
Received April 8, 2020, accepted April 20, 2020, date of publication May 7, 2020, date of current version May 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993069

Aggregation Measure Factor-Based
Workflow Application Scheduling in
Heterogeneous Environments
TING SUN 1, YAQIN ZHANG 1, KAIQI XIONG 2,3, AND CHUANGBAI XIAO 1
1Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
3Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA

Corresponding author: Chuangbai Xiao (cbxiao@ bjut.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2102302, and in
part by the National Natural Science Foundation of China under Grant 61971014 and Grant 11675199.

ABSTRACT With the development of heterogeneous distributed computing environment, workflow applica-
tion scheduling has become an important and challenging problemwhile Quality of Service (QoS) guarantees
are ensured for science workflows. In this paper, we first introduce an aggregation measure factor to balance
the execution time and cost of workflow applications. Then, we propose an aggregationmeasure factor-based
scheduling algorithm (AFSA) for workflow applications in a heterogeneous distributed environment. The
proposed algorithm through allocating the sub-budget and sub-deadline for each task to choose available
processors takes into account of the budget and deadline aggregation to select the processor for the science
workflows. Furthermore, we introduce both a planning success rate and normalized deadline (ND) as
performance metrics to evaluate workflow application scheduling algorithms. Furthermore, we use both
a randomly generated data set and a real-world workflow data set in our experiments for the performance
evaluation. Moreover, our experimental results demonstrate that the proposed AFSA has a higher balance
factor and an almost equal or higher planning success rate under different workflow application structures
compared to the existing algorithms, BHEFT, HBCS, WMFCO, and DBCS.

INDEX TERMS Workflow scheduling, deadline, budget, aggregation measure factor, balance factor,
planning success rate.

I. INTRODUCTION
With a large number of diversified resource sets
interconnected by high-speed networks in recent years,
high-performance heterogeneous distributed computing envi-
ronments have been rapidly emerged and developed. Compu-
tational grids have been used by researchers from different
scientific fields to perform complex scientific applica-
tions [1]. Those complex scientific applications can be mod-
eled as a workflow that is defined by a directed acyclic
graph (DAG) whose nodes represent the tasks of the appli-
cations and edges give the executed direction or order of
two tasks. Many users desire to employ computing resources
or processors to execute their workflows within the require-
ments of Quality of Service (QoS). Scheduling the tasks
of the workflow applications in computing resources is a
complex problem because it considers not only the resources’

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanli Xu .

capacity and the tasks’ priority but also a user’s QoS require-
ments or parameters. The workflow scheduling problem is
an important research hotpot in distributed computing envi-
ronments [2]. In general, the scheduling problem with QoS
parameters is NP-complete [3]. Our challenge is to propose
an efficient approach that satisfies a user’s predefined QoS
parameters with a low time complexity for a schedule of
workflow applications compared to the state of the art.

Many workflow scheduling algorithms have been used to
execute workflow applications [4]–[6]. Many studies have
considered scheduling workflow applications with the QoS
requirements, such as time, cost, and reliability [7]–[9]. Some
algorithms are used for single-objective workflow scheduling
problems [10]–[13], while the others are concerned with
multi-objective workflow scheduling problems [14]–[16].

In this paper, we propose an aggregation measure
factor-based scheduling algorithm (AFSA) for workflow
applications, where time and cost parameters are simul-
taneously considered in a computational heterogeneous

89850 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3518-5266
https://orcid.org/0000-0002-7767-9803
https://orcid.org/0000-0003-2933-8083
https://orcid.org/0000-0002-4676-2479
https://orcid.org/0000-0001-8218-7195

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

distributed environment. The heterogeneous computing
resources (e.g., heterogeneous processors) are distributed
in the different locations of a cloud or multiple clouds.
The objective of the proposed algorithm is to find the best
scheduling of workflow tasks under task deadline and budget
constraints that are predefined by a user or time and cost
constraints that are predefined by a resource provider. (As
noted, budget and deadline are predefined by users, and cost
and time are given by a resource provider based on the users’
requirements. They need to be consistent and agreed by the
user and the resource provider through negotiation. Thus, for
simplicity, when there is no confusion, time and deadline may
be interchangeably used, so may cost and budget be, in this
paper.) The main contributions of this paper are summarized
as follows.

1) We propose a new heuristic algorithm for workflow
application scheduling subject to the constraints of the
time and cost of science workflows.

2) To consider the balance of time and cost parameters,
we use normalized deadline to balance the time and cost
of science workflows and use it to select the processors
for executing the tasks of science workflows.

3) To understand the performance of our algorithm,
we employ both randomly generated graphs and real-
world applications and experimentally demonstrate
that our proposed algorithm performs well in the both
datasets. That is, our experiment results show not only
the efficiency and effectiveness of the AFSA algo-
rithm but also its performance better than BHEFT [17],
HBCS [18], WMFCO [19], and DBCS [1], where the
AFSA algorithm has a higher normalized deadline and
an almost equal or higher planning success rate under
a variety of workflow applications.

The rest of this paper is organized as follows. We give a brief
review of related work in section II. In section III, we formu-
late the workflow schedule problem. In section IV, we present
the proposed algorithm, AFSA. In section V, we give the
implementation of AFSA and other existing algorithms with
illustrative examples and discussions. Finally, we conclude
our discussions and present future work in section VI.

II. RELATED WORK
Recently, a number of researchers considered workflow
scheduling [1], [17], [18], [20]. Their scheduling approaches
can be divided into two major categories: single objec-
tive scheduling and multi-objective scheduling [1]. For
the single objective scheduling, most researchers consid-
ered the execution time of a workflow as a Quality of
Service (QoS) parameter. Topcuoglu et al. [10] presented
the well-known Heterogeneous Earliest-Finish-Time (HEFT)
algorithm that is a list-scheduling heuristics one for the work-
flow scheduling. Bittencourt et al. [11] gave a look-ahead
variation of the HEFT algorithm, where they considered the
impact of execution time of successor of the tasks on cur-
rent scheduling decisions. However, the algorithm given in
Bittencourt et al. [11] has a higher time complexity

than HEFT. Arabnejad and Barbosa [12] proposed the Predict
Earliest Finish Time (PEFT) algorithm, where they consid-
ered the impact of execution time of the current task on the
next scheduling decision. At the same time, Arabnejad and
Barbosa [12] also considered the impact of the execution
time of predeceasing of the task on the current scheduling
decision. Maurya and Tripathi [13] evaluated and compared
the performance of list task scheduling algorithms for hetero-
geneous computing systems. All of these studies are based
on computing resources in grid or cluster environments. Con-
versely, other studies have considered the workflow schedul-
ing problem in a cloud environment, which is different from
a grid or cluster environment [21]. In a cloud environment,
a "pay-as-you-go" model is used, computing resources are
in different locations, and user tasks may be distributively
processed in different computing resources on different sites.
Those factorsmake the scheduling problem very challenging.

