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ABSTRACT Accurate source localization is an important problem in many research areas as well as practical
applications in wireless communications and acoustic signal processing. This paper presents a passive
three-dimensional sound source localization (SSL) method that employs a geometric configuration of three
soundfield microphones. Two methods for estimating the angle of arrival (AOA) and time difference of
arrival (TDOA) are proposed based on Ambisonics A and B format signals. The closed-form solution for
sound source location estimation based on two TDOAs and three AOAs is derived. The proposed method is
evaluated by simulations and physical experiments in our anechoic chamber. Simulations demonstrate that
the estimation method can theoretically obtain Cramér-Rao lower bound for a small Gaussian noise present in
AOA and TDOA observations. Investigation on the uncertainty of TDOA and AOA measurements depending
on the length of measurement interval is also conducted. Experimental results in terms of RMSE indicate
that the proposed solution can be used to accurately find a 3D position of the sound source in free-field
environment. Performance evaluation regarding the number of estimation steps shows that higher accuracy
can be achieved by longer observations of stationary sound source.

INDEX TERMS 3D sound source localization, angle of arrival, cramér-rao bound, soundfiled microphone,

time difference of arrival.

I. INTRODUCTION

The sound source localization (SSL) is an essential step in a
wide range of audio/acoustic-based applications. Nowadays-
concerned research topics on SSL are ranging from detec-
tion of the speaker position in human-computer interaction
[1] or smart video conferencing [2], robot movement in an
unknown environment [3], [4], search and rescure [5] to
advance military applications such as localization of a sniper
[6] and medium-range aircraft localization [7]. Besides, SSL
is usually used as a necessary preprocessing step before
the enhancement of an acoustic signal from a particular
location [8].

In general, the task of source localization can be viewed
either as an active localization scenario, where transmit-
ters actively emit signals to illuminate the target of interest
while the target location is inferred by collecting reflections,
wherein the scenario of passive localization, receiving sen-
sors can only collect signals emitted from the source. In many
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areas, only a passive source location is considered, where
the signals usually do not carry the time information about
their transmission. The sound localization as a type of passive
localization refers to the problem of estimating the position
from which a sound signal originates concerning the micro-
phone array geometry. In this case, a localization system is
unable to directly measure the time of arrival (TOA) between
the source location and receiving sensor, but instead, only the
difference between times when the different sensors receive
the signals can be measured.

Various methods for SSL have been proposed where all
methods can be grouped by their efforts to detect sound
source either in 2D space [9], [10] or in 3D space [3],
[11]. Fundamentally, there are two main approaches to
finding a source with respect to recorded audio signals.
Both approaches are mainly based on estimating the time
difference of arrival (TDOA) obtained by using various
configurations of microphone arrays, such as linear array
[12], circular array [13], or distributed array [14] and differ-
ent cross-correlation algorithm to estimate time lag between
microphones. The first approach aims to maximize the
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steered response power (SRP) of the output of a delay and
sum beamformer [15]. This direct approach performs an
exhaustive search in the whole SRP space to find a sound
location, which is found to be computationally expensive.
In contrast, the indirect approach is based on using estimated
TDOASs measurements, where the sound source is ascertained
by addressing criteria such as the hypercone fitting problem
[16]. Although results obtained by the indirect method are
more prone to error as they are more sensitive to background
noise, and reflections oppose to direct methods, the main
advantage of indirect TDOA based approach is that it can be
effectively used in distributed microphone network since it
only requires for TDOA values to be transmitted and not raw
sound signal data [17].

