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ABSTRACT Low-density parity-check (LDPC) codes are widely employed in communication systems.
We focus on the computing of messages at the sink node of internet-of-things (IoT). As opposed to decoding
all the messages, we consider the case that the sink node is interested in computing a linear transformation
of the messages. We assume that all the IoT devices are identical. We first present three representations
of the considered systems, based on which three multistage computing algorithms are proposed, which
are decoding-computing (DC) algorithm, computing-decoding (CD) algorithm, and computing-decoding-
computing (CDC) algorithm. Secondly, we show that the considered system admits a compact normal graph
representation, based on which a joint computing algorithm is proposed. Thirdly, we present numerical
results to show the advantages of the proposed algorithms. Numerical results show that the optimality of
the proposed algorithms depends on the channel conditions and the computing functions. Numerical results
also show that the joint computing algorithm has the best performances for a variety of scenarios. Finally,
we present a simulation-based optimization procedure to design finite-length LDPC codes for the joint
computing algorithm.

INDEX TERMS LDPC codes, linear superposition, joint computing algorithm, internet-of-things.

I. INTRODUCTION
Internet-of-things (IoT) has recently emerged as a promising
enabling technique for a wide class of applications [1]–[7].
For IoT-aided sensing networks, the sink node may not be
interested in the original messages. For example, the sink
node may be interested in the modulo-sum of the origi-
nal messages. This requires improved design of the IoT
transmission schemes. Particularly, cross-layer design may
be required. The classical example of computing channel
is the two-way relay channel with physical-layer network
coding [8].

As a class of capacity-approaching codes, low-density
parity-check (LDPC) codes have been widely adopted in
emerging wireless communication systems to achieve reli-
able information transmission [9]–[11]. Since the power and
the computing capability of the nodes in IoT are limited, new
codes and modulations should be developed [1], [6], [12].
Furthermore, IoTmay be used to support various applications
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with differing latency and reliability requirements. These
requirements pose further challenges on the implementation
of IoT.

Superposition is a common phenomenon in communica-
tion systems. Superposition is introduced artificially in mod-
ulation to achieve the channel capacity [13]. In power domain
non-orthogonal multiple access, superimposed signals are
generated deliberately to improve the spectral efficiency [14].
In IoT, signals of different sensing nodes are superimposed
at the sink node. The classical channel model which charac-
terizes this phenomenon is the Gaussian interference chan-
nels (GIFC). In GIFC, the sink node is only interested in the
messages of its intended transmitter. In modulo-sum comput-
ing [15]–[18], the sink node is interested in the modulo-sum
of the messages. It can be seen that, instead of decoding all
the messages, the receiver is interested in decoding a linear
transformation of the messages. In [18], the authors ana-
lyzed the distance spectrum of coded Gaussian two-way relay
channels with binary input. In [16], the authors developed
a framework to optimize finite-length LDPC codes for two-
way relay channels. In [19], the authors presented a class of
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invertible-subset LDPC codes with improved error correction
capacity for orthogonal frequency division multiplexing sys-
tems. In [20], decoding algorithms for LDPC coded GIFC
were presented. The optimization of LDPC codes for GIFC
was considered in [21]. To the best knowledge of the authors,
very few works in the literature focused on the design of
computing algorithms for LDPC coded IoT networks.
This paper focuses on the design of computing algo-

rithms for IoT which employs LDPC codes for transmis-
sion. We assume that all IoT devices are the same, which
means that they employ the same binary LDPC code in
the physical layer. We first present three representations of
the considered systems, based on which three multistage
computing algorithms are proposed, which are decoding-
computing (DC) algorithm, computing-decoding (CD)
algorithm, and computing-decoding-computing (CDC)
algorithm. Secondly, we show that the considered system
admits a compact normal graph representation, based on
which a joint computing algorithm is proposed. Thirdly,
we consider the applications of the proposed algorithms
to Gaussian interference channels (GIFC) and modulo-sum
computing. Numerical results show that the optimality of the
proposed algorithms depends on the channel conditions and
the computing functions. Numerical results also show that the
joint computing algorithm reveals the best performances for
a variety of scenarios. Finally, we present a simulation-based
optimization procedure to design finite-length LDPC codes
for the joint computing algorithm. Numerical results show
that for the considered system performance improvements are
obtained by optimizing the LDPC codes.