For the multi-objective scheduling problem, many
researchers consider two or more QoS parameters, such as
time, cost, and reliability. Therefore, the scheduling problem
has multiple different objectives, such as minimizing total
time, minimizing total cost, and obtaining stable perfor-
mance. Wu et al. [15] gave a classification and comparison
of these scheduling algorithms. Minimizing the cost under
a deadline constraint and minimizing the makespan under a
budget constraint are two widely studied categories in the lit-
erature [1], [16]–[18], [22]–[24]. (The definition of makespan
is given in Section III-B.) For the workflow scheduling
problem which minimizes the total cost under a deadline
constraint, Yu and Buyya [16] proposed a genetic algorithm
to optimize the cost of task processing with a deadline
constraint. They proposed a fitness function that combines
the cost with the time to measure the quality of the tasks
in a DAG according to the given optimization objective and
developed two genetic operators, crossover and mutation, for
the scheduling problem. Wu et al. [24] presented a Revised
Discrete Particle Swarm Optimization (RDPSO) algorithm
for workflow scheduling. Their optimization objective is
to minimize the cost under deadline constraints. For the
problem of scheduling workflows subject to the constraint
of a budget, Sakellariou et al. [22] presented the LOSS
and GAIN approaches. For the LOSS approach, tasks are
first assigned according to the HEFT [10] or HBMCT [25]
algorithms and then according to the available budget. For
the GAIN approach, each task is assigned to the processor
with the smallest cost. Zeng et al. [23] gave a backtracking
algorithm named ScaleStar that selects the higher compar-
ative advantage processor to balance time and cost param-
eters. Zheng and Sakellariou [17] presented the Budget-
constrained Heterogeneous Earliest Finish Time (BHEFT)
algorithm, which optimizes the total execution time of a
workflow and makes the budget as a constraint.
Arabnejad and Barbosa [18] proposed a Heterogeneous Bud-
get Constrained Scheduling (HBCS) algorithm that mini-
mizes the deadline of a workflow and satisfies a user’s cost
budget. They provided an aggregation weight of worthiness

VOLUME 8, 2020 89851

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

to choose a processor and also considered the influence of
the cost factor during the scheduling. Arabnejad et al. [1]
extended the HBCS algorithm to the Deadline-Budget Con-
strained Scheduling (DBCS) algorithm which considered
time and cost constraints for QoS-based workflow schedul-
ing. DBCS proposed a quality measure to combine time and
cost constraints for each processor.

There are also studies concentrated on optimizing sev-
eral conflict objectives simultaneously [8], [19], [26]–[32].
Garg et al. [26] proposed three meta-scheduling online
heuristics strategies, including Min-Min Cost Time Trade-
off (MinCTT), Sufferage Cost Time Trade-off (SuffCTT),
and Max-Min Cost Time Trade-off (Max-CTT), to minimize
overall execution time and cost simultaneously on the basis
of a trade-off factor. Lee et al. [27] presented an Adaptive
Dual-Objective Scheduling (ADOS) algorithm, where they
minimized makespan and increased resource utilization
simultaneously. Bessai et al. [28] gave three pareto algo-
rithms with selection policies: cost-based, time-based, and
cost-time-based. Talukder et al. [29] presented a strategy
using Multi-Objective Differential Evolution (MODE) to sat-
isfy time and cost constraint parameters. Yuan et al. [30]
presented a heuristic scheduling algorithm to minimize the
cost of workflow application subject to the user-defined dead-
line constraint, where they considered both the task prior-
ity phase and the resources select phase. Gao et al. [19]
proposed an algorithm which is called WMFCO for work-
flow mapping under deadline constraints to minimize the
cost in multi-clouds. Chen and Zhang [31] studied an
Ant Colony Optimization (ACO) to schedule workflows
with multiple QoS parameters such as reliability, time,
and cost in computational grids. Zhou et al. [32] pre-
sented a novel workflow scheduling algorithm that consid-
ers the optimization of cost and makespan of scheduling
workflows in IaaS clouds. They designed a fuzzy dom-
inance sort based heterogeneous earliest-finish-time algo-
rithm to find and select the best K solutions in each
round of solution generation. Prodan and Wieczorek [8]
presented the Dynamic Constraint Algorithm (DCA) based
on dynamic programming to address the optimization prob-
lem subject to the constraints of execution time and cost
parameters.

Proper scheduling can decrease data center energy con-
sumption, service-level agreement (SLA) violations, and
increase resource utilization [33]. For data center energy
reduction, one of the most efficient methods is dynamic volt-
age and frequency scaling (DVFS) which changes compo-
nent voltage and frequency to decrease energy consumption.
Many studies focus on scheduling and DVFS. Wu et al. [34]
considered soft error rates during workflow execution due
to increasing chip density with DVFS. They proposed a soft
error-aware energy-efficient task scheduling approach for
workflow applications. Safari and Khorsand [33] presented
a new energy-aware scheduling algorithm that arranges the
workflow tasks based on their deadlines, and the execution
time of the tasks is extended by the use of DVFS. However,

FIGURE 1. Execution of workflow requests.

further research is required to take account of deadlines, costs,
or other SLA parameters.

Faragardi et al. [35] proposed the Greedy Resource Pro-
visioning and modified HEFT (GRP-HEFT) algorithm for
minimizing the makespan of a given workflow subject to a
budget constraint for the hourly-based cost model of mod-
ern IaaS clouds. Considering the dynamic nature of the
workflow changes the budget and the workloads of work-
flow, Ilyushkin et al. [36] proposed a Performance-Feedback
Autoscaler (PFA) that is budget-aware and does not consider
task execute time estimates for its operation.

In our paper, we present a new scheduling algorithm that
considers the time and cost constraints for the scheduling
of all tasks. To better understand the performance of our
scheduling approach, we compare our algorithm with three
well-known algorithms, namely, BHEFT [17], HBCS [18],
WMFCO [19], and DBCS [1]. The BHEFT algorithm that
is based on the Heterogeneous Earliest Finish Time (HEFT)
algorithm [10] and its objective is to minimize the time under
a cost constraint. The HBCS algorithm selected a processor
with worthiness that guaranteed the earliest finish time. The
WMFCO algorithm selected the resource under deadline con-
straint to minimize the cost. The DBCS algorithm used the
QoSmeasure to select the processor that addresses the budget
and deadline constraints.

III. PROBLEM DESCRIPTION
In this section, we are going to present the background of
this research and give the details of the workflow scheduling
problem.

A. BACKGROUND
Figure 1 shows a framework of execution of workflow
requests (simply called the workflow scheduling framework),
where the workflow scheduling problem needs to be solved.
As shown in Figure 1, the workflow scheduling frame-
work consists of the following three parts: Users, Resource
Provider, and Planner. When users need workload applica-
tions to be done subject to deadline and budget constraints,
they transmit a service request to the Resource Provider
labeled in 1 given in this figure. The Resource Provider then
sends the Users’ request with available computing resource
and price information, referred as to conditions, to the Plan-
ner labeled in 2. After receiving the condition information,
the Planner runs the Scheduling Algorithm to find resource
processors to match the Users’ service requirements and sent

89852 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

the algorithm output back to the Resource Provider labeled
in 3. Furthermore, the Resource Provider informs the Users
about the available processors they can use, as labeled in 4.
Besides the execution of the Scheduling Algorithm, the Plan-
ner can also act as the third party who makes sure a fair deal
between the Users and the Resource Provider. The discussion
of the fair deal is beyond the scope of this paper.

In this paper, we consider that a resource provider owns
computing resources such as processors, each with a price
per time unit that is similar to the one in [1]. This research
deals with a heterogeneous distributed environment on the
cloud. That is, computer processors are not homogeneous;
each processor may have a different computational power
with a different price. For presentation purposes, we assume
that a processor with the high performance (long processing
time) requests a higher price, and the processor with a low
performance (short processing time) requests a lower price.
In order to make the comparison of the results obtained by
the scheduling algorithms as in [1], [17], [18], we consider
a second as a time unit. Without loss of generality, we assume
that each provider has a sufficiently large number of proces-
sors as we consider this research in a cloud environment. The
goal of a provider is to maximize its profit by executing as
many tasks as possible at a time. Therefore, we use the terms,
a user, a provider, a processor, and a task, in this paper.

