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ABSTRACT Three-dimensional (3D) modeling of geological surfaces, such as coal seams and strata hori-
zons, from sparsely sampled data collected in the field, is a crucial task in geological modeling. Interpolation
is a common approach for this task to construct continuous geological surfacemodels. However, this problem
becomes challenging considering the impact of the faults on geological surfaces. Existing methods tend to
solve this problem through three steps, including interpolating stratum and fault surface, applying a fault
modeling method to modify the geological surface, and optimizing the modified surface to pass sample
points fallen into the fault displacement zone. This paper presents a more concise method to generate a
faulted geological surface, in which 1) a constrained Delaunay triangulated irregular network (CD-TIN)
is constructed to facilitate the neighborhood search process of the ordinary kriging (OK) interpolation, 2)
the CD-TIN is also directly constrained by horizon cut-off lines formed from theoretical fault displacement
profiles, and 3) subsequently, neighbors of the location to be estimated are selected effectively in the CD-TIN
considering the fault topology. The proposed method significantly improves the time efficiency of the OK
interpolation by utilizing the CD-TIN and incorporates fault effects directly into the interpolation process by
inserting fault horizontal cut-off lines into CD-TIN.Moreover, by integrating the fault effects directly into the
interpolation process, the surface modeling process is accomplished in a single stage instead of two separate
stages of interpolation first and then modifying the surface in the fault area. By this strategy, the proposed
method significantly improves the time efficiency of the OK interpolation algorithm and achieves more
accurate modeling of the faulted geological surface. Experiments were designed to compare the performance
of our method with several commonly used approaches, and the results indicate that the proposed TIN-
constrained OKmethod achieves better accuracy and efficiency in modeling faulted geological surfaces than
other methods. This method could also be used in geospatial interpolation studies, such as meteorological
data interpolation.

INDEX TERMS 3D geological modeling, fault modeling, interpolation, ordinary kriging, neighborhood
search.

I. INTRODUCTION
In subsurface studies, three-dimensional (3D) structural mod-
eling helps geologists understand the physical world [1]–[3]
and has been widely utilized in applications such as resource
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management, disaster control, and tectonic evolution. Faults
lead to the distributed damage of geological layers, and
constructing faults in structural models play a vital role in
mitigating risks in mining design. However, many works con-
centrate on the modeling of the physical properties of faults
[4], [5], whereas the distributed damage of the surrounding
geological layers draws less attention.
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Constructing a structural model with layers and faults typi-
cally involves two steps. First, the surfaces of geological lay-
ers, i.e. the surfaces that represent the boundary between two
rock layers, is modeled from the collected data. Second, the
surface is cut and displaced by faults using a fault modeling
method.

Traditionally, the modeling of surfaces relies on defining
geological boundaries and linking cross sections to generate
3D surfaces manually [6], [7]. Automatic modeling meth-
ods based on extensive interpolators are then applied. These
methods interpolate sample points extracted from horizontal
observations of the geological surface to reconstruct a surface
model, and they can be categorized into explicit and implicit
approaches. Explicit methods, such as the inverse distance
weighting interpolation method, and geostatistical methods
(mainly kriging techniques; [8]–[11]) are utilized to explic-
itly calculate a continuous 3D surface by a function z = f
(x) that interpolates properties Z = {zi, i = 0, 1, . . . , n}
of 2D sample points P = {xi( xi, yi), i = 0, 1, . . . , n} to
get 3D points (x, y, z) on the surface. Alternatively, in the
implicit surface reconstruction method, a geological surface
is considered as an isovalue surface of a 3D scalar field
f (x, y, z) interpolated from the collected data. Commonly
used implicit methods include discrete smooth interpolation
[12], [13], and a set of radial basis functions (RBF) [14],
[15]. RBF techniques, which have an extensive application in
computer-aided design, interpolate a scalar field f = f (x, y,
z) based on the observations and then extract and visualize
the zero isovalue surface (f = 0) of the scalar field. The
Hermite RBF (HRBF) method [16] leveraging the data to be
interpolated with second-order information (normal vectors).
A compactly supported RBF method is given to decrease the
interpolation time by constraining the neighborhood radius.
Reference [17] and [18] developed a multiscale CSRBF
approach using an Octree-based spatial index and normal
vectors, advances in both time efficiency and interpolation
accuracy.

