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ABSTRACT Since the intersecting feature between the defect and the background of the image, the defect
detection often results in under-segmentation or over-segmentation. To solve this problem, we propose a
new defect extraction method by calculating the maximum mutual information of intersecting features.
Firstly, we construct a new two-dimensional histogram according to the defect features. The new histogram
is called Gray Level and Local Spatial Difference histogram (GLSD), which is constructed by grayscale
and the improved local gray difference with the spatial relationship. Secondly, considering the geometric
distribution of high-probability background events, we improve the segmentation shape of the background
event distribution and divide the GLSD histogram preliminary. Finally, we calculate the maximum mutual
information of the intersecting feature between the defect and the background. At this point, the boundary
of the intersecting feature interval of the GLSD histogram is determined. To verify the effectiveness of the
proposed method, we used two sets of databases for performance evaluation. The experimental results show
that the proposed method is suitable for non-obvious defect detection under the local uniform background.
Meanwhile, it can improve the sensitivity, specificity, and accuracy of defect detection compared with the
classical threshold segmentation methods.

INDEX TERMS Image segmentation, defect detection, intersecting feature, local spatial difference, two-
dimensional histogram, mutual information.

I. INTRODUCTION
Image segmentation is one of the simple, effective, and com-
mon methods in defect visual detection, which can sepa-
rate the defect from the background into nonoverlapping,
homogeneous regions. Based on the extracted defect features,
intuitive segmentation methods are generated (e.g., thresh-
old [1], edge contour [2], [3], matching [4], clustering [5]).
Besides, recondite segmentation methods based on neural
network [6], intensity estimation [7], and deep learning [8],
etc., have been widely applied in recent years. However, these
methods require large amounts of data to provide prior knowl-
edge. In contrast, the threshold segmentation method has a
prominent advantage in terms of time complexity. Threshold
segmentation method can quickly and quantitatively ana-
lyze the features of the target to determine the threshold.
Image threshold segmentation includes bi-level thresholding
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segmentation and multi-level thresholding segmentation [9].
And bi-level thresholding segmentation is suitable for defect
detection.

The core of threshold segmentation is to determine the
appropriate target features. Gray level, mean value [10], vari-
ance [11], entropy [12], [13], and other grayscale related
information [14] have performed well in recent studies.
Since the defects are usually local rather than global,
the local features of images are gradually concerned. The
local gray mean is a grayscale linear smoothing method
that reduces noise and boundary interference. Local vari-
ance reflects the dispersion degree of the local grayscale.
Local entropy reflects the aggregation of local grayscale
distribution. Local gradient-magnitude in [14] and gradient-
direction in [15], [16] refer to the intensity and direc-
tion of the edge, respectively. These local features can
eliminate the influence of the overall nonuniformity and
reflect the local gray information related to the pixel spatial
location.
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Threshold segmentation usually divides the image into
two distinct regions (i.e., the target region and the back-
ground region). However, in the defect detection for indus-
trial production, the feature of defects cannot be accurately
separated from the background. At this point, the precise
threshold segmentation will result in over-segmentation or
under-segmentation. Thus, the authors of [17] proposed the
concept of fuzzy. In [18], [19], the fuzzy set is segmented
through S or Z membership functions with a membership
degree of 0.5. Parameterization greatly limits the universality
of the segmentation method based on the fuzzy set [20]. It can
be seen that the fuzzy concept can be utilized to explain the
intersecting feature interval, but its fuzzy membership func-
tion cannot be used to describe the subset of the intersecting
feature interval. The fuzzy membership function is not fully
applicable to defect detection, which is reflected in the unex-
plainable forced segmentation of the coupling region between
the defect and background. The primary idea of this paper is
not to classify the features of defects and background to the
maximum extent but to locate the intersecting feature interval
based on the fuzzy concept by using relevant information
theory.

It is necessary to extract the feature threshold adaptively in
defect detection under a complex background environment
[21]. Feature statistic based on Histogram is the most widely
used threshold extraction tool. Generally, the histogram is uti-
lized to calculate the distribution of gray values without addi-
tional instructions. In the histogram, we classify the image
components based on different effective features. Larger
inter-class differences and smaller intra-class differences
between defects and backgrounds help to determine accurate
thresholds. The improvement of the two-dimensional his-
togram is to add a feature dimension [8], which changes from
plane feature statistics to stereo feature statistics. Histogram
increases feature statistics as well as the segmentation and
reliability of the defect and the background. We also utilize
the concept of the 2D histogram in our algorithm proposed
in this paper. To sum up, the selection of the second feature
and the adaptive threshold calculation method play impor-
tant roles in the application of a 2D histogram in defect
segmentation [22].