B. WORKFLOW SCHEDULING PROBLEM
A workflow application can be represented as a Directed
Acyclic Graph (DAG). A DAG can be modelled by a G =
{V ,E}, where a set of nodes, V = {v1, v2, . . . , vn}, represents
n tasks and a set of directed edges, E = {(eij)}, stands for
data dependencies of those tasks. eij represents the executed
direction from task vi to task vj. In other words, the child task
can not be executed until all of its parent tasks have been
executed and its data has been transferred to the child task.

For each task vi, let succ(vi) be a set of all direct successor
tasks of vi and pred(vi) be a set of all direct predecessor tasks
of vi. In a given DAG, a task with no predecessors is called
an entry task and a task with no successors is called an exit
task. If there are multiple entry tasks or exit tasks in a DAG,
we can add a dummy entry or exit task with zero weight and
zero communication edges. Therefore, we will consider the
DAG with one entry and one exit task.

Let D is an n× nmatrix of communication data, where Dij
be the the size of transmitted data from task vi to task vj. The
average communication time from task vi to task vj is defined
as:

cij = L̄ +
Dij
B̄
, (1)

where L̄ is the average start time of all the processors, and
B̄ is the average bandwidth among all processor pairs. Let
P = {p1, p2, . . . pm} be a set of processors. W is an n × m
computation cost matrix, and w(vi, pj) is the execution time
of task vi on processor pj. Each processor has its own price
under unit execution time R = {r1, r2, . . . , rm}, and the cost

of task vi on processor pj is c(vi, pj) = w(vi, pj) × rj. The
average cost of task vi (C̄i) is defined as:

C̄i =

m∑
j=1

c(vi, pj)

m
. (2)

The overall cost for executing an application is defined as:

Tc =
∑
vi∈V

c(vi, pj). (3)

The schedule length of a DAG is denoted as a makespan,
which can be represented as the finish time of the last task in
the DAG defined by:

Makespan = AFT (vexit), (4)

where AFT (vexit) is the actual finished time of the exit task
of the DAG.
EST (vi, pj) denotes the Earliest Start Time (EST) of a task

vi on a processor pj, and it is defined as:

EST (vi, pj) = max{Tavail(pj), max
vm∈succ(vi)

{AFT (vm)+ cmi}},

(5)

where Tavail(pj) is the ready time of processor pj, and cmi is
zero if task vm is assigned to processor pj. For the entry task
ventry, EST (ventry, pj) = 0.
EFT (vi, pj) denotes the Earliest Finish Time (EFT) of task

vi on a processor pj and is defined as:

EFT (vi, pj) = EST (vi, pj)+ w(vi, pj). (6)

We can know that the EFT (vi, pj) depends on the earliest start
time of task vi on processor pj and the execution time of task
vi on processor pj.
The workflow scheduling problem is to find a scheduling

order for the tasks and their corresponding processors that can
meet the QoS requirements predefined by users. Specifically,
in this paper, we consider the scheduling problem whose
objective is to minimize the total of execution time Texecution
among all given scheduled task orders subject to the total
budget to execute the tasks, Tc, less than a predefined budget,
Bpre, and the makespan less than a predefined deadline, Dpre,
negotiated by the user and the provider. That is, the total exe-
cution time of the workflow should be more than the deadline
and the total cost of the workflow executed on processors
should not be larger than the budget. The provider hopes to
utilize necessary processors to execute the tasks so that the
provider can earn as much as possible. We assume that the
processor can only execute one task at a time. Mathemati-
cally, the scheduling problem in our paper can be formulated
as follows.

Find a function f : V → P which assigns each task vi ∈ V
to a processor pj ∈ P, such that f minimizes Texecution. That
is,

argminf ∈F Texecution

VOLUME 8, 2020 89853

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

subject to the following two constraints:

Tc ≤ Bpre,

and

Makespan ≤ Dpre,

where F is a set of all the task scheduling that assigns tasks
to their corresponding processors. For simplicity, Bpre and
Dpre are still called ’budget’ and ’deadline’ in the following
sections.

IV. THE AGGREGATION MEASURE FACTOR-BASED
SCHEDULING ALGORITHM
In this section, we present the Aggregation Measure Factor-
based Scheduling Algorithm (AFSA) that outputs a schedule,
where the algorithm balances both deadline and budget simul-
taneously. Before describing the algorithm, wewill give some
definitions used in the algorithm. Processor Utilization Time
Rate (UTR) for task vi on processor pj is defined as ratio of the
actual total execution time of task vi with the total processor
time Ttotal , as shown in equation (7):

UTR(vi, pj) =
1

Ttotal

k−1∑
i=1

Texecution(vi), (7)

where Texecution(vi) is the execution time of task vi,
Ttotal = deadline× m, and m is the number of processors.

The percentage of the average cost (PAC) of task vi is
defined as the ratio between average cost of the current task
vi to the sum of the average costs of the remaining tasks:

PAC(vi) =
C̄i∑

vj∈N
C̄j
, (8)

where C̄i is the average cost of the task vi and N is the set of
unscheduled tasks.

Our proposed algorithm, AFSA, includes two phrases: task
selection and processor selection.

A. THE TASK SELECTION
In this section, we will first present the task selection and
then give the processor selection. We use the upward rank
(ranku) [11] to prioritize tasks. The ranku is defined as
follows.

ranku(vi) = w̄(vi)+ max
vm∈succ(vi)

(cim + ranku(vm)), (9)

where w̄(vi) is the average execution time of task vi over all
processors, cim is the average communication time from task
vi to task vm, succ(vi) is the set of all direct successors of vi,
and ranku is the longest execution and communication time
from task vi to the exit task vexit .

B. THE PROCESSOR SELECTION
For the processor selection, we present a new strategy to
choose processors. The processors must execute the current
task within the budget/cost and deadline/time constraints,
where the budget and the deadline are predefined by the
Users, and the cost and the time are given by the Resource
Provider. In the following paragraphs, we give detailed dis-
cussions. According to [20], remaining budget (RB) can be
calculated by

RB = B−
k−1∑
i=1

ci, (10)

where B is the given budget and ci is the reservation cost of
the allocated task vi. The expected remaining budget (ERB)
for task vi can be calculated by

ERB(vi) =
RB
l
, (11)

where l is the number of unscheduled tasks.
The sub-budget of the current task vk can be calculated by:

SBC(vk) = C̄k + ERB(vk)× PAC(vk) (12)

By calculating the sub-budget for each task, we can find
processors which are satisfied

Ck,m ≤ SBC(vk). (13)

Using equation (13), we can find the processor set P′ which
satisfy the budget constraint. After obtaining the set of pro-
cessors which satisfy the budget constraint, we will continue
to consider the deadline constraint. We will present the defi-
nition of the sub-deadline of a task. According to [1], the sub-
deadline of the current task, as shown by equation:

SD(vi) =

min
vj∈succ(vi)

{SD(vj)− cij − min
pm∈Q∗

w(vi, pm)}, (14)

where succ(vi) is a set of all direct successor tasks of vi, cij is
the average communication time from task vi to task vj, and
w(vi, pm) is the execution time of task vi on processor pm.
For the exit task vexit , the sub-deadline is equal to the user’s
deadline, SD(vexit) = D.

For processor selection, we consider the two QoS parame-
ters, UTR and cost, to obtain the available processors, where
budget and deadline constraints are balanced. To balance the
two constraints, for each task vi, we define the aggregation
measure factor (AGG) for processor pm ∈ Q∗ as follows:

AGG(vi, pm) = UTR(vi, pm)× c(vi, pm). (15)

In other words, AGG(vi, pm) represents the degree of balance
for the processor utilization time rate and cost parameters of
task vi executed on processor pm.
We also consider the sub-deadline of each task affect the

selection. Let us define p∗ by:

p∗ = argmin
pm∈Q∗

AGG(vi, pm).

