied to every set of 16 columns. IKW Architecture
shown in Figure 3(b) is used here, although systolic array
architecture does not use kernel zero skipping feature. It is
because PEs in the same row receive IFM pixels in a stag-
gered manner and PEs working with non-pivot kernel need
to add broadcasted product received from PE working on
pivot kernel with their own products in the same cycle. This
necessitates the usage of IKW Architecture of Figure 3(b).
It can be observed that completion of OFM computation
happens in a staggeredmanner, with PEs closer to IFM source
finishing earlier than PEs away from it. This leads to scenario
where PE working on pivot kernel finishes OFM pixel com-
putation earlier compared to remaining 15 PEs working on
non-pivot kernels in a group of 16 columns. Now, PEworking
on pivot kernel starts broadcasting product corresponding to
next OFMpixel while remaining PEs are working on previous
OFM pixel. To support this scenario, an extra accumulator is
required in each of the PEs working on non-pivot kernels.
Summarizing, the IKW Architecture required for supporting
IKW in systolic array architecture consists of architecture
template of Figure 3(b) with an extra accumulator in each of
the PEs working on non-pivot kernels.

VOLUME 8, 2020 90461



P. Udupa et al.: IKW for Power Efficient Edge Computing

We comment about the impact on power and energy effi-
ciencies due to introduction of IKW Architecture in three
state-of-the-art accelerator architectures, namely NVDLA,
Cnvlutin and ZeNA. In case of architectures not using kernel
zero skipping like NVDLA/Cnvlutin, proposed IKW Archi-
tecture does not modify cycles required to complete the
CNN layer. However, it gives power savings of at least 13%
for 8-bit case. We noticed improvement in power efficiency
which is mainly due to the power savings of at least 13%,
since the total average operations per second executed is simi-
lar in baseline and baseline with IKWArchitecture. In case of
architectures using kernel zero skipping like ZeNA, proposed
IKW Architecture improves the execution performance by at
least 2% and reduces power consumption by at least 12%
for 8-bit case. We observe improved power efficiency due to
power savings similar to architectures not using kernel zero
skipping. Since, there is at least 2% improvement in execution
performance, we get better energy efficiency compared to
baseline architecture. Energy efficiency helps in improving
battery life, which is especially useful for edge devices,
which needs to complete tasks faster and consume less active
power. Next, we contrast our proposal to UCNN [36], which
explored identical kernel weights within a kernel i.e. intra-
kernel weights.

In UCNN approach, kernel weights within a kernel are
compared to generate metadata containing information about
repeated kernels. During dot product operation, products cor-
responding to repeated kernels are stored in memory. The
stored products are retrieved from the memory if the product
of IFM pixel to be multiplied with repeated kernel is already
present. The product is retrieved using indirection pointers
using the IFM pixel value. Compared to IKW approach,
in UCNN, the IFMpixel has to be compared during runtime to
access products stored in memory. Also, it requires memory
and indirection pointer to store the repeated products. Due to
presence of memory, the hardware architecture is expensive
in terms of area and power. If UCNN is applied to 4-bit pre-
cision, it will result in significant memory accesses to fetch
products because of higher number of repeated IFM pixel val-
ues. The approach followed in IKW, where the products are
used as soon as possible, is less area intensive, without need
for IFM pixel value comparison. In addition, as the number of
kernel channels increase, opportunities to introduce sparsity
in IKW is more compared to UCNN.