The rest of this paper is organized as follows. In Section II,
the system model is presented. In Section III, we present
the normal graphs and the corresponding iterative multistage
computing algorithms. Section IV presents the joint com-
puting algorithm. Applications of the proposed algorithms
are presented in Section V and the finite-length design of
LDPC codes is given in Section VI. Section VII concludes
this paper.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
A. BINARY LDPC CODES
A binary LDPC code C[n, k] is defined by a sparse binary
parity-check matrix H. The length of the code is n and the
dimension of the code is k . There are two different ways to
specify an LDPC code ensemble, the edge degree distribution
perspective and the node degree distribution perspective. For
simplicity, the node degree distribution is used in this paper.
We use 3i to denote the fraction of degree-i variable nodes
and0j to denote the fraction of degree-j check nodes. To write
these in a compact form, we have

3(x) =
N∑
i=1

3ix i and 0(x) =
M∑
i=1

0ix i.

In this paper, 3(x) is referred to as the variable-node degree
distribution and 0(x) is referred to as the check-node degree

FIGURE 1. The considered system with l IoT sensing nodes and a sink
node.

distribution. Obviously, we have
∑N

i=13i = 1.0,
∑M

i=1 0i =

1.0, 3i ≥ 0 (1 ≤ i ≤ N ), and 0j ≥ 0 (1 ≤ j ≤ M ). The
variable-node degree distribution can be viewed as an element
of an (N − 1)-dimension manifold in the N -dimension space
and hence can be represented by an (N − 1)-dimensional
vector 3 = (31,32, · · · ,3N−1).

B. THE LDPC CODED LINEAR SUPERPOSITION SYSTEM
Assume that there are l IoT deviceswhowant to communicate
with the sink node, see Fig. 1 for reference. The l IoT devices
are assumed to be identical. Particularly, these l IoT devices
employ the same LDPC codes for error correction and the
same modulation for transmission. The i-th device wants to
transmit the sequence u(i) of length k to the IoT sink node.
To achieve reliable transmission, the sequence u(i) is encoded
by the LDPC code before transmission. The encoding output
is denoted as c(i) = (c(i)0 , c

(i)
1 , · · · , c

(i)
n−1). For modulation,

the binary phase shift keying (BPSK) is used. For the i-th
codeword, we use x(i) to denote the i-th modulated sequence
for transmission. At the sink node, the received signal is
y = (y0, y1, · · · , yn−1), where

yt =
∑

0≤i≤l−1

hix
(i)
t + zt =

∑
0≤i≤l−1

hiα
(i)
t (1− 2c(i)t )+ zt . (1)

The channel coefficients are h0, h1, · · · , hl−1. The zt is the
mean zero Gaussian noise with variance σ 2

= N0/2. For
simplicity, we assume that the channel coefficients hi’s are
time-invariant. However, we allow the the amplitudes α(i)t ’s to
be time-varying. We impose the following power constraint
on P(i), which represents the power constraint of the i-th IoT
device.

1
n

∑
0≤t≤n−1

(α(i)t )
2
≤ P(i). (2)

For simplicity, we set σ 2
= 1.

Obviously, we have c(i)HT
= 0, for 0 ≤ i ≤ l−1. Let ct =

(c(0)t , c
(1)
t , · · · , c

(l−1)
t )T , which is composed of the coded bits
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at time t . Based on ct ’s, we can define the following matrix.

c = (c0, c1, · · · , cn−1) =


c(0)0 c(0)1 · · · c(0)n−1
c(1)0 c(1)1 · · · c(1)n−1
...

...
. . .

...

c(l−1)0 c(l−1)1 · · · c(l−1)n−1

 . (3)

It can be easily checked that cHT
= (c0, c1, · · · , cn−1)HT

=

0. Let τ denote a linear transformation from Fl2 to F
l′
2 . Define

v = τ (c) 1
= (τ (c0), τ (c1), · · · , τ (cn−1)). In this paper,

we consider the following general problem.
How to compute v = τ (c) at the IoT sink node from the

received sequence y?
Note that we may not interested in recovering all the

message sequences. However, if this is the case, we have
τ = I. It can be seen that the above problem is very general.
We present in the following several approaches to achieve this
goal.