89854 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

Thus, we consider the most suitable processor for task vi as
follows.

psel =

argmin
pm∈Q∗

AFT (vi, pm), AFT (vi, p∗)>SD(vi)

p∗, AFT (vi, p∗)≤SD(vi).
(16)

If task vi has a higher finish time on processor p∗ than its sub-
deadline, we will choose the minimum finish time processor
as the most suitable processor for task vi. Otherwise, we will
choose p∗ as the most suitable processor for task vi.
Algorithm 1 presents the Aggregation Measure Factor-

based Scheduling Algorithm (AFSA). First, we sort the tasks
of the DAG in lines 1 and 2. After obtaining the highest
priority task, we calculate the sub-budget and sub-deadline
in lines 4 to 7. Then, in lines 8 to 10, we select processors
that satisfy the budget constraint. Furthermore, we find the
processor with theAGG given in (15) in lines 12 to 14. Finally,
we select the processor for task vi using equation (16) in line
15 and update the remaining budget in line 16.

1) THE TIME COMPLEXITY
Now we consider the time complexity of AFSA. Line 1 of
AFSA calculates the ranku value for each task. Suppose the
number of tasks in the workflow is n and the number of
processors is p. Then, the time complexity of line 1 isO(n×p).
Form lines 5 to 7, AFSA calculates the remaining budget, sub-
budget, and sub-deadline for each task. Its time complexity
is O(np). Lines 8 to 11 of the AFSA algorithm finds the
suitable processors that satisfy the sub-budget, and their time
complexity is O(p). Lines 12 to 14 of the AFSA algorithm to
calculate the AGG measure with O(p∗), where |p∗| < |p|.
Line 15 selects the processor with Equation (16) and the
time complexity is O(1). Line 16 calculates the remaining
budget ERB and its time complexity is O(1). Thus, the time
complexity from lines 3 to 17 isO(n(np+p+p∗+1)), which
is equivalent to O(n2p). Therefore, the total time complexity
of the AFSA is O(n2p+ np), which is equivalent to O(n2p).

2) AN ILLUSTRATIVE EXAMPLE
Let us consider a 10-task workflow application [10] whose
DGA is depicted in Figure 2. In this figure, the data on each
edge represents the average communication time between
two tasks. We make this DAG executed in three processors
with different computational abilities. Furthermore, the aver-
age execution time w(vi, pj) of task vi on processor pj and the
execution cost c(vi, pj) of task vi on processor pj are given
in Tables 9 and 3, respectively. Assume that the user request
the deadline is 100 and the budget is 130 for the DAG. Based
on these data, First we use Equation (9) to obtain the non-
ascending order of tasks: v1, v4, v3, v2, v5, v6, v9, v7, v8, v10.
Then, we calculate the expected remaining budget, processor
set P′, the sub-deadline, the Earliest Start Time, and the
Earliest Finish Time by using the AFSA algorithm to find the
scheduling for each task as shown in Table 4.

Figure 3 shows the scheduling plan by AFSA using DAG
in Figure 2. The makespan of this scheduling is 85 that

FIGURE 2. An example DAG from [10].

FIGURE 3. The scheduling plan generated by AFSA using DAG in Figure 2.

TABLE 1. The average execution time of tasks on processors (sec).

TABLE 2. The price used to run a task on different processors.

satisfies the deadline 100. The cost of this scheduling is
55.36 that satisfies budget 130. The makespan of HEFT is 80;
however, the cost is 59.81. The makespan of AFSA is bigger
5 units than the makespan of HEFT, the total cost of AFSA
has reduced 4.45 cost units.

VOLUME 8, 2020 89855

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

TABLE 3. The computation cost of tasks on processors per sec.

TABLE 4. AFSA data for the DAG in Figure 2.

V. PERFORMANCE EVALUATION
In this section, we compare the AFSA algorithm with the
BHEFT [17], HBCS [18], WMFCO [19] and DBCS [1]
algorithms. We consider both randomly generated and real-
application workflows to evaluate the algorithms. The sim-
ulation experiments for the evaluation were performed on
MATLAB using a Windows 10 machine which has the
following specifications: quad-core Intel i5-7200U CPU @
2.70 GHz with 8GB DIMMs.

A. PERFORMANCE MATRIX
In our experiment, we consider two performance metrics to
evaluate and compare our algorithm with other algorithms.

We adopt the planning success rate (PSR) to evaluate the
algorithm defined by Arabnejad et al. [1]. The PSR is defined
as follows:

PSR = 100×
Nsuccess
Ntotal

, (17)

where Nsuccess is the number of schedules which satisfied the
user’s budget and deadline constraints, and Ntotal is the total
number of the schedules.

To further evaluate the performance of different algo-
rithms, we use the normalized deadline by [37]:

ND =
Malg

Mmin
, (18)

where Malg is the makespan of an algorithm, Mmin is the
minimummakespan of the workflow uesd to execute all tasks
on the fastest processors without the consideration of the cost
constraint. It is easy to see that the value of ND not less than
1. When ND is close to 1, we can know that the scheduling

Algorithm 1 AggregationMeasure Factor-Based Scheduling
Algorithm (AFSA)
1: Calculate all tasks ranku using Equation (9)
2: R ← Set of all tasks with the non-ascending order of
ranku

3: while R 6= ∅ do
4: vi = the ready task with the highest ranku value
5: calculate the task remaining budget for task vi accord-

ing to Equation (10)
6: calculate the sub-budget of task vi according to Equa-

tion (12)
7: calculate the sub-deadline of task vi according to

Equation (14)
8: for all pj ∈ P
9: if c(vi, pj) ≤ SBC(vi)

10: insert pj into P∗

11: end for
12: for all pm ∈ P∗

13: compute AGG(vi, pm) using Equation (15)
14: end for
15: select psel for task vi according to Equation (16)
16: update the remaining budget ERB according to Equa-

tion (11)
17: end while
18: return Schedule Map

makespan of the algorithm is close to the minimummakespan
of the workflow.

B. RESULTS FOR RANDOMLY GENERATED WORKFLOWS
1) WORKFLOW STRUCTURE AND DATASETS
The synthesis task graph generator [38] generates a DAG
structure that has five parameters: n, fat , regularity, density,
and jump, where n is the number of nodes in the DAG, fat
affects the height and width of the DAG, regularity represents
the consistency of the number of nodes in each level, density
is the number of edges between two levels of the DAG, and
it indicates the data dependencies between different layers
of tasks, and jump is the maximum number of layers that
can be spanned transfer between different tasks. A jump
means an edge can go from level l to level l + jump. In our
experiment, for the random DAG workflow, we consider the
DAG with different parameters shown in Table 5. With these
parameters, each DAG is generated by choosing one value of
each parameter randomly from the parameter data set. The
total number of random DAGs generated in our experiment
is 3750. For each DAG, the data amount transmitted between
tasks is randomly generated according to the communication
to computing ratio (ccr). A larger ccr means the DAG has
a dense communication. Otherwise, the DAG is computa-
tionally intensive. The range of values that we used in our
simulation was [0.5, 1, 1.5, 2, 2.5, 3] for ccr .

We consider two sites that include multiple clusters con-
sisting of heterogeneous processors, as discussed in [1].

89856 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

TABLE 5. Parameters setting in the random DAG.

We use the Sophia and Lille sites, where the Sophia site
has a larger number of slow speed processors and the Lille
site has a larger number of fast speed processors. Table 6
gives the configurations of clusters at two sites, where the
number of processors used, the processor speed in GFlop/s,
and processor cost are given in each cluster within its site.
As defined in [17], the diverse price of the heterogeneous
processor is normalized as follows. Let βj be the ratio of pj
processing capacity to the fastest processor capacity, and the
price of processor pj be normalized as price(pj) =

βj(1+βj)
2 ,

which is belong to (0, 1].