IV. CONCLUSION
Given a trained, pruned or unpruned, quantized Convolu-
tional Neural Network (CNN) model, we have shown that
the proposed Inter-Kernel Weight (IKW) technique can be
applied to 3-D Convolution layers or Fully Connected lay-
ers to extract identical and/or similar inter-kernel weights
to eliminate redundant multiplication operations. Proposed
IKW technique can be applied to other types of 3-D Con-
volution operators like Dilated Convolution [47], Transposed
Convolution [48] as well, which increases its applicability to
a wide variety of CNNs used in other application domains

such as monocular depth estimation, scene segmentation, etc.
From the results, we see that the proposed IKW technique
using Similar Inter-Kernel Weights (SIKW) introduces at
least 30% sparsity enhancement in case of unpruned state-
of-the-art CNNs and at least 10% sparsity enhancement in
pruned CNNs. Since IKW can give approximately 30% spar-
sity enhancement on unpruned CNNs, it can be considered
as a candidate to replace pruning. Pruning is required for
reducing the size of given unpruned model to improve power
and execution performance. Pruning is not possible on edge
devices, because it is a resource intensive step, requiring
re-training. Instead, IKW search procedure is less power
hungry and can be done on edge devices to generate a sparse
CNN model.

Further, to efficiently use the IKW detected in CNNs,
we have proposed a hardware architecture template called
IKW Architecture which can be introduced in any state-of-
the-art CNN accelerator. IKWArchitecture eliminates redun-
dant fixed-point multiplications, thus saving power. It can
also give improvement in performance if CNN accelerator
uses kernel zero skipping feature, similar to ZeNA. Proposed
IKW Architecture using SIKW gives power savings of at
least 12% for 8-bit precision and 19% for 4-bit precision on
well known CNN accelerator architectures, for state-of-the-
art CNNs, with a maximum area overhead of 14.7%. It also
improves performance by at least 2% for 8-bit precision and
13% for 4-bit precision for ZeNA. Thus, the proposed IKW
Architecture enables power efficient CNN inference on edge
devices by reducing power consumption of 3-D Convolution
operations. We consider IKW technique as an alternative
approach for enhancing CNN kernel sparsity, which can be
run on edge devices. It can be concluded that the proposed
IKW technique and architecture is a valuable power efficient
solution for enhancing edge computing.

REFERENCES
[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 2818–2826.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, p. 248.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature
hierarchies for accurate object detection and semantic segmentation,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 580–587.

[4] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, ‘‘OverFeat: Integrated recognition, localization and detec-
tion using convolutional networks,’’ 2013, arXiv:1312.6229. [Online].
Available: https://arxiv.org/abs/1312.6229

[5] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, ‘‘Learning
deep features for scene recognition using places Database,’’ in Proc. 27th
Int. Conf. Neural Inf. Process. Syst., vol. 1, Cambridge, MA, USA, 2014,
pp. 487–495.

[6] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, ‘‘ImageNet large scale visual recognition challenge,’’ Int.
J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

90462 VOLUME 8, 2020



P. Udupa et al.: IKW for Power Efficient Edge Computing

[8] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1725–1732.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[10] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[11] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
‘‘Deep Speech: Scaling up end-to-end speech recognition,’’ 2014,
arXiv:1412.5567. [Online]. Available: https://arxiv.org/abs/1412.5567

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[13] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
‘‘DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,’’ in Proc. 19th Int. Conf. Architectural Support Pro-
gram. Lang. Oper. Syst., New York, NY, USA, 2014, pp. 269–284.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning supercom-
puter,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609–622.

[15] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, ‘‘ShiDianNao: Shifting Vision Processing Closer to the
Sensor,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit.
(ISCA), 2015, pp. 92–104.

[16] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[17] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, ‘‘Cnvlutin: Ineffectual-Neuron-Free deep neural network
computing,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 1–13.

[18] NVDLA. (2018). The NVDLA Deep Learning Accelerator. [Online].
Available: http://nvdla.org/hw/v1/ias/unit_description.html

[19] D. Kim, J. Ahn, and S. Yoo, ‘‘ZeNA: Zero-aware neural network acceler-
ator,’’ IEEE Des. Test. Comput., vol. 35, no. 1, pp. 39–46, Feb. 2018.

[20] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal Brain Damage.
San Francisco, CA, USA: Morgan Kaufmann, 1990, pp. 598–605.

[21] B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe, ‘‘Optimal brain
surgeon: Extensions and performance comparisons,’’ inProc. 6th Int. Conf.
Neural Inf. Process. Syst., San Francisco, CA, USA, 1993, pp. 263–270.