The previous adaptive threshold calculation methods based
on 2D histogram include OTSU [23], [24], maximum entropy
[10], some derived entropy methods (e.g., Renyi entropy
[25], [26], Tsallis-Havrda-Charvat entropy [27], [28], K-L
divergence [29], relative entropy [30] and Tsallis entropy
[31]), and some entropy methods with additional conditions
(the fuzzy set in [18] and weights in [32] were added to the
entropy as additional constraints to calculate the maximum
entropy threshold). It is worth mentioning that the inter-
class algorithm is not suitable for detection when the defect
is out of proportion to the background, such as the OTSU
algorithm. However, entropy can represent the uncertainty of
random variables. Maximum entropy (including its expan-
sion) threshold segmentation can maximize the probability

distribution uniformity of defects and backgrounds. Among
the two-dimensional histogram threshold calculation meth-
ods, entropy is one of the most commonly used methods that
can achieve no-parameter segmentation. Mutual information
is a measurement of information that belongs to entropy.
Previously, mutual information is widely used in machine
learning to test the similarity between the real data and the
predicted data [33], which is suitable for the definition of
intersecting feature information. We reference the idea of
different pixels of an object are in the same class in [34]
and transform it to the same pixel in different classes. Mutual
information can represent the correlation degree of two ran-
dom variables. When the mutual information is maximum,
the probability distribution of two sets has the maximum
correlation.

To solve the problem of over-segmentation or under-
segmentation caused by intersecting features, a new defect
detection method based on mutual information is proposed.
The main contributions of this paper are the following four
points. (a) For the non-obvious defect features, we improve
the local gray difference with the spatial relationship. Then
we use it to construct a new two-dimensional histogram,
which named Gray Level and Local Spatial Difference his-
togram (GLSD). (b) Since the traditional two-dimensional
histogram segmentation shape does not meet the actual char-
acteristics, we change the segmentation shape of the high-
probability background event in GLSD. (c) Since there is
an intersecting feature interval between the background and
the defect, an accurate segmentation boundary cannot be
determined. Therefore, we use the measurement of the uncer-
tainty of mutual information to locate the intersecting feature
interval for segmentation. To the best of our knowledge,
there are no studies that use mutual information to locate
the intersecting feature interval. (d) Besides, to verify the
effectiveness of the proposed algorithm, we publish a set
of surface image datasets for motorcycle wheels, which has
certain representativeness in the field of metal surface defect
detection. Experimental evaluation demonstrates the effec-
tiveness of the proposed method in detecting non-obvious
defects, compared to current state-of-the-art domain compar-
ison methods.

This paper is organized as follows. In section II, we devel-
oped an additional feature and used it to construct a new
histogram (GLSD). In section III, we study the distribution
of the defect feature and locate the intersecting feature inter-
val. In section IV, we carry out experiments on two sets of
databases to verify the accuracy of the proposed algorithm.
Finally, we conclude this paper in section VI.

II. GRAY LEVEL AND LOCAL SPATIAL
DIFFERENCE HISTOGRAM
Based on the 2D histogram, we make a statistical analysis of
the extended features. And we summarize it as the local mean
value [10], the local variance [11], the local entropy [12],
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and the local gray-level spatial correlation [32]. These are all
about the features of the grayscale in the mask. In this paper,
the second dimension of the histogram is generated based on
the physical characteristics of the defect. In general, defects
are minute pits on a locally uniform surface that causes the
defect component to be the slightly darker block of the image.
The commonality of defects has nothing to do with the area,
shape, or texture, but with the difference in representation
by comparing the background. The significant difference
between the defect and its neighborhood (background) is
related to the grayscale. Therefore, the primary purpose of
this paper is to extract the grayscale difference between the
defect and the background.

A. LOCAL SPATIAL DIFFERENCE
To enhance the difference between the defect and the back-
ground, we use the local gray difference. First of all, we intro-
duce the calculation method of the local gray difference.
At themacro-level, it aims to enhance the differences between
the images by using a filter to eliminate defects and subtract
them from the original image (i.e., the defect regions). At the
micro-level, it refers to the difference between the gray value
of the pixel and the gray correlation value of its neighborhood
(e.g., local gray mean). In this paper, the gray correlation
value of its neighborhood is the local graymean, which is also
used as the minuend. It is regarded as an averaging smoothing
filter, which is a linear smoothing with the gray values of the
input image. There are no defects in the smoothed image.
Subtracting the original image can subtract the background
and preserve the defects. Therefore, the local gray differ-
ence can represent the difference between the defect and the
background. Although the local gray difference can suppress
the influence of global non-uniformity, it cannot avoid the
influence of noise on small defects. To solve this problem,
this paper improves the calculation method of the local gray
difference by substituting the spatial weight coefficient α.
In the high-resolution image, we first select the mask to cover
the defect and calculate the gray difference of each pixel.
Then, we compare several cases of the pixel gray difference
and its neighborhood gray difference. Finally, we get the
spatial weight coefficient α by combining the actual situa-
tion, to make the corresponding adjustment to the local gray
difference.