A. RELATED WORK

In many research papers, TDOA is a standard measurement
used for passive localization [18], [19]. Source localization
based solely on TDOA measurements demanded a specific
number of measuring devices, i.e., a minimum number of
three and four sensors are required to locate an unknown
target respectively in 2D and 3D space. The principle of
TDOA based approach is to estimate source position from
the intersection of hyperbolic arcs and surfaces respectively
for 2D and 3D cases. In the case of near-field applications
where the source range to the sensor array baseline ratio is
not large, the resulting intersection can be obtained by solving
a set of nonlinear equations. On the contrary, in the far-field
applications, resulting intersection produces a low location
estimate since the hyperbolic arcs/surfaces become almost
parallel to one another. Given the evidence that the accuracy
of the source position estimate degrades when the source
moves sufficiently far away from the sensors resulted in two
different localization problems. Recently, unified near/fat-
field TDOA based localization was proposed in [20]. The
proposed approach consisted of two formulations for the
unified localization problem in two different coordinate sys-
tems. The first formulation is of a nonlinear non-convex
weighted least squares optimization based on the modified
polar representation for the source position, and the other
is the non-convex fractional programming formulation using
the conventional Cartesian coordinates of the source posi-
tion as the optimization variable. Besides the TDOA-based
approach, a source location can also be calculated from the
AOA measurements and its derivative. Obtaining AOA often
involves a sensor that is equipped with an array of receivers;
thus, it elevates a requirement of synchronization between
different sensors since each produces angle by itself. In [21],
the authors proposed a solution that can attain Cramér-Rao
lower bound under mild conditions. Another 3D bearing-
only localization is proposed by [22], where authors achieved
a significant reduction in bias and root-mean-square error
using a pseudo-linear estimator. In general, the passive source
localization problem is not trivial since direct relationships
between the position of a source and the measurements are
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complex, and procedures for solving equations for the TDOA
and AOA methods are hard because of nonlinearity.

One of the more recent research directions is in combin-
ing TDOA and AOA measurements, where algebraic manip-
ulations allow transforming the relationships to the linear
form and lowering energy consumption [23]. There are sev-
eral advantages with the hybrid TDOA-AOA approach, such
as improved localization performance [24], [25], reduced
number of sensors required [26] and it can minimize the
occurrence of ghost targets which is typical for localization
approach with individual TDOA measurements [27]. Many
studies have been carried out proposing a different solution to
source localization [26], [28]-[31]. The most straightforward
method to source localization is an exhaustive search in a
feasible solution region, which is a time-consuming and inef-
ficient solution for real-time application. In general, the max-
imum likelihood (ML) estimator is introduced to estimate the
location since it is asymptotically efficient.

However, the aftermentioned approaches are computation-
ally expensive, and it is hard to find a closed-form solu-
tion, or a closed-form solution does not exist at all. One
of the solutions is to linearize equations with a recursive
approach such as Taylor-series. Nevertheless, these numerical
search techniques can converge to an optimal solution only
if the ML function is convex. The numerical methods are
prone to error since they depend on the right initial position
guess, and thus it is difficult to guarantee its global con-
vergence and calculating time. Their iterative nature does
not make them very suitable for real-time applications. To
improve the robustness and reduce the complexity, a closed-
form solution is required. A linear least-squares estimator
with the closed-form solution, called pseudo linear estimator
(PLE), was proposed in [22]. Although this approach is less
computationally demanding, the estimated source position
is biased because of the correlation between system and
measurement. Recently, authors [32] proposed a new method
for localization. The proposed method represents a simple
algebraic solution that does not suffer from the local con-
vergence problem. However, this method also has a larger
bias since localization accuracy is affected by the deviation of
the noise correlation matrix. Another fine localization solu-
tion, based on generalized trust-region subproblem technique
is proposed by [33], were authors analyzed the necessary
optimal conditions of squared range difference least square
cost function. To reduce the bias of the estimator, a few
different methods where proposed. In [34] BR-PLE method
is proposed for reducing bias. Authors in [35] proposed
a solution to find a rotation angle that could reduce the
bias of the estimator since they demonstrated that estimator
performance was sensitive to origin rotation. [36] proposed
another solution for reducing estimator bias in the presence
of sensors error. The proposed method introduces a quadratic
constraint so that estimator expectation cost function can
attain the minimum value at a true position and thus to
achieve Cramer-Rao lower bound. By analyzing different
approaches, one could conclude that for the most methods,
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an estimation bias arises from the least-squares techniques.
One of the solutions is to construct a new pseudo linear
system such as [27], where a new weight least-square method
is proposed. Authors claimed that the novel structured total
least squares method could reduce estimation bias when the
target is outside the convex hull formed by measurement
sensors. The total least squares estimator was also considered
in [37], where it has demonstrated improved accuracy over
least-square solutions. Another practical solution to position
estimation was proposed by [38]. The proposed closed-form
method was based on converting time-delay measurements
to angular information, but it couldn’t achieve the CRLB
performance. Recently, an efficient closed-form solution has
been proposed for passive source location using only two
stations [26]. In their work, a new relationship between hybrid
TDOA and AOA measurements and unknown source posi-
tions was constructed. The theoretical simulation shows that
the proposed solution can achieve CRLB for Gaussian noise,
where bias compared to variance can be ignored.