[22] R. Reed, ‘‘Pruning algorithms–A survey,’’ IEEE Trans. Neural Netw.,
vol. 4, no. 5, pp. 740–747, Sep. 1993.

[23] S. Anwar, K. Hwang, and W. Sung, ‘‘Structured pruning of deep convolu-
tional neural networks,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 13,
no. 3, pp. 1–18, May 2017.

[24] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ in Proc. 28th Int. Conf. Neural
Inf. Process. Syst., vol. 1, Cambridge, MA, USA, 2015, pp. 1135–1143.

[25] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning convo-
lutional neural networks for resource efficient transfer learning,’’ CORR,
vol. abs/1611.06440, pp. 1–17, Oct. 2016.

[26] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient Integer-Arithmetic-Only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[27] Y. Wu and C. T. Huang, ‘‘Efficient dynamic fixed-point quantization of
CNN inference accelerators for edge devices,’’ in Proc. Int. Symp. VLSI
Design, Autom. Test (VLSI-DAT), Apr. 2019, pp. 1–4.

[28] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, ‘‘Fixed Point Quantization
ofDeepConvolutional Networks,’’ inProc. 33rd Int. Conf. Int. Conf.Mach.
Learn., vol. 48, 2016, pp. 2849–2858.

[29] P. Judd, J. Albericio, T. H. Hetherington, T. M. Aamodt, N. D. E. Jerger,
R. Urtasun, and A. Moshovos, ‘‘Reduced-precision strategies for bounded
memory in deep neural nets,’’ CoRR, vol. abs/1511.05236, pp. 1–12, 2015.

[30] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, ‘‘Low-bit quantization
of neural networks for efficient inference,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. Workshop (ICCVW), Oct. 2019, pp. 3009–3018.

[31] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,’’ 2018, arXiv:1806.08342. [Online]. Available:
https://arxiv.org/abs/1806.08342

[32] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ in
Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France, Apr. 2017,
pp. 1–8.

[33] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, ‘‘An
early resource characterization of deep learning onwearables, smartphones
and Internet-of-Things devices,’’ in Proc. Int. Workshop Internet Things
Towards Appl., 2015, pp. 7–12.

[34] J. Cong and B. Xiao, ‘‘Minimizing computation in convolutional neural
networks,’’ in Proc. ICANN, 2014, pp. 281–290.

[35] D. Kim, J. Ahn, and S. Yoo, ‘‘A novel zero weight/activation-aware
hardware architecture of convolutional neural network,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 1462–1467.

[36] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
‘‘UCNN: Exploiting computational reuse in deep neural networks via
weight repetition,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 674–687.

[37] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[38] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resNet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[39] Y. LeCun, K. Kavukcuoglu, and C. Farabet, ‘‘Convolutional networks and
applications in vision,’’ in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2010,
pp. 253–256.

[40] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ CORR, vol. abs/1311.2901, pp. 1–11, Jul. 2013.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. 25th Int. Conf. Neural
Inf. Process. Syst., 2012, pp. 1097–1105.

[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for
fast feature embedding,’’ 2014, arXiv:1408.5093. [Online]. Available:
http://arxiv.org/abs/1408.5093

[43] (2019). VCS Compiler and Simulator. [Online]. Available: https://www.
synopsys.com/verification/simulation/vcs.html

[44] (2019). Design Compiler. [Online]. Available: http://www.synopsys.
com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.
aspx

[45] Synopsys. (2019). Spyglass Power. [Online]. Available: https://www.
synopsys.com/verification/static-and-formal-verification/spyglass/
spyglass-power.html

[46] H. Kwon, A. Samajdar, and T. Krishna, ‘‘MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,’’ in Proc. 23rd Int. Conf. Architectural Support Program. Lang.
Oper. Syst., 2018, pp. 461–475.

[47] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated convolu-
tions,’’ CoRR, vol. abs/1511.07122, pp. 1–13, Feb. 2015.