1) LOCAL GRAY DIFFERENCE
Let the digital image size be M × N , the gray level range be
[0,L], and the gray level of the pixel (x, y) be g (x, y) ∈ [0,L].
We take either pixel (x, y) as the center, and the neighborhood
is �(x, y). The size m × n of the neighborhood �(x, y) is
chosen on the basis that no matter how big a defect can be
overridden (i.e., mask size). Then we calculate the average
gray value Av(x, y) of the neighborhood �(x, y) as the local
gray mean. The local gray difference d (x, y) between the
pixel (x, y) and its neighborhood �(x, y) is calculated as

follows:

d (x, y) = Av (x, y)− g (x, y) (1)

The Av (x, y) in (1) is the grayscale mean of the neighborhood
�(x, y), which is expressed as follows:

Av (x, y) =
∑m

2 ,
n
2

i=−m
2 ,j=−

n
2
g (x + i, y+ j)/(m ∗ n) (2)

To prevent an overflow or underflow, we normalize d (x, y) to
dn (x, y) ∈ [0,L ′]. Since dn (x, y) is a variable related to the
grayscale, we consider that the range [0,L ′] of the local gray
difference dn (x, y) is the same as the grayscale level [0,L]
(i.e., L ′ = L).

dn (x, y) = (L ′ − 0) ∗
d (x, y)− dmin
dmax − dmin

(3)

At this point, we can obtain dn (x, y) after d(x, y) of all pixels
are calculated.Where dmax and dmin are the maximum and the
minimum value of d(x, y), respectively.

2) LOCAL GRAY DIFFERENCE WITH SPATIAL RELATIONSHIP
The local difference is determined not only by the cur-
rent pixel but also by the surrounding pixel. Therefore,
we improve the local gray difference dn (x, y) to dw (x, y)
with spatial weight. The improved local gray difference
dw (x, y) of the pixel (x, y) uses the local gray difference
dn (x, y) as the benchmark and refers to the maximum
gray difference dnmax(x, y) and the average gray difference
dnmean(x, y) of its 8 neighbors. The local gray difference set
of 8 neighbors is {D8(x, y)}, and its maximum value and
average value are expressed as:

dnmax(x, y) = max{D8(x, y)} (4)

dnmean(x, y) =

∑
D8 (x, y)
8

(5)

Suppose the comparison value ω is the maximum of the
gray difference dn (x, y) for all pixels. The local gray differ-
ence dn (x, y) of the central pixel and the local gray differ-
ence set {D8(x, y)} of its 8-neighborhoods are compared with
the comparison value ω. And there could be four possible
scenarios:
(a) dn (x, y) andmost subsets of {D8(x, y)} are less than the

comparison value ω, i.e. dn (x, y) and dnmean(x, y) are
less than the comparison value ω. Then the pixel (x, y)
does not belong to the defects, and dn (x, y) remains
unchanged.

(b) Only dn (x, y) is greater than the comparison value ω,
i.e. dn (x, y) is greater than the comparison value ω, but
dnmax(x, y) and d

n
mean(x, y) are less than the comparison

value ω. Then the pixel (x, y) is noise with dn (x, y)
needs to be suppressed.

(c) dn (x, y) and a few subsets of {D8(x, y)} are greater than
the comparison valueω, i.e. dn (x, y) and dnmax(x, y) are
greater than the comparison value ω, but dnmean(x, y) is
less than the comparison value ω. Then the pixel (x, y)
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is likely to be an edge or noise (defect uncertainty), and
dn (x, y) remains unchanged.

(d) Most of the set {D8(x, y)} is greater than the com-
parison value ω, i.e. dmean(x, y) is greater than the
comparison value ω, no matter the values of dn (x, y)
and dnmax(x, y) are. Then the pixel (x, y) belongs to the
defects, and dn (x, y) needs to be enhanced.

According to the preliminary judgment above, it is nec-
essary to adjust dn (x, y) by the spatial weight coefficient
α. The spatial weight coefficient α is not set artificially but
adjusts robustly according to its value of dn (x, y). In this way,
the statistical curve does not deform into a particular shape
(e.g., compression or stretching), and remains the original sta-
tistical shape. The corresponding adjustment with the spatial
weight coefficient α is dw (x, y):

dw (x, y) = ω + (L ′ − ω) ∗ dwn (x, y)∧α (6)

where dwn (x, y) is the normalization of the stretch interval
according to the comparison value ω, the expression is:

dwn (x, y) =
dn (x, y)− ω

L ′ − ω
(7)

According to the four situations previously analyzed,
we make a simplification and summary. The value of the
spatial weight factor α is determined by dn(x, y). And then
dw (x, y) decides to keep constant, enhance, or suppress. The
value of the spatial weight factor α is as follows:

α =


1+ dwn (x, y) , dn (x, y) > ω, dnmax(x, y) < ω

1− dwn (x, y) , dnmean(x, y) > ω

1, otherwise.

(8)

The main functions of the local spatial difference dw (x, y)
are as follows. (a) When the pixel (x, y) is preliminarily
judged as noise, its gray difference will be suppressed,
(b) when the pixel (x, y) is preliminarily judged to be a
defect, the gray difference will be amplified, (c) in other
or uncertain cases, the gray difference remains the same.
The improved local gray difference can extend the interval
where the defect is located. And it can also improve the
segmentation accuracy, which will prove in the experimen-
tal section. Intuitively, the local gray difference is mainly
determined by the current pixel gray value, while the local
spatial difference considers the local grayscale difference
distribution.