By analyzing the aforementioned different source localiza-
tion approaches, some general remarks regarding localization
performance can be made. Investigating different types of
input data for source estimation, one can observe that using
hybrid TDOA and AOA measurements reduces the number
of sensors required, which is especially important for a real-
life scenario where the basic assumption about line-of-sight
(LOS) between unknown source position and sensor may not
be respected. In many the non-line-of-sight (NLOS) environ-
ments, signals emitted from the source are often inaccessible
by all measurement sensors, and one of the solutions is to use
wireless sensor networks (WSN) in which received signals
by each sensor are transmitted to the fusion center for source
localization. Authors in [39] proposed a distributed NLOS
cooperative localization algorithm. The proposed localization
algorithm employs the multiplicative convex model based on
the physical mechanism of the NLOS propagation to achieve
robustness in changing environments. A TDOA-based coop-
erative localization approach for mixed LOS/NLOS condi-
tions is proposed by [40]. For the location of the multiple
stationary target nodes, the authors formulated a non-convex
robust weighted least squares problem (RWLS). To effi-
ciently solve RWLS, the semidefinite relaxation technique
is used to transform RWLS into a convex mixed semidefi-
nite and second-order cone programming problem. Authors
in [41] presented the energy-based localization solution in
WSNs using received signal strength (RSS) and received
signal strength difference (RSSD). In the proposed solution,
RSSD is based on transforming the nonlinear and non-convex
objective functions into a convex optimization problem via
relaxation and semidefinite programming. Another mixed
semidefinite and second-order cone relaxation for source
localization in 3D WSN was proposed by [42]. The proposed
target node localization is based on hybrid RSS-AOA mea-
surements in both noncooperative and cooperative WSNSs,
where the authors proposed new LS estimator to reduce
the implementation costs. From conducted analysis authors
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concluded that proposed RSS-AOA based estimator is more
suitable for large-scale cooperative WSNs compared with
AOA-TDOA based estimators. In general, centralized algo-
rithms suffer from high computation complexity, network
traffic bottleneck, and as such, are not recommended in sce-
narios where each sensor node cannot get raw measurements
directly. To address such problem authors in [43] proposed a
completely decentralized localization approach based on aug-
mented Lagrangian methods and alternating direction method
of multipliers (ADMM). Discussing performance compari-
son in terms of computational efficiency, it is visible that
the unknown source position can be directly calculated from
different sets of geometric relationships. Although compu-
tational complexity for this kind of approach is low, it fre-
quently does not perform sufficiently when measurement
error exists. Since TDOA and AOA observations have mea-
surement error, the location of a source is often estimated
by propagating these errors trough the computation, where
iterative nonlinear minimization is required for an optimal
solution. The most straightforward approaches for handling
measurement noise are iterative algorithms based on ini-
tial position estimate, obtained, for example, by the Gauss-
Newton method, which has high computational requirements.
The maximum likelihood estimator is asymptotically effi-
cient, but it requires a good initial guess. To avoid the need
for good initial position guess characteristic for iterative ML
approach, different closed-form source estimation methods
are proposed. A linear LS approach is an alternative approach,
which can achieve CRLB but reports large estimation bias.
In general, various closed-form solutions have been pro-
posed, each designed to reduce biases, or to work with a
different number of sensors. To asses the performance of
localization estimation, most state-of-the-art studies perform
benchmark in terms of CRLB. Analyzing literature, one can
see that the weighted least square estimator is superior in
comparison to LS solutions in terms of lower bias. Also, it can
be concluded that even both WSL and ML approaches can
achieve CRLB, the WSL approach is more computationally
attractive and suitable for real-time application and does not
really on the initial guess. From the performance comparison
between different methods, one can conclude that while most
state-of-the-art closed-form solutions achieve CRLB, each
approach is designed to work under restricted measurement
error.