[48] V. Dumoulin and F. Visin, ‘‘A guide to convolution arithmetic for
deep learning,’’ 2016, arXiv:1603.07285. [Online]. Available: http://arxiv.
org/abs/1603.07285

PRAMOD UDUPA (Senior Member, IEEE)
received the B.E. degree in electronics and com-
munication engineering from Visvesvaraya Tech-
nological University, India, in 2006, the M.E.
degree in microelectronics from BITS Pilani,
Pilani, India, in 2008, and the Ph.D. degree in
VLSI for digital signal processing from INRIA,
France, in 2014.

From 2014 to 2016, he has worked on 4G sys-
tems as a Design Engineer in Bengaluru, India.

From 2016 to 2018, he also worked as an IP Logic Design Engineer at the
Intel India Development Center, Bengaluru. Since 2018, he has beenworking
as a Staff Engineer with the Samsung Advanced Institute of Technology,
SRI-B, Bengaluru. His research interests include low power algorithms and
architectures for machine learning applications, communication systems
involving OFDM systems. He has published articles in conferences, such
as ICC, VTC, and ISCAS.

VOLUME 8, 2020 90463



P. Udupa et al.: IKW for Power Efficient Edge Computing

GOPINATH MAHALE received the B.E. deg-
ree in electronics and communication engineer-
ing from Visvesvaraya Technological University,
India, in 2007, the M.Tech. degree in electronics
from the University of Pune, India, in 2011, and
the Ph.D. degree in electronic systems engineering
from the Indian Institute of Science, in 2017.

He has worked as a Project Engineer at Wipro
Technologies, from 2007 to 2009, a Research
Associate at the Indian Institute of Science, from

2016 to 2017, and a Postdoctoral Research Associate at the University
of Paderborn, Germany, from 2017 to 2018. Since April 2018, he has
been working as a Staff Engineer at the Samsung Advanced Institute of
Technology, SRIB, Bengaluru, India. His research interests include domain
specific hardware accelerators, deep learning, low power computations for
deep learning, and image processing.

KIRAN KOLAR CHANDRASEKHARAN rec-
eived the B.E. degree in electronics and
communication engineering from the Peoples
Education Institute of Technology, Bangalore Uni-
versity, Bengaluru, India, in 2000.

From 2004 to 2012, he was the Project Lead
with Sanyo Semiconductor Company, Ltd., Japan.
Since 2013, he has been a Staff Engineer with
the Samsung Advanced Institute of Technology,
SRIB, Bengaluru. His research interests include

convolutional neural network hardware accelerator architecture and GPU
architectures.

SEHWAN LEE received the B.S. degree and the
M.S. degree in electrical Engineering from Yonsei
University, South Korea.

He joined Samsung Electronics Company, Ltd.,
in 2010, where he has delivered successfully a
lot of video and image IP and SoC products in
important projects. Since 2015, he has been work-
ing as a Principal Researcher on the neural net-
work accelerator and neuromorphic system with
the Samsung Advanced Institute of Technology,

South Korea. His research covers a broad range of topics related to deep
learning algorithms, video processing algorithms, neural network accelera-
tion, and general processor architectures.

90464 VOLUME 8, 2020


	INTRODUCTION
	INTER-KERNEL WEIGHTS(IKW)
	PRELIMINARIES
	IKW CONCEPT
	IKW EXPERIMENTAL SETUP
	IDENTICAL INTER-KERNEL WEIGHTS(IIKW)
	SIMILAR INTER-KERNEL WEIGHTS(SIKW)

	IKW ARCHITECTURE
	SPLIT-ACCUMULATOR OPTIMIZATION
	RTL IMPLEMENTATION AND EVALUATION
	IKW ON NVDLA
	CNVLUTIN
	ZeNA
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	PRAMOD UDUPA
	GOPINATH MAHALE
	KIRAN KOLAR CHANDRASEKHARAN
	SEHWAN LEE