Faults are then introduced to intersect and adjust the sur-
face. Traditional fault modeling methods insert topological
discontinuities by cutting and moving the smooth surface in
a 3D Cartesian coordinate system [18], [19]. Then, implicit
approaches are introduced to interpolate the fault surface into
an implicit surface of a scalar field, then the regional model
is modified in this scalar field [20]–[22]. In most of these
methods, a fault is presented as topological discontinuity
in a geological layer. First, fault geometries are computed
by interpolating fault observations or estimated from seis-
mic images based on semblance (e.g., [24], [25]). Second,
fault surfaces are intersected with geological surfaces. Third,
to keep the kinematic consistency of the surface, local move-
ments of the intersection lines, namely, the fault cutoff lines,
needs to be performed and propagated to the whole surface by
manual [2], [26]. This fault modeling process increases the
time required to build a valid model [27], so mathematical
fault displacement modeling methods are suggested [28],
[29], in which the slips on and around the fault geometry

are modeled by interpolation [30] or 3D parametric fault
representation techniques [20], [31].

Although these methods are widely used in geological
applications, an interpolated surface, which is initially con-
strained by all sample points and then cut and moved by
faults, may no longer pass some of these controlled points.
Fitting observations to get a geological surface that honors
both horizontal and fault observations become difficult [32].
Optimization methods, such as numerical optimization and
particle swarm optimization, can be used to move the faulted
surface to honor the constraint of observations. The former
finds an ‘‘optimal’’ set of parameters for trishear algorithms
of fault modeling [33], [34], and the latter chooses kine-
matic parameters by minimizing a cost function consisting
of the misfit between the data observed and the built surface
model [32]. However, the complexity of the modeling work-
flow grows, as numerical calculation and kinematic interpre-
tation is introduced by these methods, and, therefore, they
should be implemented cautiously.

In contrast to the two-phase modeling process of these
previous methods, we proposed a new workflow to recon-
struct a geological surface with the presence of faults in a
single processing step. As previous researches, this method
also presents fault by topological discontinuity. However,
it combines the fault modeling and interpolation processes
and produces a geological surface honoring the constraint
of faults and original sampling points. Geological modeling
tasks are set to benefit from this method at two points: 1) no
calculation required for the displacement of geological layer,
and 2) the optimization methods do not need to be intro-
duced, which will significantly improve the time efficiency of
geological modeling. This method is achieved by leveraging
a triangulated irregular network (TIN)-constrained ordinary
kriging (OK) method. The OK method is used as the main
interpolation method because of its effectiveness in geologi-
cal applications and the simplicity of its mathematical form.
The constrained Delaunay triangulations (CDT) algorithm
[35] is performed to construct a TIN using the sample points
and fault cutoff lines to constrain its neighborhood search
process for locating neighbor points used in the interpolation.
A workflow is then developed to construct the 3D models of
faulted geological surfaces. The experimental results show
that the proposed interpolation method improves both the
accuracy and efficiency of the faulted geological surface
model compared to the OK, HRBF, and multiscale CSRBF
methods.

The remainder of this paper proceeds as follows.
Section 2 highlights the related works in the literature.
In Section 3, the framework of the 3Dmodeling of the faulted
surface is described in detail. Section 4 describes the exper-
imental results. Section 5 concludes the paper and discusses
further research directions.

II. RELATED WORK
Kriging techniques provide the best linear unbiased estima-
tion for un-sampled points as well as the ability to quantify
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FIGURE 1. Sample points (red and purple) located on a faulted geological
surface.

the uncertainty of estimates by error variance [36], [37], and
they are frequently adopted to build geological layers [10].

To implement kriging, the neighborhood search method
is needed to find nearby points of location for estimation.
The distance-based neighborhood method, namely, identi-
fying sample points based on their distance to the target
location, is commonly implemented to accelerate the inter-
polation process [38], [39]. To improve the spatial balance of
selected data, references [39] and [8] divided the space into
quadrants around the target location and selected data within
each (sub)quadrant based on distance. Other criterion for
defining a neighborhood includeK-nearest neighbors (KNN),
which selects k closest points to a target point using a spatial
data structure constructed from thewhole sample dataset. The
introduced spatial data structures in kriging studies include
the k-dimensional tree [40]–[42] and the fast KNN search
[43]. These structures provide storage and a fast index for the
collected sample points and can avoid brute force computa-
tion of distances between the target point and points in the
whole dataset.