• The straightforward solution is to decode c first and
then compute τ (c). Algorithms follow this procedure
will be referred to as decoding-computing algorithms.
To decode c, we require the likelihoods of its compo-
nents, which are computed as

fo(yt |ct )=
1
√
2π

exp(−(yt − φt (ct ))2/2), ct ∈ Fl2, (4)

where φt : Fl2 7→ R is determined by

φt (ct ) =
∑

0≤i≤l−1

hiα
(i)
t (1− 2c(i)t ),

for ct ∈ Fl2 and 0 ≤ t ≤ n − 1. The problem of the
decoding-computing algorithm is that when the channel
is bad we cannot achieve the reliably recovery of c.

• The second solution first computes the likelihoods and
then decodes. Particularly, we first compute the likeli-
hoods for vt = τ (ct ) as

fτ (yt |vt ) ∝
∑
ct∈Fl2
τ (ct )=vt

fo(yt |ct ), vt ∈ Fl
′

2 (5)

for 0 ≤ t ≤ n − 1. Then, these likelihoods are used
to initialize the computing algorithms for an l ′-level
LDPC coded system. For simplicity, we will refer this
algorithm as computing-decoding algorithm.

• The last solution is called the computing-decoding-
computing solution. In this solution, we first recover
a linear transform of c by the linear mapping τ̃ , then
compute τ (c) from the decoding results. To ensure cor-
rect computing, we require that the linear mapping τ̃ is
invertible. Different from the decoding-computing algo-
rithm, the computing-decoding-computing algorithms
are initialized with the following likelihoods

fτ̃ (yt |wt ) = fo(yt |τ̃−1(wt )), wt ∈ Fl2 (6)

FIGURE 2. The relationships among the involved variables.

for 0 ≤ t ≤ n − 1. Interestingly, our simulation
results indicate that the computing-decoding-computing
algorithm has the best performances in certain scenarios.

To make it more clear, we have illustrated the relation-
ships of all the involved variables in Fig. 2. The decoding-
computing algorithms follow the route y → x → c → v,
the computing-decoding algorithms follow the route y →
x → v, whereas the computing-decoding-computing algo-
rithms follow the route y→ x → w→ c→ v.

III. ITERATIVE MULTISTAGE COMPUTING ALGORITHMS
In this section, several iterative multistage computing algo-
rithms are presented to recover τ (c). The LDPC code C[n, k]
specified by the parity-check matrix H is used. A high-level
normal graph for the considered system is shown in Fig. 3 (a).
In a normal graph, edges are used to indicates the random
variable and nodes are used to indicate local constraints on
the random variables. For example, the =© nodes in Fig. 3
represent the equality constraint. Following the convention,
we use probability mass function (pmf) to denote the message
of a random variable. For example, for a random variable Z ,
its associated message is represented by the real vector PZ .
If a vector of messages is needed, we use the notation PZ (z),
where Z is a random vector. To simplify the description of
the algorithm, we use PA→B

Z (z) to denote the message from
node A to node B, where Z represents the random vector on
the edge from A to B.

In the following, we present three multistage computing
algorithms, which are decoding-computing (DC) algorithm,
computing-decoding (CD) algorithm, and the computing-
decoding-computing (CDC) algorithm. These algorithms
depends on different normal graphical representations of
the considered system, which are presented in Fig. 3.
Fig. 3 (a) corresponds to the most straightforward repre-
sentation. The DC algorithm works over the normal graph
shown in Fig. 3 (a). Here, we omit the details of the
DC algorithm since it is highly similar to the CD algo-
rithm in Algorithm 1. We point out the the DC algo-
rithm closely follows the well-known iterative multistage
decoding algorithm. Note that the DC algorithm attempts
to recover τ (c) by first recovering c and then applying
the linear mapping τ . This algorithm has been shown in
the literature to be ineffective for coded two-way relay
channels.
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FIGURE 3. Normal graphical representations for different computing
algorithms: (a) decoding-computing algorithm, (b) computing-decoding
algorithm, and (c) computing-decoding-computing algorithm.