2) DEADLINE AND BUDGET CONSTRAINTS
To have better understanding of the performance of our pro-
posed algorithm and its corresponding algorithms that are
used for comparison in the research, we consider the different
values of budget and deadline, and the users pre-define those
values in their QoS requirement. As mentioned before, Bpre
andDpre are predefined by the user. In our simulation, in order
to consider how the different values of Bpre and Dpre impact
on the performance of the algorithms under study, we select
the values of Bpre and Dpre in the following ways [17]:

Dpre = Mmin + φd (Mmax −Mmin). (19)

whereMmin is themakespan of the HEFT algorithm andMmax
is the three times of the makespan of the HEFT algorithm. φd
is a parameter to control the range of the value of Dpre so that
we can understand how different values ofDpre impact on the
performance of those algorithms.

Furthermore, for each DAG, we calculated the maximum
cost (Cmax) and minimum cost (Cmin) of all tasks that were
executed on the processors as the highest and lowest values.
For the current DAG, the budget constraint is defined by:

Bpre = Cmin + φb(Cmax − Cmin), (20)

Similar to φd , φb is a parameter to control the range of
the value of Bpre so that we can understand how different
values of Bpre impact on the performance of those algorithms.
Budget Bpre and deadlineDpre are called "tight" if their values
are relatively small. Otherwise, they are called "loose." Note
that those values are considered relatively small or large by
compared to the makespan of the HEFT algorithm, Mmin,
and minimum cost, Cmin, and they are determined by the
user and the provider based on the user’s application. In our
simulation, we have found when the budget and deadline
constraints are loose, the DBCS, HBCS, BHEFT, and AFSA

TABLE 6. The cluster description in the experiment.

FIGURE 4. PSR versus deadline and budget constraints on the Lille site.

FIGURE 5. PSR versus deadline and budget constraints on the Sophia site.

algorithms almost have the same PSR value. To have a
sensitive comparison, we have chosen the small ranges of
parameters φb and φd .
Here, we choose φd , φb = 0.1, 0.2, 0.3, respectively.

3) RESULTS AND ANALYSIS
In this subsection, we compare the AFSA algorithm with
the HBEFT algorithm [17], the HBCS algorithm [18], the
WMFCO algorithm [19], and the DBCS algorithm [1] under
the randomly generated DAGs. Figures 4 and 5 show the
PSR of the five algorithms with different deadline and budget
constraints on the two sites with different price processors.
Figure 4 shows the PSR obtained by the five algorithms on the
Lille site. From this figure, we can see theWMFCO algorithm
obtains PSR values close to the ones obtained by the AFSA
algorithm when the constraints are loose. When the con-
straints are tight, AFSA obtains better results than WMFCO.
The AFSA algorithm has a better PSR compared to the HBCS

VOLUME 8, 2020 89857

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

algorithm, DBCS algorithm, and BHEFT algorithm. The PSR
of DBCS is almost close to that of the HBCS algorithm. The
HBEFT algorithm has the lowest PSR compared to the other
four algorithms.

Figure 5 presents the average PSR of the five algorithms
with different deadline and budget constraints in Sophia site.
As shown in Figure 5, when the φd = 0.1, the PSR of
the AFSA algorithm is almost the same for the DBCS algo-
rithm, whereas the BHEFT and HBCS algorithms are less
than the AFSA and DBCS algorithms. As the φb increases,
the PSR of the four algorithms increases. When φd = 0.3,
φb = 0.1, the AFSA algorithm has the highest PSR compared
to the DBCS, HBCS, and BHEFT algorithms. The AFSA
algorithm has a higher PSR value compare to the WMFCO
algorithmwhen the deadline and budget constraints are small.
As the deadline and budget increases, theWMFCO algorithm
has the same PSR value as the AFSA algorithm. That is,
the ASFA algorithm has the best performance under the tight
deadline and budget among all the five algorithms. By com-
paring the two sites of the PSR, we have seen that the PSR val-
ues on Lille are lower than the ones on the Sophia site. On the
Lille site, BHEFT has a lower PSR compared to DBCS,
HBCS, WMFCO, and AFSA. DBCS, HBCS, WMFCO, and
AFSA achieve the same PSR values on Sophie site when the
constraints are loose.

In this paper, in order to better understand how the work-
flow application structures make an impact on the algorithm,
we analyze how the DAG structure parameters affect PSR
when the HBEFT, DBCA, HBCS,WMFCO, and AFSA algo-
rithms are used on the Sophia site. We observed the different
values of the average Planning Successful Rate (PSR) via the
five algorithms under the different setup of n, fat , regularity,
density, jump, and ccr , where we consider the change of one
parameter but the unchanged of the other parameters in our
experiments.

Figure 6 shows the PSR values by varying the number of
tasks nwhen the other parameters are fixed, where fat = 0.7,
regularity = 0.3, density = 0.7, jump = 1, ccr = 2, φd =
0.1, and φb = 0.1. As n increases from 20 to 120, the AFSA
algorithm has almost the same PSR as the HBCS, WMFCO,
and DBCS algorithms, whereas the BHEFT algorithm has a
lower PSR than the other four algorithms.

Figure 7 depicts the PSR by varying the fat , but the other
parameters are fixed, where n = 60, regularity = 0.3,
density = 0.7, jump = 1, ccr = 2, φd = 0.1, and φb = 0.1.
As shown in Figure 7, when fat = 0.1, the PSR is almost zero
for all the five algorithms. However, as fat increases from 0.1
to 0.5, the PSR of the AFSA algorithm, the HBCS algorithm,
the WMFCO algorithm, and the DBCS algorithm increases
dramatically, whereas the PSR obtained by the BHEFT algo-
rithm increases relatively slowly. Furthermore, when the fat
is more than 0.5, the PSR nearly reaches 100% for all the
five algorithms: BDBC, HBCS, WMFCO, and DBCS. How-
ever, when the fat is more than 0.5, the PSR of the BHEFT
algorithm is about 80%, which is what we expect. The
value of parameter fat affects the parallelism of DAG tasks.

FIGURE 6. PSR versus n.

FIGURE 7. PSR versus fat.

The larger the fat , the higher the parallelism of tasks. When
the parallelism of DAG tasks is higher, the PSR increases
more. Hence, we can conclude that the PSR increases when
the fat increases. For this reason, we can give the users a
recommendation: if the user’s workflow application has a
higher value of fat , she/he can loose the restriction of the
deadline and give more time to the resource provider.

Figure 8 shows the PSR by varying the regularity but
the other parameters are fixed, where n = 60, fat = 0.7,
density = 0.7, jump = 1, ccr = 2, φd = 0.1, and φb = 0.1.
As regularity increases from 0.1 to 0.9, the PSR of the AFSA
algorithm is 100%, the PSR values of the HBCS and DBCS
algorithms are between 90% and 100%, the PSR of WMFCO
algorithm is close to the one obtained by theDBCS algorithm;
it is between 95% and 100%, whereas the PSR of the BHEFT
algorithm ranges from 70% to 80%. From this result, we can
know that the AFSA algorithm has a higher PSR compared
with the other four algorithms.

Figure 9 shows the PSR by varying the density, but the
other parameters are fixed, where n = 60, fat = 0.7,
regularity = 0.3, jump = 1, ccr = 2, φd = 0.1, and
φb = 0.1. As shown in Figure 9, when density = 0.1,
the PSR is less than 70% for all the five algorithms. However,
as density increases from 0.1 to 0.3, the PSR of the AFSA

89858 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

FIGURE 8. PSR versus regularity.