However, these neighborhood search methods may not
be optimal insofar as (i) they ignore the spatial topology
among data, and only a geometric standpoint is applied to
measure the closeness and redundancy of data [44]. The spa-
tial topology, which defines containment, connectivity, and
adjacency for spatial features, can be helpful in supporting
better data selection. For example, a sample point (say point
A in Fig. 1) that is geographically close to the target point
for which the value is to be interpolated (star point in Fig. 1)
but is located on the opposite side of the fault surface should
be not be considered as a neighbor and should be excluded
from the subsequent interpolation calculation. (ii) The brute
force computation of distances between interpolated points
and all sample points in the collected dataset is a very time-
consuming procedure, particularly when the interpolation is
conducted using big data [40].

Since a fault in a geological layer can be represented as
a linear feature (for an unbounded fault terminating at the
boundary of the modeling domain) or a polygonal feature (for
a finite fault with a limited length in the modeling domain),
another strategy, based on line intersection, is adopted accord-
ing to [19]. For each sample point, a line segment is drawn to

FIGURE 2. Workflow for 3D modeling of faulted geological surface.

connect it with the location for which its value is to be esti-
mated, and it is verified whether this line segment intersects
with the fault surface. Those verified sample points are then
filtered from the result of the neighborhood search in each
estimation. However, efficiency is a major concern in this
approach, as the intersection operation in each estimation can
be time consuming because the size of sample dataset, fault
numbers, and estimation locations increases.

To address the aforementioned problems in the neigh-
borhood search of the kriging method, our proposed TIN-
constrained neighborhood search method uses a TIN to
restrain the neighborhood search process. TIN comprises a
series of vertices, which are the locations of sampled obser-
vations of the geological layer here, with 3D associated coor-
dinates connected by edges to form a triangular tessellation.
The CDT algorithm used in triangulation can force certain
required segments (linear features) into the triangulation.
Thus, by inserting a polygon consisting of fault cutoff lines
into a TIN using the CDT algorithm and removing the internal
triangles of this polygon, a fault can be represented as a hole
bounded by fault cutoff lines in the TIN.

With the constraints of neighborhood defined in the TIN,
the fault effect can be automatically incorporated during the
interpolation process. Moreover, the spatial structure of the
TIN stores adjacent triangles for every triangle in the TIN.
As all vertices of triangles are sample points, the neighbors in
triangles adjacent to the triangle containing the target point to
be estimated can be reached inO(1) time, which significantly
reduces the amount of computation needed for neighborhood
search and accelerates the entire interpolation process.

III. WORKFLOW FOR THREE-DIMENTIONAL (3D)
MODELING OF FAULTED GEOLOGICAL SURFACE
A. METHOD OVERVIEW
There are four steps involved in the proposed 3D model-
ing of faulted geological surface workflow (Fig. 2). These
are (i) preprocessing the collected data, i.e. the extraction
of sample points, fault data, and boundary, (ii) computing
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TABLE 1. Fault parameter used to build fault local coordinate system.

fault geometries to obtain horizontal cutoff lines for each
fault, (iii) interpolating sampled points with the constraint of
fault horizontal cutoff lines, and (iv) building the geological
surface within the geological boundary. Each step is listed
below and described in detail later in this paper:

1) PREPROCESS THE COLLECTED DATA
Sample points of the geological surface can be extracted from
archival geological data, such as drilling data, and geological
maps, such as cross sections. Fault observations, including
locations and displacement parameters, and boundary of the
geological layer are also extracted from geological maps in
this step.

2) GET HORIZONTAL CUTOFF LINES FOR EACH FAULT
The fault horizontal cutoff lines, defined as the hanging wall
line and the footwall line for a given fault and its intersecting
layer, are generated in this step by constructing a fault local
coordinate system and calculating displacement along the
fault surface.

3) IMPLEMENT INTERPOLATION
The TIN-constrained OKmethod is implemented in this step,
as detailed in Section 3.3, with an input of the extracted geo-
logical sample points and computed fault horizontal cutoff
lines and an output of a set of points located on the geological
surface.

4) BUILD THE SURFACE WITHIN THE GEOLOGICAL
BOUNDARY
After combining boundary and fault horizontal cutoff lines
with estimated points within the boundary, faulted geological
surface are then constructed by using the CDT algorithm
based on these data.

B. GET FAULT HORIZONTAL CUTOFF LINES
In this work, we adopt three steps to calculate the horizontal
cutoff lines for each fault: (i) compute a fault surface, (ii)
build a local coordinate system for each fault, and (iii) cal-
culate the horizontal cutoff lines.