A. THE CD ALGORITHM
We derive the basic principle underlying the CD algorithm
in this subsection. Note that τ is a linear mapping, hence,
we have v(i)HT

= 0, where v(i) is composed of the i-th
components of v0, v1, · · · , vn−1. With this result, we know
that the binary vector v(i) is a codeword of the LDPC code.
As a result, we may first compute the likelihood associated
with vt , then use the iterative decoder to decode the message
vt . We present in Fig. 3 (b) another normal graphs of the
considered system. The CD algorithm works by exchang-
ing messages over this normal graph. The procedure of CD
algorithm closely follows the procedure of DC algorithm,

except the initialization. For completeness, we present in
the following the detailed procedure of the CD algorithm.
During the decoding, the global iteration is executed with
maximum Imax iterations and the LDPC decoder is executed
with maximum Kmax iterations.

Algorithm 1 The CD Algorithm

• Initialization: Set PH→6
V (i) (v(i) = 0) = PH→6

V (i) (v(i) =

1) = 0.5 0 ≤ i ≤ l ′ − 1..
• Computing: Compute the likelihoods fτ (yt |vt ) accord-
ing to (5).

• Decoding: While K < Kmax
1) Compute P6→H

V (i) (v(i)) as P6→H
V (i)
t

(m) ∝∑
vt∈Fl2
v(i)t =m

fτ (yt |vt )
∏

j 6=i P
H→6
V (j)
t

(v(j)t ), for m ∈ F2.

2) Execute the LDPC decoder to compute
PH→6
V (i) (v(i)). The maximum iteration of the

LDPC decoder is Imax , which is pre-specified.
3) The messages PV (i) (v(i)) for decision is computed

as

PV (i)
t
(v(i)t ) ∝ PH→6

V (i)
t

(v(i)t ) P6→H
V (i)
t

(v(i)t ),

and the decision is made as

v̂(i)t = arg max
v(i)t ∈F2

PV (i)
t
(v(i)t ).

4) If v̂ is a codeword, decoding stops and a success is
delivered; otherwise set K = K + 1.

• Output: Output the decoding results.

Note that if the linear mapping τ is determined by the l× l
identity matrix, the CD algorithm and the DC algorithm are
the same. For the CD algorithm, we first map the l length-
n message sequences into l ′ length-n message sequences.
Note that the decoding complexity of CD algorithm is lower
than that of the DC algorithm, since l ′ is smaller than l.
Furthermore, since DC algorithm may not work in low SNR
region, we expect the CD algorithm to perform better than the
DC algorithm.

B. THE CDC ALGORITHM
In the subsection, we present the computing method based on
computing-decoding-computing. Let τ̃ denote an invertible
linear transform. In the CDC algorithm, the linear trans-
form τ̃ (c) is recovered first and then the intended function
τ (τ̃−1τ̃ (c)) is recovered. We require that after applying the
linear transform τ̃ we are able to find the intended message
from τ̃ (c). The invertible functions satisfying this require-
ments depend on the properties of τ . It is difficult to give a
general description of which τ̃ satisfies the requirement. The
first candidate of τ̃ is the identity mapping, with which the
CDC algorithm degenerates to the DC algorithm. Based on
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FIGURE 4. A joint normal graphical realization of linear LDPC coded
superposition system.

τ̃ , we can define the following matrix

w = (w0,w1, · · · ,wn−1)
1
= τ̃ (c) =


w(0)

w(1)

...

w(l−1)

 .
It can be easily checked that each row of the above matrix is
a codeword of the LDPC code. This motivates us to present
the CDC algorithm. We present in Fig. 3 (c) the normal
graph by viewing w(t) as a codeword of the LDPC code. The
CDC algorithm is implemented over this normal graph by
exchanging messages.