B. CONSTRUCT TWO-DIMENSIONAL HISTOGRAM
The two-dimensional histogram in this paper is established
by the gray dimension (horizontal axes) and the local spatial
difference dimension (vertical axes), which is called Gray
Level and Local Spatial Difference histogram (GLSD). The
2D histogram planform approximates to a matrix. The fea-
ture dimensions are the determinants of the matrix, and the
statistics are the values of the matrix. We first analyze the
statistics under the one-dimensional histogram, respectively.

For example, the frequency of the gray level ` ∈ [0,L] in
the gray level histogram is the probability p(`). The gray
level probability expression pg(`) of the gray level value
` ∈ [0,L] and the local spatial difference probability expres-
sion pw(`′) of the local spatial difference value `′ ∈ [0,L ′] are
as follows:

pg(`) =
hg(`)
M ∗ N

(9)

pw(`′) =
hw(`′)
M ∗ N

(10)

where hg(`) is the statistical number of pixels with grayscale
`, and hw(`′) is the statistical number of pixels with the
local spatial difference `′. Therefore, in the GLSD histogram,
the probability expression p(`, `′) of the gray level ` and the
local spatial difference `′ is:

p(`, `′) =
h(`, `′)
M ∗ N

(11)

where h(`, `′) is the statistical number of pixels with the
grayscale ` and the local spatial difference `′. It is the result
of two feature dimensions.

The two-dimensional histogram is often used to analyze the
distribution of targets and backgrounds. This paper considers
the defect as the target. In this section, we improve the
segmentation shape, which replaces the classical rectangle
segmentation shape by the elliptical projection shape. We use
our original data (Porosity Defect-1) to verify the authenticity
of the defect distribution and the background distribution,
as shown in Fig. 1. Firstly, we use the ground truth to calculate
the defect distribution and the background distribution of the
gray level and the gray difference level, respectively, as shown
in Fig. 1 (a). The defect distribution and the background dis-
tribution of the two-dimensional level, as shown in Fig. 1 (b).
Previous scholars divide the target and background into two
groups by a threshold

(
`∗, `

′
∗

)
: defect set A, and background

set B, as shown in Fig. 2(a). However, in Fig. 1 (a), we can
see the intersection between the distribution of defects and
background. At this time, it is not guaranteed that the features
of the two dimensions can completely separate the target and
background, and there may even be an intersecting feature
interval, as shown in Fig. 1(c-1). Therefore, we preliminarily
improve the segmentation model, as shown in Fig. 2 (b).
The intersecting feature interval is called the intersecting
feature set C. In this set, the feature values are extracted
from the defect exist in the background interval, thus it
is difficult to completely separate them with an accurate
threshold.

The distribution of high-probability target events and high-
probability background events will have double or even mul-
tiple peaks. At this point, there are significant differences
in the distance, density, or other geometric features between
peaks. However, defects are usually small probability events,
which are characterized by a small amount of data and a
relatively scattered distribution, as shown in Fig. 1 (c-1).
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FIGURE 1. Defects distribution and background distribution of the original data (Porosity defect-1). (a) One-dimensional distribution
of gray level (black curve) and gray difference level (red curve)), (b) two-dimensional distribution, (c) their two-dimensional
projection distribution (points of defects are black, points of background are cyan).

FIGURE 2. The evolution of the projection shape to segment in this paper. (a) Rectangular projection shape for accurate segmentation,
(b) rectangular projection shape for intersecting segmentation, (c) elliptic projection shape for intersecting segmentation.

There is only one peakwhen the background is single (formed
by the background), showing a large amount of data and a
relatively concentrated distribution, as shown in Fig. 1 (c-2).
Specifically, there is only one peak of the complanate quasi-
Gaussian distribution of the two one-dimensional histograms
in Fig. 1 (a-2), and there is also only one peak of the
stereoscopic quasi-Gaussian distribution of the GLSD his-
togram in Fig. 1 (b-2). Since the Gaussian fitting peak
width of the background distribution in two dimensions
is different, the elliptical projection shape will be gener-
ated. Meanwhile, if the Gaussian fitting peak width is the
same, the projection shape is the positive circle. We take
the cross-section of the slightly elevated X-Y plane and the
background distribution to further prove that the projection

shape of the stereo quasi-Gaussian distribution onto the two-
dimensional histogram is elliptical, as shown in Fig. 1(c-2).
Previously, the classification using a rectangular projection
is inconsistent with the actual stereoscopic quasi-Gaussian
distribution or other shapes [35]. Therefore, we divide the
background high-probability events into an elliptical set B,
as shown in Fig. 2(c). And the axis of the ellipse in the
two-dimensional histogram is located in the parallel direction
to the diagonal. Since the data of low-probability defect
events are few and scattered, there is no obvious shape of
the two-dimensional histogram. Therefore, the defect is still
divided into a rectangular set A in this paper. And the inter-
secting feature between the defect and background is the
intersecting set C.
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The common two-dimensional histogram is usually used
to eliminate noise and edge interference, and then to
maximize the segmentation of the target and background.
However, when there has an intersecting feature between
the target and the background, it cannot be precisely
separated. In this paper, the two-dimensional histogram
is obtained on the premise of the improved gray dif-
ference, which can eliminate the noise and enhance the
defect features already. Therefore, the purpose of the two-
dimensional histogram proposed in this paper is to locate
the intersecting feature interval between the defect and the
background.