In addition to the observed points on the fault surface,
the parameters listed in Table 1 are also used to establish
a fault surface and a local coordinate system, including the

FIGURE 3. (a) Input fault observations and regular grid computed from
medium plane aligned with vs and vd . (b) Signed distances between fault
observation points and medium plane. (c) Fault geometry interpolated on
the regular grid.

FIGURE 4. The slip associated with a theoretical isolated normal fault.
(a) Slip on the fault surface, described using displacement profile Ds and
Dd . (b) Theoretical model for Ds and Dd [28]. The values of the
derivatives are controlled at the extremities and center of the profiles
(arrows) and additional control points can be introduced in order to tune
the curves (squares).

center position O (ox , oy, oz) on the surface and the unit
vectors {vs, vf , vd} [32]. By creating a fault medium plane
(Fig. 3a), which is a reference plane aligned to vs and vd ,
signed distances can be defined as the distances between
points and the plane (Fig. 3b). The geometry of a fault can
then be computed (Fig. 3c) by interpolating these signed
distances, and the fault local coordinate system GF can be
established. The coordinates of a point X = {x, y, z} within
GF = {gs, gf , gd} are computed using gs

gf
gd

 = [ vs vf vd ]

 x − ox
y− oy
z− oz

+
 0
d(gs, gd )

0


To acquire the fault cutoff lines, profiles indicating the rela-

tionship between the fault extent and amplitude are expected,
which can be utilized to calculate the displacement for each
point on the fault cutoff lines with fault characteristics. Basi-
cally, the amplitude of the fault displacement should be at its
maximum at point O and decreases to zero over a distance.
Some other profiles are also available [19]. A parametric
throw profile [20], using Hermite splines to present the atten-
uation followed by along-dip Ds and along-strike Dd (Fig.
4a), also can be used. Other profiles could be used instead,
and more complex profiles could be obtained by mixing
several simple profiles [45].

Fault horizontal cutoff lines can then be calculated along
the fault surface in the local system and transformed to
the coordinate system (usually Cartesian) where the sample
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FIGURE 5. Data available to be interpolated. (a) Fault cutoff lines
extracted from fault surface. (b) Sample points of geological surface and
fault cutoff lines shown in a 3D space.

points are represented (Fig. 5a). Fault cutoff lines and hori-
zontal observation points are then interpolated to reconstruct
the geological surface. Fig. 5b illustrates these data and a
possible geological surface implementation.

C. TRIANGULATED IRREGULAR NETWORK (TIN)-
CONSTRAINED ORDINARY KRIGING (OK) METHOD
1) OK METHOD
Suppose {y (x)∈ A} denotes the response variable of spatial
position x. Knowing that the value of an attribute at each sam-
pled point of X = {xi, i = 1, 2, . . . , n} is y(xi), the estimated
value y(x0) at unsampled position x0 is the weighted sum of
the values of X

ŷ(x0) =
∑n

i=1
λiy(xi), (1)

where λi is the weight parameters corresponding to each
sample point determined by variogram, which defines the
variance of the difference between values at two locations,
such as an exponential model

γ (h) = C0 + C(1− e−h/a),

in which h is the distance between two sample points, a is the
range, C0 denote the nugget effect and C denote the partial
sill. The last three parameters are fitted from an empirical
variogram:

γ̂ (h+ δh) =
1

2N (h+ δh)

∑
i<j

(
y(xi)− y(xj)

)2
,

i, j = 1, 2, . . . , n

where δ is a discretized metric called ‘‘lag’’ or ‘‘bandwidth
tolerance,’’ and N (h + δh) is the number of paired sample
points.

Then, to estimate ŷ(x0) at unsampled position x0, weights
in Eq. (1) can be calculated by

γ11 . . . γ1k 1
. . . . . . . . . . . .

γk1 . . . γkk 1
1 . . . 1 0



λ1
. . .

λk
1

 =

γ01
. . .

γ0k
1

 , (2)

where γij denotes the semivariance value between xi and xj,
and k is the number of sample points used in the estimation.

After weights are calculated, ŷ (x0) can be calculated from
Eq. (1).

However, as the volume of sample in the dataset grows,
the dimensions of the matrices constructed by the dataset
in Eq. (2) increases, which leads to a rapid increase in the
time cost. The aforementioned distance-based or quadrant-
distance-based neighborhood search methods (hereinafter,
distance-based methods) are employed to limit the count k of
sample points that participated in the estimation by selecting
nearby neighbors.