The decoding procedure of the CDC algorithm is similar
to that of the CD algorithm. For space limitation, we omitted
the details of the decoding procedure of the CDC algorithm.
Note that the decoding complexity of the CDC algorithm
depends on the invertible linear transform τ̃ . To achieve low-
complexity, we should design the τ̃ appropriately. Other than
complexity, other important aspects should also be consid-
ered. For example, for a given channel condition, how to
determine the optimal linear map τ̃ to achieve the best perfor-
mance. This problem is more involved and is not considered
here. Furthermore, we should jointly design the local iteration
number and the global iteration number to achieve the trade-
offs between performance and complexity. We point out that
we may treat the CD algorithm and the CDC algorithm as
message pre-processing techniques. Hence, they can be used
in the joint computing algorithm in Section IV.

IV. JOINT COMPUTING ALGORITHM
Recall that c = (c0, c1, · · · , cn−1). As the ct is a length-
l binary vector, it can be viewed as a finite filed ele-
ment of Fq, where q = 2l . Hence, we have cHT

=

(c0, c1, · · · , cn−1)HT
= 0, which means that c is a code-

word the code specified by the parity-check matrix H. This
observation motivates us to represent the considered system
with the normal graph given in Fig. 4. It can be seen that
this normal graph is completely different from those given in
Section III. To decode, we operate the iterative message pro-
cessing algorithm over this normal graph. For completeness,
we present in the following the details of the joint algorithm.

The most important problem of the joint algorithm is that
its decoding complexity grows exponentially with the number

Algorithm 2 The Joint Algorithm
• Initialization: The original likelihoods are used to ini-
tialize the decoder as P|→Vt

Vt (x) ∝ fo(yt |x). The maxi-
mum number of iteration is selected as Kmax .

• Iteration: For K = 1, 2, · · · ,Kmax
1) Compute P

Ci→Vj
Xi,j (x) as

P
Ci→Vj
Xi,j (x) =

∑
x+
∑

k 6=j xi,k=0

(
∏
k 6=j

PVk→Ci
Xi,k (xi,k )), (7)

for x ∈ Fq.
2) Compute P

Vj→Ci
Xi,j (x) as

P
Vj→Ci
Xi,j (x) ∝ P

|→Vj
Vj (x)

∏
k 6=i

P
Ck→Vj
Xk,j (x), (8)

for x ∈ Fq.
3) Detections:

– Compute

PXj (xj) ∝ P
|→Vj
Xj (xj)

∏
P
Ck→Vj
Xk,j (xj), (9)

for xj ∈ Fq.
– Compute the intended message V = τ (C)

PVj (vj) =
∑
xj∈Fl2
τ (xj)=vj

PXj (xj) (10)

for vj ∈ Fl′2 .
– The decisions are made as

v̂j = arg max
vj∈F2l′

PVj (vj). (11)

– If v̂ is a codeword, decoding stops and a success
is delivered.

4) Increment K by one.
• Output: Output the decoding results.

of IoT devices. Hence, the joint algorithm is applicable only
for IoT systems with small l. On the other hand, the com-
plexities of the iterative multistage algorithms in Section III
grow linearly with l. Hence, they can be used for IoT systems
with large l. Note that the computing-decoding-computing
technique can also be incorporated into the joint algorithm
to reduce the decoding complexity.

V. NUMERICAL RESULTS
Obviously, the linear transformation τ , the code, and the
channel shall influence the performances of the proposed
algorithms. In this section, we present numerical results to
show the performances of different algorithms in comput-
ing different functions. Particularly, we consider the GIFC
and modulo-sum computing. In our simulations, the addi-
tive Gaussian noise channel is assumed. The modulation is
assumed to be the BPSK. The LDPC codes is decoded with
the sum-product algorithm.
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A. GAUSSIAN INTERFERENCE CHANNELS
In this subsection, we investigate the applications of the
proposed algorithms in Gaussian interference channels. Con-
sider the two-user symmetric Gaussian interference channels.
We assume that a (3,6)-regular LDPC code constructed by the
PEG algorithm [22] is employed. The girth of this code is 6.
Due to the symmetry of the two users, we only consider the
first pair of users. The first receiver serves as the sink node
and the two transmitters serve as the sensing nodes. For fair-
ness, we impose the constraint that P(0) = P(1) = P/2. The
linear transformation computed by the sink node is τ = [1 0].
The DC algorithm, CD algorithm, CDC algorithm, and the
joint computing algorithm are employed for decoding. For
CDC algorithm, the invertible mapping τ̃ is specified by the
matrix (

1 0
1 1

)
.