III. THRESHOLD WITH MAXIMUM
MUTUAL INFORMATION
The role of entropy in information theory is to measure the
uncertainty of information. The maximum entropy usually
calculates the segmentation threshold between the target and
the background in image processing. When there is a correla-
tion between the target and the background, we are required to
introduce additional information to measure the intersection
interval. In this paper, the intersection interval is the inter-
secting feature set C, as shown in Fig. 2(c). The significance
of intersecting feature set C for segmentation is as follows:
when a single threshold cannot completely segment the defect
set and the background set, we need to locate the interval of
the defect set and the background set respectively, that is,
we need to focus on locating the fuzzy intersecting feature
interval.

A. PROBABILITY DISTRIBUTION AND
MUTUAL INFORMATION
Mutual information, as an expansion of entropy, is also amea-
sure of information about information theory. Mutual infor-
mation represents the degree of interdependence between two
variables. Mutual information is a measure of correlation,
i.e., the information that one random variable contains in
another random variable. The greater the value of mutual
information, the more relevant the information between the
two variables. In this paper, the actual significance of mutual
information lies in the extent to which the intersecting feature
set C belongs to both defect A and background B. When the
mutual information of set C is maximized, it indicates that
the feature intersection of defects and background in set C
is maximized. This also indirectly explains the necessity of
determining the interval of set C.

The mutual information of two discrete random variables
A and B can be defined as follows:

MI (A;B) =
∑

a∈A

∑
b∈B

p(a, b)log
p(a, b)

p (a) ∗ p(b)
(12)

where p(a, b) is the joint probability distribution function of
random variables A and B. And p (a) , p(b) are the marginal
probability distribution of random variables A and B, respec-
tively. Mutual information is the relative entropy of the joint
distribution p(a, b) and product distribution p (a)∗p(b) of two

discrete random variables A and B. Since the histogram is
two dimensions, in this paper, random events are determined
by two features, e.g., the subset (`A, `′A). The subset (`A, `

′

A)
of the defect set A is located in the rectangle, as showed in
Fig. 2(c), and its probability is:

pA(`A, `′A) =
h(`A, `′A)

PA
(13)

where:

PA =
∑

A
h(`A, `′A) =

∑`

`=0 ∗

∑L ′

`′=`′∗
h(`, `′) (14)

Given that the subset (`B, `′B) of the background set B
is located in the ellipse. We segment the background set
B by an ellipse [36]. The center of the ellipse is located
at the maximum value P(`p, `′p) of the 2D histogram. The
axial direction θ of the ellipse is parallel to the diagonal
line between the point (0,L ′) and the point (L, 0) of the 2D
histogram. Since L is equal to L ′ in this paper, the direction θ
of the ellipse axis is π/4. This results in that the interval of the
background set B is only determined by the long semi-axis ra
and the short semi-axis rb. The constraint on the background
subset (`B, `′B) is:

`B =
(
`− `p

)
cos θ + (`′ − `′p) sin θ

`′B = −
(
`− `p

)
sin θ + (`′ − `′p) cos θ

(
`B

ra
)
2
+ (

`′B

rb
)
2

≤ 1

(15)

And the probability of subset (`B, `′B) is:

pB(`B, `′B) =
h(`B, `′B)

PB
(16)

where:

PB =
∑

B
h(`B, `′B) (17)

The subset (`A∩B, `′A∩B) of the intersecting feature set C
is the intersection of the defect set A and the background
set B. Since mutual information is the interdependence of
two hypothetical independent random variables, the prob-
ability distribution of set C is determined by hypothetical
independent events A and B. Therefore, the joint probability
distribution of A and B is as follows:

pC [
(
`A, `

′
A
)
,
(
`B, `

′
B
)
] =

h(`A, `′A)
PC

∗
h(`B, `′B)
PC

(18)

where:

PC =
∑

C
h(`A∩B, `′A∩B) (19)

We substitute the above probability expressions into Eq. (12),
and obtain the solution of mutual information in the two-
dimensional histogram as follows:

MI (A;B) = pC
[(
`A, `

′
A
)
,
(
`B, `

′
B
)]
∗ Q (20)

where Q is as follows:

Q = log
pC [

(
`A, `

′
A

)
,
(
`B, `

′
B

)
]

pA
(
`A, `

′
A

)
∗ pB(`B, `′B)

(21)
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FIGURE 3. The original data and the ground truth (i.e., white regions are defects, black regions are
backgrounds or interferences). (a) Porosity defect-1, (b) Gas Porosity defect-1, (c) Porosity defect-2, (d) Gas
Porosity defect-2.