The neighborhood search process follows Tobler’s first
law of geography, which states, ‘‘Everything is related to
everything else, but near things are more related than distant
things’’ [46]. When the neighbor count is limited, the time
required to solve Eq. (2) can be theoretically constant in
each estimation process, which helps when applying OK
interpolation to a large dataset.

2) TIN-BASED NEIGHBORHOOD SEARCH METHOD
We explored the TIN-based neighborhood search method
to tackle two challenges—the utilizing of spatial topol-
ogy among data and the time-consuming nature of distance
computations mentioned in Section 2—by constraining and
accelerating the neighborhood search process of the kriging
method. In our method, the neighborhood search process
would benefit from the structure of the TIN, not only to
applying fault’s effect on neighborhood selection but also to
accelerate this process by accessing adjacent triangles in the
TIN.

a: CONSTRUCT TIN-BASED NEIGHBORHOOD SEARCH
NETWORK
A TIN-based neighborhood search network, constructed
by a CDT algorithm using sample points and fault
cutoff lines, is defined to store the spatial relation-
ship and topology among these data. A Poly2Tri library
(http://code.google.com/p/poly2tri/) is used to the implement
CDT algorithm, and the steps to establish the search network
are as follows:

–First, project sample points and fault cutoff lines of the
surface to a plane. This is because the Poly2Tri library was
developed for a 2D data set.

–Second, construct a triangulation network within the geo-
logical boundary by applying the CDT algorithm to these
data.

The hanging wall and footwall of a reverse fault overlaps
when the data is projected to 2D space (Fig. 6a). However,
the CDT algorithm cannot generate overlapping areas—for
example, Fig. 6b illustrates a TIN constructed by the CDT
algorithm using the sample points and cutoff lines of the fault
shown in Fig. 6a. Here, a non-overlapping discontinuous area,
bounded by fault cutoff lines, is created, and this appears to be
not in line with Fig. 6a. So, to model a reverse fault in the TIN
and keep a correct topology for sample points, lines linked to
a point in the hanging wall line (brown) and a corresponding
point in the footwall line (green) are reconnected (Fig. 6c).
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FIGURE 6. Insert a reverse fault into a TIN-based search network. (a) A
reverse fault. (b) Fault incorrectly constructed in TIN by CDT algorithm.
(c) After reconnecting lines linked to fault cutoff lines, reverse fault is
constructed correctly.

FIGURE 7. The UML class diagram for the TIN data structure.

b: NEIGHBORHOOD SEARCH
Since each vertex in the TIN-based search network denotes a
sample point or a node on the fault cutoff lines, the neighbor-
hood search process can be executed by utilizing the structure
of TIN.

Fig. 7 shows the basic geometry components and their
relationship in a constrained Delaunay TIN. All elements are
categorized into three classes—Vertex, Edge, and Triangle.
An Edge object serves as one of the three edges comprised in
a Triangle object and connects two sample points storing their
locations in Vertex objects. Each Triangle object also keeps
its adjacent triangles, which can be accessed by the member
function of GetNeighbors().

Then, to choose neighbor points in the search network to
estimate the value at target location x, two steps are expected.
The first step is to locate the triangle containing x, and this
is achieved by a two-phase procedure of selecting triangles
whose enclosing rectangle contains x, and locating the trian-
gle T0 containing x from these triangles.

FIGURE 8. Neighborhood search method (a) within a certain distance r
and (b) along TIN-based search network.

The order of the triangle, which measures the connectivity
from x to each triangle in the TIN, is defined in the following
step. The 0th order triangle denotes T0 confirmed in the first
step, and the t th order triangles (t > 0) are given the definition
of triangles that shares vertices or edges with (t-1)th order
triangles. Then, by specifying the order of triangle t , all the
vertices in 0∼t order triangles will be selected and used in the
estimation.

To define the difference between the TIN-based neighbor-
hood method and the distance-based neighborhood method,
we should consider the following scenario. Suppose we
select neighbor points from dataset X = {Xi(xi,Zi(xi)), i =
1, 2, . . . , n} to estimate the value Z(x0) at point X0. Using
the distance-based neighborhood search, all sample points are
sorted according to their distance to X0, and the six nearest
points, i.e. X4∼X9, were chosen (Fig. 8a). Even when the
local surface is divided into two sides by fault f , x8 and x9
are apparently located at the opposite side of X0 of the fault.