FIGURE 9. PSR versus density.

algorithm, the HBCS algorithm, the WMFCO algorithm, and
the DBCS algorithm increase dramatically, whereas the PSR
obtained by the BHEFT algorithm increase relatively slowly.
When density is more than 0.3, the PSR nearly reaches 100%
for AFSA, HBCS, WMFCO, and DBCS, the PSR of BHEFT
is about 70%. Figure 10 shows the PSR by varying the jump,
but the other parameters are fixed, where n = 60, fat = 0.7,
regularity = 0.3, density = 0.7, ccr = 2, φd = 0.1,
and φb = 0.1. As jump increases from 1 to 5, we can see
that the PSR of the five algorithms decreases. The WMFCO
algorithm has the same PSR as the AFSA algorithm when
jump = 4. The AFSA algorithm has a higher PSR compared
to the HBCS, DBCS, and BHEFT algorithms.

Figure 11 shows the PSR by varying the ccr , but the other
parameters are fixed, where n = 60, fat = 0.7, regularity =
0.3, density = 0.7, jump = 1,φd = 0.1, andφb = 0.1. As ccr
increases from 0.5 to 3, the AFSA algorithm has a higher PSR
compared to the HBCS, WMFCO, and BHEFT algorithms.
AFSA has the same PSR as DBCS. Figure 12 shows the PSR
by varying the ccr from 4 to 10. From this figure, we can see
that the AFSA algorithm has a higher PSR than the HBCS and
BHEFT algorithms. AFSA has the same PSR as DBCS and
WMFCO. Compared to Figure 11, Figure 12 shows that the
PSR of the BHEFT algorithm increases as the ccr increases.

FIGURE 10. PSR versus jump.

FIGURE 11. PSR versus ccr from 0.5 to 3.

FIGURE 12. PSR versus ccr from 4 to 10.

To further evaluate the performance of the algorithms,
we compare the ND with different algorithms for random
workflow applications. We generated 100 sample work-
flow application, each contains 100 tasks with fat = 0.5,
regularity = 0.5, jump = 2, density = 0.7, and ccr = 2.
The experiment use 16 processors to evaluate. We used
these five algorithms for scheduling with different budget
parameters and recorded their average normalized deadline.

VOLUME 8, 2020 89859

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

FIGURE 13. Average normalized deadline versus budget constraint on the
Lille site.

FIGURE 14. Average normalized deadline versus budget constraint on the
Sophia site.

Figures 13 and 14 show the average normalized deadlines
with different budget parameters on the Lille and Sophia
sites, respectively. As shown in Figure 13, AFSA has a
lower normalized makespan and BHEFT has the highest
normalized deadline compared to the other algorithms when
φb = 0.1, φb = 0.3, and φb = 0.5. When φb is increased
to 0.7 and 0.9, the average normalized makespan decreases,
where AFSA and DBCS have the same values. As shown
in Figure 14, BHEFT and WMFCO have a higher average
normalized makespan compared to other algorithms, when
φb = 0.1. When φb = 0.9, we see that BHEFT, HBCS, and
DBCS almost have the same average normalized makespan;
AFSA has a lower average of ND compared to the other four
algorithms. By comparing Figure 13 with Figure 14, we can
see that the Sophia site has a higher average normalized
makespan than the Lille site.

C. RESULTS FOR REAL WORLD WORKFLOWS
To further evaluate the algorithms in the real-world work-
flow applications, we choose three well-known application
structures [39], namely, Montage, LIGO Inspiral, and Epige-
nomics. TheMontage is an application that can be executed in
grid environments and utilizes the image to generate custom
mosaics of the sky. In the experiments, we considered the
Montage structure with 25, 50, and 98 tasks. The LIGO

Inspiral workflow is used to analyze the data from the coa-
lescing of compact binary systems. We considered the LIGO
inspiral structure with 30, 50, and 120 tasks. Epigenomics is
a highly parallel workflow with multiple tasks that are run
on independent chunks of data in parallel. We considered the
Epigenomics structure with 24 and 100 tasks. We repeatedly
run the simulation 1000 times to obtain the results given
in Tables 7, 8, and 10, respectively.

In Table 7, we show the PSR values obtained by varying
ccr on 16 processors with the Montage applications, where
the above five algorithms are used. When ccr = 0.25, for
25 tasks ofMontage workflow, the AFSA algorithm improves
12.5% of PSR compared with the BHEFT algorithm; con-
versely, for 50 tasks of Montage workflow, the AFSA algo-
rithm improves 23.9% of PSR compared with the BHEFT
algorithm. When ccr = 2, for 25 tasks of Montage work-
flow, the AFSA algorithm improves 9.7% of PSR compared
with the DBCS algorithm; For 50 tasks of the Montage
workflow, the AFSA algorithm improves 6.2% of the PSR
value compared to the BHEFT algorithm. For 98 tasks of the
Montage workflow in Table 9, AFSA improves 27.4 of the
PSR value compared to BHEFT when ccr = 0.25; BHEFT
has the lowest PSR compared to the other four algorithms.
Table 8 presents the PSR when we vary ccr on 16 processors
with the LOGO Inspiral applications by using the above five
algorithms. As shown in Table 8, the AFSA algorithm is
better than the DBCS, HBCS algorithms and significantly
better than the BHEFT algorithm for Inspiral applications
with 30 and 50 tasks, respectively. Table 9 shows that for
Inspiral applications with 120 tasks, AFSA has a higher PSR
than BHEFT. AFSA, WMFCO, DBCS, and HBCS almost
have the same PSR when ccr = 0.5.
Table 10 shows the PSR values when we vary ccr on

16 processors with the Epigenomics applications based on
the five algorithms. As shown in Table 10, the AFSA algo-
rithm is better than the DBCS and HBCS algorithms; when
ccr = 0.25, AFSA improves 15% and 19.6% of the PSR
value compared to BHEFT for 24 tasks and 100 tasks, respec-
tively. The AFSA algorithm has lower performance when
ccr = 2. However, the AFSA algorithm has better perfor-
mances than the BHEFT algorithm. As shown in Table 10,
when ccr = 0.25 and ccr = 0.5, we see that the PSR values
of the BHEFT algorithm are 76.3% and 78.9%, whereas the
PSR of AFSA are 95.2% and 93.2%.

The above experimental results have shown that the AFSA
algorithm achieves the best performance compared to the
DBCS, HBCS, WMFCO, and BHEFT algorithms when dif-
ferent ccr values are chosen. The results also indicate that
when ccr increases, the PSR of the five algorithms decreases.
This is an expected result as the value of ccr is reduced, which
implies that we have the more feasible to find a schedule for
the same budget and deadline.

To further evaluate the performance of the algorithm,
we also compare the PSR of our algorithm with the PSR
of the DBCS, HBCS, BHEFT, and WMFCO algorithms.
Figures 15-20 show the PSR values of the five algorithms

89860 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

TABLE 7. The PSR of the five algorithms on Montage with 25 and 50 tasks.

TABLE 8. The PSR of the five algorithms on Inspiral with 30 and 50 tasks.

TABLE 9. The PSR of the five algorithms on Montage with 98 tasks and Inspiral with 120 tasks.

TABLE 10. The PSR of the five algorithms on Epigenomics with 24 and 100 tasks.

FIGURE 15. The PSR for Montage on the Lille site.

for the Montage, Inspiral, and Epigenomics workflow on
the Lille and Sophia sites, respectively. For the Montage
workflow as shown in Figure 15 and 16, we have seen that the
AFSA algorithm has a PSR value close to other algorithms for
the Lille and Sophia sites. For the Montage workflow, on the
two sites, all the algorithm has a lower PSR when the budget
and deadline constraints are tight. For the Inspiral workflow,
Figures 17 and 18 depict the PSR values under the Lille and

FIGURE 16. The PSR for Montage on the Sophia site.