B. INTERSECTING FEATURE INTERVAL
The larger the mutual information value of defect set A and
background set B, the larger the information of the intersect-
ing feature set C. In this paper, it is equivalent to the higher
mixing degree of defect feature and background feature. The
purpose of maximummutual information segmentation is not
to obtain the accurate threshold value between the target and
the background, but to locate the boundary of the intersecting
feature set C through the set A and set B. On the premise of
minimizing the number of missed detection and false detec-
tion, we calculate the optimal threshold vector

(
`∗, `

′
∗, ra, rb

)
through the maximum mutual information:(

`∗, `
′
∗, ra, rb

)
= argmax[MI (A;B)] (22)

where the threshold `∗ ∈ [0, argmax[hg (`)]] on the grayscale
axis and the threshold `′∗ ∈ [argmax [hw (`)] ,L ′] on the
gray difference axis. And the image uses the threshold vector(
`∗, `

′
∗, ra, rb

)
can be segmented as:

Seg (x, y) =


255,

(
`, `′

)
∈ {C}

128, (`, `′) ∈ {A− C}
20, (`, `′) ∈ {B− C}
0, otherwise.

(23)

where the set {A− C} is the defined defect region, while the
set {C} cannot be certainly identified as the defect region.
This is similar to positioning target regions and retaining
target fuzzy boundaries(regions) [19]. Although the set {C}
is not identified as a defect region, it can be used as a
supplement to the defined defect set A. The set {B− C}
and otherwise are both belong to the background region
(including interference).

IV. EXPERIMENT RESULTS
In this chapter, we use two databases to evaluate the perfor-
mance of the proposed method. The first database is the set of
images ofmotorcycle wheel surfaces (MWSdatabase), which
we have published for the first time and have added to the
supplementary materials. The high-quality images scanned
by a wire-array camera, as shown in Fig. 3. Fig. 3 shows part
of the original data and their ground truth (i.e., binary diagram
with white defect regions). It should be noted that only the
marked regions are defects. The white vertical stripes on the
left or right of the image represent other reflective surfaces
(non-defective). Other slightly larger black strips are drawn
by mark pen (non-defective). The image has a precision of
0.6(mm/pix). The original data contain two defect types,
namely, Porosity and Gas Porosity (for each defect type,
there are two sets of images). Meanwhile, the defect features
of the original data are non-obvious, which is helpful to
evaluate the performance of the algorithm.Wemake statistics
on the defect gray distribution, the defect gray difference
distribution, the background gray distribution, and the back-
ground gray difference distribution of all original images.
Since the disproportionate area of defects and backgrounds,
we normalize their distribution, as shown in Table 1. Each
distribution has an intersection of the defect and background.
The second database is the NEU surface defect database [37].
This public database is steel surface defects, some of the
images have heterogeneous defects. we selected five defect
types with comparable features to be tested. The defects of
the selected image in the NEU database and the image in
the MWS database have an intersecting feature. All these
characteristics make it far more challenging for surface defect
detection.

The detection evaluation indexes include the sensitivity,
specificity, and accuracy are defined in Eq. (24), Eq. (25),
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TABLE 1. The gray and gray difference normalized histograms of defects (black curve) and backgrounds (red curve) of our original data.

FIGURE 4. Visualization of the second feature of the original data (Porosity defect-1), and their segmentation results using the
proposed method. (a)Local mean, (b) local variance, (c) local entropy, (d) local gray-level spatial correlation, (e) local spatial difference.

and Eq. (26) to evaluate the experimental results of the defect
detection. Where the number of pixels with true-positive
(correct defect detected) defect detection is represented as
TPs, the number of pixels with false-positive (error defect
detected) defect detection is represented as FPs, the number
of pixels with true-negative (correct non-defect detected)
non-defect detection is represented as TNs, the number of
pixels with false-negative (error non-defect detected) non-
defect detection is represented as FNs.

Sensitivity =
TPs

TPs+ FNs
(24)

Specificity =
TNs

TNs+ FPs
(25)

Accuracy =
TPs+ TNs

TPs+ FNs+ TNs+ FPs
(26)

A. LOCAL SPATIAL DIFFERENCE
We compare the local spatial difference with traditional fea-
tures, such as local mean, local variance, local entropy, local

gray-level spatial correlation. Fig. 4. Shows the features of
Porosity Defect-1 in the MWS database. The experimental
results show that the main function of the local mean is to
eliminate noise, rather than to highlight the feature of the
defects. The local variance can only extract the region with
large local grayscale deviation. Local entropy is concerned
with the degree of aggregation of gray distribution. The
local gray-level spatial correlation reflects the degree of local
grayscale similarity. The above features are inconsistent with
the actual defect representation: (a) The defect area is much
smaller than the image area, (b) the defect compares with
the background, it varies in gray level, (c) the defect has no
obvious step edge, comparedwith its neighborhood. The local
spatial difference meets the requirements of defect detection.
We also utilize the maximum mutual information method
proposed in this paper to segment the 2D histogram, and the
segmentation results are shown in Fig. 4. It is concluded that
the extracted defect areas using the local gray difference are
more accurate and complete.
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FIGURE 5. The contrast of local gray difference and local spatial difference of the original data (Porosity defect-1). (a) Their
one-dimensional distribution, (b) local gray difference segmentation results, and (c) local spatial difference segmentation
results.