As a comparison, in our TIN-based neighborhood search
method, all the vertices of 0∼t order triangleswere selected in
this process and subsequently interpolated. In Fig. 8, suppose
t = 1, vertices in 0th order (sample points X4, X6, and X7)
and 1st order triangles (sample points X1, X2, X3, and X5 and
fault cutoff line points Xf 1∼Xf 4) were selected (Fig. 8b). All
of these neighborhood points are located in a continuously
changing region where X0 is set and are obviously more
meaningful for estimating the value at X0.
Compared with the other KNN methods mentioned in

Section 2, only the TIN-based neighborhood search concerns
the constraints of faults. By inserting faults in the TIN and
using the TIN as a search network, this method can select
sample points that are not only spatially close but also highly
topologically correlated to the target point of estimation,
which ensures that the prediction of the OK method is pro-
duced from a continuous domain.

IV. EXPERIMENTS
A. MODELING OF SIMULATED DATASET
To evaluate the performance of the proposed TIN-constrained
OK method, a surface model of a geological surface S was
simulated from a process z = s (x, y), where x, y [−50, 50]
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TABLE 2. Parameters of the simulated fault.

m and z = 0 m. A finite normal fault f was then simulated to
intersect, cut, and deform S, with parameters listed in Table 2.

A data set P = {pi(xi, yi, zi), i = 1, 2, . . . , 100} including
100 points was randomly sampled from the faulted surface,
and then normal vectors of the surface corresponding to each
sample point were calculated. The simulated surface, fault,
and sampled data set are shown in Fig. 8a.

In our experiments, OK interpolation methods using two
distance-based neighborhood search methods were employed
to compare the performance in both accuracy and effi-
ciency with TIN-constrained OK. Two implicit methods
using second-order information, including HRBF, and mul-
tiscale CSRBF methods, were also added to the comparison.
By leveraging the gradient constraints, the latter two methods
provide better interpolation results than the original RBF
method.

For readability, the used methods are abbreviated as TIN-
OK,D-OK (OKmethod using distance-based neighborhood),
Q-OK (OK method using quadrant-distance-based neighbor-
hood), HRBF, and multi-CSRBF (multiscale CSRBF).

1) INTERPOLATION RESULTS OF SIMULATED DATASET
In the first scenario, four interpolators were applied to the
simulated dataset to estimate z values for unsampled locations
to form surface models drawn in Fig. 9 b, c, d, and e, respec-
tively. All surfaces are rendered within the same color range
from light purple to red (corresponding to the value range
[−5
√
3, 5
√
3] m of z), and the dark areas shown in the figures

indicate that the estimated values exceed this value range.
From Fig. 9, the values predicted from the D-OK and Q-

OK methods in the fault displacement zone are narrowed
because they chose sample points from both sides of fault
when estimating values of locations near fault. The surfaces
modeled from HRBF and multi-CSRBF change sharply near
the fault when additional normal data are used (Fig. 9e).
In line with expectations, our proposed TIN-OK performs
better than the other methods with a surface model (Fig. 9b)
that very similar to the simulated ‘‘ground truth’’ surface
(Fig. 9a).

A further experiment was conducted to compare the per-
formance of the TIN-OK and D-OK method on fault mod-
eling. For our proposed TIN-OK method, the fault can be
constructed with the constraint of fault horizontal cutoff lines
in TIN; for the D-OK method, to construct fault with OK
interpolated surface, a fault modeling method using a fault

FIGURE 9. (a) Simulated geological surface and fault, and interpolation
results from (b) TIN-OK, (c) D-OK, (d) Q-OK, (e) HRBF, and (f) Multi-CSRBF
methods.

FIGURE 10. Constructing fault on the surface interpolated by D-OK
method.

local frame was implemented based on the work presented in
reference [32] and detailed in section III. B.

Fig. 10 depicts the fault modeling result using an additional
fault modeling method after the D-OK interpolation. Com-
pare to the result illustrated in Fig. 9(b), the surface in Fig. 10
appears some dark areas within the fault displacement zone.
Because the deformation of the surface in the fault modeling
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FIGURE 11. Distribution of errors produced by ten cross-validation results
of (a) the proposed TIN-OK, (b) D-OK, (c) Q-OK, (d) HRBF, and (f)
Multi-CSRBF methods.

process caused a misfit of sample points. Although it can be
corrected by implementing optimization methods mentioned
in Section I, the increasing time consumption is another
concern. The same conclusion can be derived from the Q-
OK, HRBF, and multi-CSRBF methods, since they also have
no built-in methods to handle fault structures.