It can be seen that we can obtain τ (c) once τ̃ (c) is correctly
recovered. Moderate interference and strong interference are
considered in our simulations, which are (h20 = 1, h21 = 0.5)
and (h20 = 1, h21 = 0.75). We present in Fig. 5 and Fig. 6 the
simulation results. It can be seen from these curves that

1) For h21 = 0.5, at BER = 10−4, the CDC algorithm has
the best error performance, as in CDC algorithm the
influence of the interference is mitigated in the com-
puting procedure. In other algorithms, the influence of
interference is not reduced.

2) For h21 = 0.75, the best performance is achieved by the
joint algorithm. Particularly, at BER = 10−4, at least
0.4 dB performance gain is obtained.

B. MODULO-SUM COMPUTING
Consider an IoT network with two sensing nodes and a sink
node. The messages of the sensing nodes are coded with a
rate 1/3 LDPC code CKite[12288, 4096] [23]. The sink node
is interested in computing the modulo-2 sum of the messages.
That is, the sink node wants to compute c(0) ⊕ c(1) and the
corresponding linear transform is defined by τ = [1 1].
This case appears when the sink node serves as the point for

FIGURE 5. Bit error rates of different algorithms in GIFC with moderate
interference h2

1 = 0.5.

FIGURE 6. Bit error rates of different algorithms in GIFC with strong
interference h2

1 = 0.75.

information exchanging among the IoT devices. Following
existing works, we assume that h00 = h21 = 1.0. Similarly,
to achieve fairness, we impose that P(0) = P(1) = P/2.
The joint computing algorithm and the CD algorithm are
implemented for computing. We present in Fig. 7 the bit
error rates of these two algorithms. In our simulations, both
the CD algorithm and the joint computing algorithm are
implemented with Kmax = 200. It can be seen that the joint
algorithm performs about 0.2 dB better than the CD algorithm
at BER = 10−4.

We further consider an IoT network with three sens-
ing nodes and a sink node. Similarly, the messages of
the sensing nodes are coded with the rate 1/3 LDPC
code CKite[12288, 4096] and the sink node is interested in
computing the modulo-2 sum c(0) ⊕ c(1) ⊕ c(2). Similarly,
we assume that h00 = h21 = h22 = 1.0. For fairness, we assume
that P(0) = P(1) = P(2) = P/3. The joint computing algo-
rithm and the CD algorithm are implemented for computing.
The simulation results are given in Fig. 8. In our simulations,
both the CD algorithm and the joint computing algorithm
are implemented with Kmax = 200. It can be seen that the
joint computing algorithm performs about 0.1 dB better than

FIGURE 7. Bit error rates of the different algorithms for computing the
modulo-sum.
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FIGURE 8. Bit error rates of the different computing algorithms and
different LDPC codes.

the CD algorithm at BER = 10−4. Note that the decoding
complexity of the joint computing algorithm is higher than
that of the CD algorithm.

VI. OPTIMIZATION OF FINITE-LENGTH LDPC
CODES FOR THE JOINT ALGORITHM
It can be seen from the simulation results in Section V that
for a variety of scenarios the best performance is achieved
by the joint algorithm. This implies the wide applicability of
the joint algorithm. In IoT with mission-critical applications,
the latency is of great importance. For these applications,
we should employ short-length LDPC codes. On one hand,
it can be seen that when computing is considered, the channel
model and the target of the considered system are different
from the point-to-point links. A natural question is how about
the performances of the codes optimized for point-to-point
links in the proposed system. On the other hand, LDPC
codes are typically optimized for long block length.When the
length is short the optimization results may be misleading.
Motivated by the above observations, we dedicated to the
design of finite-length LDPC codes for the joint algorithm in
this section. Obviously, the density evolution algorithm can-
not be used since finite-length is our focus. Instead, a hybrid
optimization algorithm based on simulation and the downhill-
simplex algorithm is used. We noticed a similar optimization
algorithm in [24]. The difference lies in the fact that we have
different target. The basic idea of the proposed optimization
algorithm is presented in the following.