FIGURE 6. In the seven methods, the original data (Porosity defect-1) uses rectangular projection shape and elliptic projection shape, respectively (the
red regions are the defects after morphological selection). (a) 2DOTSU [23], (b) 2DME [10], (c) 2DMME [38], (d) 2DMTE [28], (e) 2DMRE [30], (f) MMSE
[40], (g) the proposed method (2DMMI).

Fig. 5 shows the comparison results of the local gray dif-
ference and the local spatial difference. The results show that
the local spatial difference disperses the concentration degree
of the background in the intersection interval. And the local
spatial difference can slightly extend the distance between
the background and the defect without changing the basic
shape of the statistical distribution. This approach increases
the separability of defects and backgrounds. We also segment
the images according to the proposed maximum mutual
information method. The results show that the local spatial
difference can significantly reduce the noise and improve the
integrity of the detected defects.

B. PROJECTION OF BACKGROUND
Fig. 1(a) shows that the one-dimensional distribution of
Porosity Defect-1 in the MWS database is approximately
Gaussian. To accurately verify the influence of projec-
tion shape on image segmentation results, we select seven
non-parametric threshold segmentation methods for aux-
iliary analysis, including 2D-OTSU [23], 2D maximum
entropy (2DME) [10], 2D maximum the minimum entropy
(2DMME) [38], 2D maximum Tsallis–Havrda–Charvát
entropy (2DMTE) [28] with a parameter of 0.1 [39], 2D
minimizing relative entropy (2DMRE) [30], maximum Masi

entropy (MMSE) [40], and our 2D maximum mutual infor-
mation method (2DMMI). Fig. 6 shows the segmentation
results (Porosity Defect-1) of 7 methods under the rectan-
gular projection and the elliptical projection, respectively.
The detailed performance evaluation results are shown in
Table 2. It can be seen that the boundary between the defect
and the background under the elliptic projection shape is
clearer. In most methods, the segmentation accuracy of the
elliptical projection shape is better than that of the rectangular
projection shape. Moreover, the large difference in sensitivity
indicates that the detected defect shape under the elliptical
projection shape is more consistent with the actual defect
shape, and the ellipse projection shape decreases the influ-
ence of interference on defect extraction (i.e., the number of
false-positives). Therefore, in the subsequent experiments of
this paper, the GLSD histogram uses the elliptical projection
shape of high-probability background events.

C. PERFORMANCE EVALUATION
We demonstrate and quantitatively analyze the results of the
MWS database. Based on the elliptical projection shape,
we use 2D-OTSU, 2DME, 2DMME, 2DMTE, 2DMRE,
MMSE, Lei’s minimum square rough entropy method
(MSRE) [41] and our 2DMMI in GLSD histogram in MWS
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FIGURE 7. The results of the original data under the eight detection methods (the red
regions are the defects after morphological selection). (a) Ground truth, (b) 2DOTSU [23],
(c) 2DME [10], (d) 2DMME [38], (e) 2DMTE [28], (f) 2DMRE [30], (g) MMSE [40], (h) MSRE [41],
(i) the proposed method.

VOLUME 8, 2020 87851



W. Yuan, Y. Liu: Defect Detection Method for the Image With Intersecting Feature

FIGURE 7. (Continued) The results of the original data under the eight detection methods (the red
regions are the defects after morphological selection). (a) Ground truth, (b) 2DOTSU [23],
(c) 2DME [10], (d) 2DMME [38], (e) 2DMTE [28], (f) 2DMRE [30], (g) MMSE [40], (h) MSRE [41], (i) the
proposed method.

TABLE 2. Detection evaluation indexes of 7 methods for different projection shape on Porosity defect-1 (MWS database).

database for a more detailed and complete comparison exper-
iment, as shown in Fig. 7. And we use morphology to further
extract the defect region andmark it in red, as shown in Fig. 7.
Finally, the experimental results demonstrate that: (a) Due to
the area of the background is much larger than that of the tar-
get, 2D-OTSU is not effective in defect detection. (b) 2DME
could not extract the defect regions with the non-obvious
feature (e.g., the overlap between defect periphery and back-
ground), and the integrity of the extracted defect is poor.
(c) 2DMME has numerous false-negative, which is gross
negligence in defect detection. (d) 2DMTE has many false-
positives in some images and is inseparable from the defect
region. (e) 2DMRE has many false-negative, but few false-
positive. (f) The parameter r of MMSE method has a great
impact on the results, and we use the parameter of 0.5 with the
best effect after many experiments. The experimental results
show that MMSE can well extract the defects with obvious
features, but the detection effect of non-obvious defects is
not poor. (g) MSRE can well locate the boundary of obvious
features, but the detection effect for non-obvious defects is
still not ideal. (h) Our 2D maximum mutual information
method is the closest to the real shape and less error detection
method.