2) COMPARATION OF INTERPOLATION ACCURACY
A K-fold cross-validation (with K equal to ten here) was
subsequently implemented to compare the accuracy of these
interpolators. In each cross-validation, sample points were
divided into K subsets, of which nine were interpolated, and
the remaining one was used to acquire errors to validate.
This process ends after all subsets have served as a validation
set. The interpolation error at point (xi, yi) is defined as an
unsigned value of difference between the estimated value z′i
and the zi.
This K-fold cross-validation operated ten times for each

method in our experiment. The average errors from ten
cross-validations were then interpolated and are illustrated
in Fig. 11. The darker the color on the map, the greater the
error in cross-validation.

In all four maps, the error increases when the sample point
approaches the center of fault. The results from D-OK and
Q-OK interpolation have larger dark areas (bigger errors),
and the errors reach a maximum value of 4.55 m for the
D-OK method (Fig. 11b) and 4.53 m for the Q-OK method
(Fig. 11c). However, errors in most areas in the results from
the proposed TIN-OK interpolation were below 0.40, with a
maximum value of 1.52 (Fig. 11a). HRBF has better accuracy
than D-OK and Q-OK, but it exceeded others in its error area,
the same as amaximum value of 9.17m (Fig. 11d). Themulti-
CSRBF approach also produced large errors in the center
and two of four corners (Fig. 11e), maximally 7.19 m, which
may be caused by a sharp change in the normal vectors near
the fault. Thus, the proposed TIN-OK showed the highest
interpolation accuracy compared to other approaches.

FIGURE 12. Boxplot of errors from one cross-validation result for
previously tested methods.

FIGURE 13. Time consumption changes as point size increases in testing
methods.

One of ten K-fold cross-validation results is illustrated
in the boxplot in Fig. 12. The result shows the same trend
illustrated in Fig. 11, i.e. the introducing of TIN improves the
accuracy of OK method when interpolating faulted surface.

3) COMPARISON OF INTERPOLATION TIME
The time efficiency of the four methods was compared using
simulated datasets with different sizes (50, 100, 500, 1000,
5000, 10000, 20000, 30000, 40000, and 50000) on a laptop
with an IntelR CoreTM i5-8250U processor clocked at 1.60
GHz and 8 GB of random-access memory. Fig. 13a shows
the time consumption trend of the four methods when the
size of the simulated dataset increases. Limiting the count of
neighbors, selected by the different neighborhood methods,
that participate in each estimation is expected to linearly
increase time in all kriging methods. The slope of the line
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produced by the TIN-OK method is smaller than the other
two OK methods with a reduction in the time used of 96.1%
(D-OK) and 91.3% (Q-OK) when the count of simulated
points reaches fifty thousand. In terms of the other methods,
the HRBF method uses all points in each estimation, which
means that the computational cost required to solve the sys-
tem of RBF equations increases cubically and the laptop used
in this experiment cannot implement interpolation with more
than one thousand points; the multi-CSRBF method, in the
opposite situation, runs even more efficiently than all of the
TIN-OKmethod benefits from theOctree indexing andmulti-
scale interpolations (Fig. 13b).

Table 3 summarizes the time complexity of the four com-
parison methods. The whole interpolation process consists of
three parts in our time consumption analysis: constructing
a sample point index for the neighborhood search, interpo-
lating, and visualizing. In the first part, the TIN-OK and
multi-CSRBF methods have a worst-case time complexity
of O(nlogn) for operating the CDT and Octree construction
algorithms, respectively, for the whole dataset whereas D-
OK, Q-OK, and HRBF cost no time in this stage.

In the interpolating stage, for the three OK methods (TIN-
OK, D-OK, and Q-OK), each estimation in interpolation is
calculated after indexing k neighbors and making the pre-
diction. TIN-OK has an O(n) time complexity to locate a
triangle, as we mentioned in Section 3.3.2.2; the D-OK and
Q-OK methods sort sample points based on distance (in each
sector for the Q-OKmethod) and create an index dynamically
to find the k nearest neighbors in each estimation, which
produces a worst-case time complexity ofO(n) andO(nlogn),
respectively. All of these methods index neighbors with O(1)
time complexity, except the HRBF. Then, to solve the linear
equation constructed in the OK methods and get an estimate
from selected neighbors, the O(k3) time is taken; the HRBF
reaches O((n + 3n)3) complexity to calculate the isovalue
surface in this process; whereas the multi-CSRBF, using a
sparse matrix benefit from the compactly supported radial
basis neighborhood search, can approach O(n2) time com-
plexity in this stage.