In the proposed optimization procedure, d valid node
degree distributions are generated at first. For each node
degree distribution, we construct an LDPC code with the pro-
gressive edge-growth (PEG) algorithm [24] and then evaluate
its frame error rate (FER) with the joint algorithm. During
the iterations, we generate a new node degree distribution3t

in each iteration. The new generated 3t is then taken as the
input of the PEG algorithm to generate a new LDPC code.
If this new code performs better than the second worst code,
the new generated distribution 3t is taken for consideration

and the worst one is discarded. When the difference between
the d codes is small, we terminate the iteration and output the
code with the best FER as the optimization result. We omit
the details for its simplicity.

1) OPTIMIZATION FOR GAUSSIAN
INTERFERENCE CHANNELS
In this example, we execute the proposed optimization proce-
dure to optimize finite-length LDPC codes for GIFC. Partic-
ularly, we consider the case with strong interference, that is
we have h21 = 0.75.We select the following initial parameters
for our optimization.

• The code length is n = 4000.
• The code rate is r = 0.5.
• The maximum node degree is N = 6.
• The number of candidate codes is d = 8.
• The target SNR is 10.25 dB.

After executing the optimization procedure, the optimized
result is

3(1)(x)=0.695x2+0.085x3+0.025x4+0.006x5+0.189x6.

Based on 3(1)(x), we construct two LDPC codes with
the PEG algorithm [22]. The first code is a length-4000
code C(1)[4000, 2000] and the second code is a length-10000
code C(1)[10000, 5000]. Both codes have rate 0.5 and girth
six. We present in Fig. 9 the performances of these two
codes in GIFC with strong interference. For comparison,
the bit error rates of two binary LDPC codes C(0)[4000, 2000]
and C(0)[10000, 5000] are also presented. These two codes
are constructed with the degree distribution 3(0)(x) =
0.5072x2 + 0.2506x3 + 0.0840x4 + 0.1582x6 [25], which
is optimized for AWGN channels. It can be observed that
about 0.4 dB performance improvement is obtained with
our optimization. The bit error rates of a (3,6)-regular
LDPC code Creg[10000, 5000] is also included in Fig. 9
for comparison. The comparison shows that we can obtain
about 2.1 dB performance improvement with the proposed
optimization.

FIGURE 9. Bit error rates of optimized LDPC codes in GIFC with h2
1 = 0.75

under the joint algorithm.

88504 VOLUME 8, 2020



S. Zhao: Computing Algorithms for LDPC Coded Internet-of-Things

2) OPTIMIZATION FOR MODULO-SUM COMPUTING
We optimize the LDPC node degree distribution for modulo-
sum computing.We select the following initial parameters for
our optimization.

• The code length is n = 4500.
• The code rate is r = 1/3.
• The maximum node degree is N = 6.
• The number of code is d = 8.
• The target SNR is 6.05 dB.

After executing the optimization procedure, the best code
obtained is

3(2)(x) = 0.6823x2 + 0.1932x3 + 0.0078x4

+0.0103x5 + 0.1064x6.

Based on 3(2)(x), we use the PEG algorithm to con-
struct an LDPC code C(2)[12288, 4096] with girth six.
The error performances of this code are shown in Fig. 8.
It can be seen that, at BER = 10−5, the optimized code
C(2)[12288, 4096] performs about 0.25 dB better than theKite
code CKite[12288, 4096].

VII. CONCLUSION
In this paper, the design of computing algorithms at the sink
node of LDPC coded IoT was considered. We focused on
the case that all IoT devices are identical. We first presented
three multistage computing algorithms based on three normal
graphical representations. We then present a compact repre-
sentation of the considered system and based on which we
propose a joint algorithm. Applications of these algorithms
in computing different linear functions are considered. The
numerical results suggested that the optimality of the com-
puting algorithms depends on channel conditions and the
computing functions. We also considered the optimization of
finite-length LDPC codes for the joint algorithm.
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