Sophia sites, respectively. DBCS, WMFCO, and AFSA have
a better PSR value when the constraints are loose. When the
constraints are tight, all the algorithms have a lower PSR. The
algorithms have a better PSR on the Sophia site rather than
the Lille site. AFSA has a similar PSR compare to WMFCO
andDBCS. For the Epigenomics workflow, Figures 19 and 20
show the PSR values under the Lille and Sophia sites. AFSA
has a better performance compared to BHEFT, DBCS, and

VOLUME 8, 2020 89861

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

FIGURE 17. The PSR for Inspiral on the Lille site.

FIGURE 18. The PSR for Inspiral on the Sophia site.

FIGURE 19. The PSR for Epigenomics on the Lille site.

WMFCOwhen the constraints are loose. The algorithms have
a better PSR on the Lille site than the Sophia site when the
constraints are loose. By comparing these two figures, we see
that HBEFT has a lower PSR than the other algorithms.
By comparing other workflows, we see that the Montage
workflow with a higher ccr has a lower PSR. This is a result
what we expect. As we know from Table 7, the Montage
workflow has a lower PSR with the ccr increases. Based on
those results, we can evaluate the scheduling performance
based on the deadline and cost constraints and workflow type.

We also compare the ND values of the studied five algo-
rithms for the real-world workflow applications. We use the

FIGURE 20. The PSR for Epigenomics on the Sophia site.

FIGURE 21. Average normalized deadline versus budget constraint for
Montage on the Lille site.

FIGURE 22. Average normalized deadline versus budget constraint for
Montage on the Sophia site.

workflow of Montage with 98 tasks, Inspiral with 120 tasks,
and Epigenomics with 100 tasks in our evaluation. For each
workflow, we repeated 100 timeswith different ccr values and
used these five algorithms for scheduling with different bud-
get parameters and then recorded their average normalized
makespan.

Figures 21 and 22 give the average normalized deadline for
the Montage workflow with different budget parameters on
the Lille and Sophia sites, respectively. By comparing these
two figures, we can know that the Sophia site has a larger

89862 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

FIGURE 23. Average normalized deadline versus budget constraint for
Inspiral on the Lille site.

FIGURE 24. Average normalized deadline versus budget constraint for
Inspiral on the Sophia site.

FIGURE 25. Average normalized deadline versus budget constraint for
Epigenomics on the Lille site.

ND value than the Lille site, which implies that the Lille site
processors have a higher processing capacity than the Sophia
site processors since they have the same budget constraint.
When φb = 0.9, we see that the average normalized deadline
of AFSA is 1.11 that is closer to the 1. Figures 23 and 24 show
the average normalized deadlines for the Inspiral workflow
with 120 tasks for different budget parameters on the Lille
and Sophia sites, respectively. From Figure 23, we see that
AFSA has the lowest average ND when φb is more than 0.5.

FIGURE 26. Average normalized deadline versus budget constraint for
Epigenomics on the Sophia site.

When φb = 0.1 and φb = 0.3, that is, when the budget is
tight, BHEFT, HBCS, DBCS, WMFCO, and AFSA have the
same average ND. As shown in Figure 24, the average ND
values of these five algorithms is almost identical. By com-
paring these two figures, we can know that the Sophia site
has a higher ND value than the Lille site. Figures 25 and 26
show the average normalized deadline for the Epigenomics
workflow with 100 tasks for different budget parameters on
the Lille and Sophia sites, respectively. From Figure 25,
we see that the BHEFT algorithm has a higher average ND
than the other four algorithms.Whenφb = 0.9, the ND values
of AFSA and DBCS are closer to 1. As shown in Figure 26,
when φb = 0.9, that is, when the budget is loose, DBCS,
WMFCO, and AFSA have similar average values of ND, and
they are closer to 1.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an aggregation measure
factor-based scheduling algorithm for science workflow
applications. The proposed algorithm considered budget and
deadline for workflow processing. In order to test the perfor-
mance of the AFSA algorithm, we compared our algorithm
with the DBCS, HBCS, BHEFT, and WMFCO algorithms.
The experiments showed that AFSA has an equal or higher
PSR compared with the DBCS, HBCS, and HBEFT algo-
rithms. The AFSA algorithm has a higher PSR compare to
the WMFCO algorithm under the tight deadline and budget
constraints. To assess the balance of budget and deadline
constraints during the scheduling, we introduced a balance
factor (BF) to evaluate our proposed algorithm and other
existing algorithms. Our experimental results showed that our
AFSA algorithm has a better BF compared with the DBCS,
HBCS, BHEFT, and WMFCO algorithms.

Future work will consider priority-type workflow applica-
tion scheduling subject to budget and deadline constraints.
Our work will also focus on both scheduling strategy and
DVFS together. Furthermore, we plan to consider other
parameters such as task utilization in the scheduling problem
of workflow applications.

VOLUME 8, 2020 89863

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

REFERENCES
[1] H. Arabnejad, J. G. Barbosa, and R. Prodan, ‘‘Low-time complex-

ity budget–deadline constrained workflow scheduling on heterogeneous
resources,’’ Future Gener. Comput. Syst., vol. 55, pp. 29–40, Feb. 2016.

[2] N. Zhou, F. Li, K. Xu, and D. Qi, ‘‘Concurrent workflow budget- and
deadline-constrained scheduling in heterogeneous distributed environ-
ments,’’ Soft Comput., vol. 22, no. 23, pp. 7705–7718, Dec. 2018.

[3] E. G. Coffman and J. L. Bruno, Computer and Job-Shop Scheduling
Theory. Hoboken, NJ, USA: Wiley, 1976.

[4] C.-C. Hsu, K.-C. Huang, and F.-J. Wang, ‘‘Online scheduling of workflow
applications in grid environment,’’ inProc. Int. Conf. Grid Pervas. Comput.
Berlin, Germany: Springer, 2010, pp. 300–310.

[5] H. Arabnejad and J. G. Barbosa, ‘‘Maximizing the completion rate of
concurrent scientific applications under time and budget constraints,’’
J. Comput. Sci., vol. 23, pp. 120–129, Nov. 2017.

[6] H. Arabnejad, J. G. Barbosa, and F. Suter, ‘‘Fair resource sharing for
dynamic scheduling of workflows on heterogeneous systems,’’ High-
Perform. Comput. Complex Environ., vol. 95, pp. 147–167, Jun. 2014.

[7] A. Dogan, ‘‘Biobjective scheduling algorithms for execution time-
reliability trade-off in heterogeneous computing systems,’’ Comput. J.,
vol. 48, no. 3, pp. 300–314, Mar. 2005.

[8] R. Prodan and M. Wieczorek, ‘‘Bi-criteria scheduling of scientific grid
workflows,’’ IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 364–376,
Apr. 2010.

[9] G. Singh, C. Kesselman, and E. Deelman, ‘‘A provisioning model and its
comparison with best-effort for performance-cost optimization in grids,’’
in Proc. 16th Int. Symp. High Perform. Distrib. Comput. (HPDC), 2007,
pp. 117–126.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[11] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, ‘‘DAG scheduling
using a lookahead variant of the heterogeneous earliest finish time algo-
rithm,’’ in Proc. 18th Euromicro Conf. Parallel, Distrib. Netw. Process.,
Feb. 2010, pp. 27–34.

[12] H. Arabnejad and J. G. Barbosa, ‘‘List scheduling algorithm for heteroge-
neous systems by an optimistic cost table,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[13] A. K.Maurya and A. K. Tripathi, ‘‘On benchmarking task scheduling algo-
rithms for heterogeneous computing systems,’’ J. Supercomput., vol. 74,
no. 7, pp. 3039–3070, Jul. 2018.