We evaluate the detection results over the MWS database,
as shown in Table 3. The most prominent advantage of

the proposed method is to improve the evaluation index
for seriously unbalanced defect detection. The results show
that the sensitivity, specificity, and accuracy of the pro-
posed method are better than other comparison methods.
In particular, the high sensitivity proves that the proposed
method can significantly improve the detection of non-
obvious defects features. However, there are many porosities
with extremely small area around a large area of defects
in Gas Porosity defect-1. After segmentation by using the
proposed method, some true-positives (isolated points) mis-
judge as false-negative in further morphological selection.
For sensitivity, the core problem lies in the false-negative.
Although the specificity and accuracy indexes are not as good
as 2DMME, they should be compared under the premise
of having a good sensitivity index. The reason is that the
problem of false-negative is often more serious than the prob-
lem of false-positive. At this point, we preliminarily verify
the effectiveness of the proposed method for detecting the
intersecting feature defects.

Although we have verified the proposed method on the
MWS database, it is not enough to demonstrate the universal-
ity of themethod to other related surface detection. Therefore,
we use five defect images (the defect types are crazing,
inclusion, patches, pitted surface, and rolled-in scale) in the
NEU surface defect database to verify the proposed method,
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FIGURE 8. The NEU surface defect database, and the segmentation results under the proposed method (red labels are the
defects). (a) Crazing, (b) inclusion, (c) patches, (d) pitted surface, (e) rolled-in scale.

TABLE 3. Detection evaluation indexes of 8 methods of the MWS database.

as shown in Fig. 8. Similarly, we use the detection evaluation
indexes (sensitivity, specificity, and accuracy) to evaluate
the proposed method and the seven comparison methods,
as shown in Table 4. We utilize the NEU surface defect
database to get the same conclusion as the MWS database.

The experimental results show that the proposed method has
certain applicability to other data. In the figure, the proposed
method can extract more complete defects (especially the
defect edge with non-obvious features) and relatively less
interference. According to the quantitative analysis in the
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TABLE 4. Detection evaluation indexes of 8 methods of the NEU database.

table, the advantage of the proposed method is the sensitivity
(i.e., the minimum number of false-negative). Meanwhile,
the proposed method can obtain better values of specificity
and accuracy. Nevertheless, the proposed method still has
some shortcomings. When the tiny defect is divided into
a subset of intersecting feature sets and forms an isolated
point, it will not be appointed as a true-positive. In summary,
the proposed method is a reliable and effective defect (with
the intersecting feature) detection method.

V. CONCLUSION AND DISCUSSION
Image threshold segmentation is a simple and effective
method of defect extraction. Based on the two-dimensional
histogram, we propose a defect detection method using max-
imum mutual information. Firstly, we improve the local
gray difference with the spatial relationship. The local spa-
tial difference can not only eliminate the noise but also
expand the feature interval between the defect and the

background to improve the segmentation effect. We con-
struct a new two-dimensional histogram with the gray-level
and the local spatial difference level, which is called Gray
Level and Local Spatial Difference histogram (GLSD). Sec-
ondly, we improved the segmentation projection shape of
the GLSD histogram. The segmentation projection shape
is established based on the geometric projection of high-
probability background events, which is more suitable for the
actual data distribution. Thirdly, we use mutual information
to measure the degree of correlation between the two random
variables. When the information of the intersecting feature
interval between the defect and the background reaches the
maximum, the uncertainty of the intersecting feature interval
is the largest and the mixing degree is the highest. Thus,
the corresponding eigenvector can determine the boundary
of the segmentation interval. Finally, we publish a data set
of images on the surface of the motorcycle wheel (MWS
database) to verify the effectiveness of the proposed method.
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The proposed algorithm can effectively reduce the influence
of the difference between low-probability defect events and
high-probability background events, and solve the problem
of over-segmentation or under-segmentation caused by inter-
secting features. The common robust segmentation methods
are used for target detection with a large background. The
proposed method is qualitatively and quantitatively evaluated
using the defect images from the MWS database and NEU
surface defect database. The results show the superiority of
the proposed method compared with those of the state-of-the-
art methods.

In the field of image defect detection, Non-obvious defects
are always ignored. With the rapid development of visual
detection technology, a large number of researchers are com-
mitted to improving the segmentation threshold accuracy
between background and target. However, the feature of the
background and the target usually intersect. In other words,
this is an intersecting feature interval that cannot be explicitly
defined. We consider that this interval is not negligible, and
it helps to improve the segmentation accuracy of dividing
the target region from the background. To our knowledge,
in the field of image defect detection, few studies clearly
define the intersecting feature interval and extract value infor-
mation from it. We deeply explore the feature distribution
of the image from the perspective of information theory.
The results show that the intersecting feature interval is
an effective entry point to improve image defect detection
accuracy.

Two interesting topics for future research are: (a) to focus
on the defect components of the intersecting feature interval
and reduce the uncertainty of intersecting feature interval,
(b) to explore the influence of defect types on the segmen-
tation projection shape of GLSD to improve the universality
of the algorithm.
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