The HRBF and multi-CSRBF also requires a visualization
algorithm to explicitly represent the isovalue surface, such as
the marching cubes algorithm with a worst-case time com-
plexity of O(q), where q depends on the spatial granularity of
the visualized surface.

In summary, in terms of time efficiency, although the TIN-
OK method costs extra time in constructing the TIN-based
search network, this method accelerates the neighbor selec-
tion process and leads to an improvement in overall time
efficiency. Furthermore, fault displacement and optimization
methods are needed after geological surfaces are interpolated
from the D-OK, Q-OK, HRBF, and multi-CSRBF methods
in a geological surface modeling workflow, which makes the
modeling workflow even more complicated and may cause
unpredictable time expenditure. As a comparison, our pro-
posed method has no such steps because fault displacements
have been considered in the interpolation step.

TABLE 3. Time consumption of four methods in experiment.

FIGURE 14. The geographical location and boundary of Qianjiaying coal
mine, and borehole distribution.

B. CASE STUDY
The Qianjiaying coal mine is located approximately
15 kilometers southeast of Tangshan, China, with an area
of 88 square kilometers (Fig. 14). The strata in this mine
have a smaller dip angle (generally 10◦∼15◦) and simpler
construction. The coal-bearing strata of this field belong to
the Upper Carboniferous and the Lower Permian, and the
basement strata are the limestone of the Middle Ordovician
Majiagou Formation. The total thickness of the coal-bearing
strata is about 500 meters, containing more than ten layers of
coal with a total thickness of 19.79 meters and a coal content
of 3.96%.

Five horizontal coal seams (C05, C07, C08, C09, and
C12a) and 26 faults are expected to be modeled in this
area. Available data sources are listed in Table 4, including
boreholes drilling, underground sketch mapping, and fault
observation.
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TABLE 4. Parameters of the study area.

FIGURE 15. Modeling of a faulted area in the Qianjiaying coal mine. (a)
Fault surface models. (b) Faulted coal seam models. (c) Detailed models
of fault and seams.

Based on the proposed workflow, fault surfaces were
modeled (Fig. 15a), and their horizontal cutoff lines were
computed for each intersecting fault and coal seam. Then,
the sample points extracted from drills and underground sur-
veys and fault horizontal cutoff lines were interpolated using
the proposed method. Finally, all faulted coal seams models
were reconstructed (Fig. 15b). Fig. 15c illustrated detailed
models of two faults intersecting coal seams.

V. CONCLUSION
In this paper, a TIN-constrained OK method is proposed to
build the faulted surfaces in geological context. To the best
of our knowledge, this is a pioneering attempt to apply TIN
to kriging as a neighborhood search constraint. Compared
to previous methods, this method makes three important
methodological contributions:

(1) A search network based on TIN is developed, and
neighborhood search is conducted along this network, which
ensures that each estimation uses sample points from a stable
and continuous area.

(2) The proposed method performs better in both accuracy
and efficiency than the OK method using distance-based
neighborhood search approaches and the HRBF method in
the geological modeling of the faulted surface, particularly
regarding near faults.

(3) The fault displacement and the optimization steps after
interpolation are simplified in our method, which may also
improve the time efficiency of modeling.

We provide a simplified modeling workflow based on the
proposed TIN-constrained OK method without introducing
the complex kinematics and mechanics of faults. The accu-
racy ofmodeling improves as the available data increases, and
time efficiency exceeds two OK methods using the distance-
based neighborhood method, and two implicit approaches
(HRBF and multi-CSRBF).

However, because the fault displacement direction is not
always parallel to the slip direction at the fault center,
themethod of computing cutoff lines does not always apply to
all fault types [31]. In the future, other fault modeling meth-
ods will be introduced to address this problem [19]. More-
over, as an explicit modeling method, the proposed method
present elevation value (z) in terms of x and y coordinates,
which means it cannot be applied to present the overfold-
ing or erosion of a surface such as an overturned fold or salt
surfaces, etc. A possible solution is to project such structure
to a medium plane aligned with the slope direction of such
surface [31], or by using a central cylindrical projection.
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