[14] H. M. Fard, R. Prodan, and T. Fahringer, ‘‘A truthful dynamic workflow
scheduling mechanism for commercial multicloud environments,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1203–1212, Jun. 2013.

[15] F. Wu, Q. Wu, and Y. Tan, ‘‘Workflow scheduling in cloud: A survey,’’
J. Supercomput., vol. 71, no. 9, pp. 3373–3418, Sep. 2015.

[16] J. Yu and R. Buyya, ‘‘Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,’’ Sci. Program.,
vol. 14, nos. 3–4, pp. 217–230, 2006.

[17] W. Zheng and R. Sakellariou, ‘‘Budget-deadline constrained workflow
planning for admission control,’’ J. Grid Comput., vol. 11, no. 4,
pp. 633–651, Dec. 2013.

[18] H. Arabnejad and J. G. Barbosa, ‘‘A budget constrained scheduling
algorithm for workflow applications,’’ J. Grid Comput., vol. 12, no. 4,
pp. 665–679, Dec. 2014.

[19] T. Gao, C. Q. Wu, A. Hou, Y. Wang, R. Li, and M. Xu, ‘‘Minimizing
financial cost of scientific workflows under deadline constraints in multi-
cloud environments,’’ in Proc. 34th ACM/SIGAPP Symp. Appl. Comput.,
Apr. 2019, pp. 114–121.

[20] T. Sun, C. Xiao, and X. Xu, ‘‘A scheduling algorithm using sub-deadline
for workflow applications under budget and deadline constrained,’’Cluster
Comput., vol. 22, no. S3, pp. 5987–5996, May 2019.

[21] I. Foster, Y. Zhao, I. Raicu, and S. Lu, ‘‘Cloud computing and grid comput-
ing 360-degree compared,’’ 2009, arXiv:0901.0131. [Online]. Available:
http://arxiv.org/abs/0901.0131

[22] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos, ‘‘Scheduling
workflows with budget constraints,’’ in Proc. Integr. Res. GRID Comput.
Boston, MA, USA: Springer, 2007, pp. 189–202.

[23] L. Zeng, B. Veeravalli, andX. Li, ‘‘ScaleStar: Budget conscious scheduling
precedence-constrained many-task workflow applications in cloud,’’ in
Proc. IEEE 26th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2012, pp. 534–541.

[24] Z. Wu, Z. Ni, L. Gu, and X. Liu, ‘‘A revised discrete particle swarm
optimization for cloud workflow scheduling,’’ in Proc. Int. Conf. Comput.
Intell. Secur., Dec. 2010, pp. 184–188.

[25] R. Sakellariou and H. Zhao, ‘‘A hybrid heuristic for DAG scheduling
on heterogeneous systems,’’ in Proc. 18th Int. Parallel Distrib. Process.
Symp., 2004, p. 111.

[26] S. K. Garg, R. Buyya, and H. J. Siegel, ‘‘Time and cost trade-off manage-
ment for scheduling parallel applications on utility grids,’’ Future Gener.
Comput. Syst., vol. 26, no. 8, pp. 1344–1355, Oct. 2010.

[27] Y. Choon Lee, R. Subrata, and A. Y. Zomaya, ‘‘On the performance of a
dual-objective optimization model for workflow applications on grid plat-
forms,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 9, pp. 1273–1284,
Sep. 2009.

[28] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, ‘‘Bi-
criteria workflow tasks allocation and scheduling in cloud computing
environments,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput., Jun. 2012,
pp. 638–645.

[29] A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, ‘‘Multiobjective dif-
ferential evolution for scheduling workflow applications on global grids,’’
Concurrency Comput., Pract. Exper., vol. 21, no. 13, pp. 1742–1756,
Sep. 2009.

[30] Y. Yuan, H. Li, W. Wei, and Z. Lin, ‘‘Heuristic scheduling algorithm
for cloud workflows with complex structure and deadline constraints,’’ in
Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 2279–2284.

[31] W.-N. Chen and J. Zhang, ‘‘An ant colony optimization approach to
a grid workflow scheduling problem with various QoS requirements,’’
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 1, pp. 29–43,
Jan. 2009.

[32] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, ‘‘Minimizing cost
and makespan for workflow scheduling in cloud using fuzzy dominance
sort based HEFT,’’ Future Gener. Comput. Syst., vol. 93, pp. 278–289,
Apr. 2019.

[33] M. Safari and R. Khorsand, ‘‘Energy-aware scheduling algorithm for time-
constrained workflow tasks in DVFS-enabled cloud environment,’’ Simul.
Model. Pract. Theory, vol. 87, pp. 311–326, Sep. 2018.

[34] T. Wu, H. Gu, J. Zhou, T. Wei, X. Liu, and M. Chen, ‘‘Soft error-
aware energy-efficient task scheduling for workflow applications inDVFS-
enabled cloud,’’ J. Syst. Archit., vol. 84, pp. 12–27, Mar. 2018.

[35] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer, and
N. Rasouli, ‘‘GRP-HEFT: A budget-constrained resource provisioning
scheme for workflow scheduling in IaaS clouds,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1239–1254, Jun. 2020.

[36] A. Ilyushkin, A. Bauer, A. V. Papadopoulos, E. Deelman, and A. Iosup,
‘‘Performance-feedback autoscaling with budget constraints for cloud-
based workloads of workflows,’’ 2019, arXiv:1905.10270. [Online]. Avail-
able: http://arxiv.org/abs/1905.10270

[37] N. Anwar and H. Deng, ‘‘Elastic scheduling of scientific workflows under
deadline constraints in cloud computing environments,’’ Future Internet,
vol. 10, no. 1, p. 5, 2018.

[38] DAGGEN. Accessed: 2013. [Online]. Available: https://github.com/
frs69wq/daggen

[39] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
‘‘Characterizing and profiling scientific workflows,’’ Future Gener. Com-
put. Syst., vol. 29, no. 3, pp. 682–692, Mar. 2013.

TING SUN is currently pursuing the Ph.D. degree
with the Faculty of Information Technology,
Beijing University of Technology. She was a Vis-
iting Ph.D. Student with the University of South
Florida from 2017 to 2019. Her research interests
are in the areas of resources scheduling and cloud
computing.

YAQIN ZHANG is currently pursuing the Ph.D.
degree with the Faculty of Information Technol-
ogy, Beijing University of Technology.

89864 VOLUME 8, 2020

T. Sun et al.: Aggregation Measure Factor-Based Workflow Application Scheduling

KAIQI XIONG received the Ph.D. degree in com-
puter science from North Carolina State Univer-
sity. He is currently a Professor with the University
of South Florida, affiliated with the Florida Center
for Cybersecurity, the Department of Mathemat-
ics and Statistics, and the Department of Elec-
trical Engineering. Before returning to academia,
he had worked in IT industry for several years. His
research interest includes security, networking,
and data analytics via machine learning, including

deep learning with applications cyber-physical systems, cloud computing,
sensor networks, and the Internet of Things (IoT). He received the Best
Demo Award at the 22nd GENI Engineering Conference (GEC22) and the
US Ignite Application Summit with his team in 2015 as well as the Best
Paper Award at several conferences such as, the 2018 IEEE Power and
Energy Society General Conference, National Science Foundation (NSF),
NSF/BBN, Air Force Research Laboratory (AFRL), Amazon AWS, Florida
Center for Cybersecurity (FC2), and Office of Naval Research (ONR) have
recently supported his research.

CHUANGBAI XIAO received the Ph.D. degree
from Tsinghua University, in 1995. Since 2001,
he has been teaching and researching with the
Faculty of Information Technology, Beijing Uni-
versity of Technology, where he is currently a
Professor. He has authored or coauthored over
100 papers in peer-reviewed journals, conferences,
or workshops.

VOLUME 8, 2020 89865