In the context of room acoustics, it is difficult to establish
measurement error as the measurement microphone captures
not only the direct-path component of the source signal but
also the multipath component caused by reflections. The
multipath component, together with the background noise,
can lead to distortion of the time delay information from
received signals, and thus it can degrade the localization
performance. To address key challenges of the realistic envi-
ronment such as room reverberation, background noise, and
sound interference, different methods to compute the TDOAs
across various combinations of pairs of spatially separated
microphones were proposed [44]-[47]. Recent work also
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suggested that deep learning can successfully be applied for
modeling rooms acoustic [48]. For instance, in [49] authors
employed deep model for SSL, where it was shown that deep
learning-based system achieved higher accuracy under low
SNR conditions in comparison with cross-correlation phase
transform (GCC-PHAT) method. Authors in [17] proposed
a novel learning approach for SSL based on TDOA esti-
mation, where coordinates of a sound source were defined
as functions of TDOA. In their work, pre-recorded sound
measurements and their corresponding source locations were
used to train the multilevel B-Splines based learning model.
A new dataset for learning-based SSL was proposed by [50]
which contained different acoustic events recorded in the ane-
choic chamber, where the anechoic chamber environment was
used to verify the feasibility of the proposed baseline model.
Authors in [51] addressed SSL for indoor environments
with high reverberation and low signal-to-noise ratio. The
authors proposed a novel sound source localization method
using a probabilistic neural network for the classification
of 3D space clusters. Another learning-based approach was
demonstrated in [52], where authors evaluated the Structural
Sparse Bayesian Learning model with signals recorded in
an anechoic chamber with one reflective plate. Moreover,
it can be seen that many researchers validated their SSL
methods by using recorded audio signals simulating free field
conditions or experimental analysis was carried out inside a
semi-anechoic and anechoic chamber. The anechoic chamber
provides a good simulation of the outdoor conditions due to
the low level of reflections. This environment provides the
possibility to precisely control the conditions and to measure
the levels of sound events and noise, which is substantial
for many experiments. Kotus ef al. [53] performed multiple
sound sources localization in the anechoic chamber, where
different methods for obtaining the direction of arrival were
tested. In the work [54], the authors proposed a modified
cross-correlation algorithm to obtain a more reliable mea-
surement of time difference of arrival in the reverberation
environment. They performed a triangulation procedure using
calculated TDOA values to obtain a sound source position
in 3D space. Another three-dimensional method for SSL
was proposed by Ding et al. [55]. The authors performed
theoretical simulation accompanied by experimental results
in the anechoic chamber. They proposed the use of a planar
microphone array combined with a beamforming technique
to obtain the location of the point sound source.

B. OUTLINE

This paper presents a passive sound source localization
method using three soundfield microphone stations. The geo-
metric configuration of three soundfield microphones can be
employed to obtain two TDOA and three AOA measurements
concerning unknown source position. A closed-form mathe-
matical solution for SSL estimation is presented. Results are
given in terms of RMSE, where it was shown that simulation
of the sound source estimation algorithm can reach Cramér-
Rao lower bound for small Gaussian noise presented in mea-
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surements. Theoretical simulation is supported by the exper-
imental analysis conducted in our anechoic chamber [56].
In this work, TDOA and AOA measurements are directly
obtained by exploiting the A and B format of the soundfield
microphones, which can achieve small measurement devi-
ations. This paper also demonstrates the value of using a
soundfield microphone for the SSL task because AOA can
be easily obtained due to the configuration of the soundfield
microphone capsules.

The rest of the paper is organized as follows. Section II
describes the mathematical formulation of the SSL algo-
rithm. Section III presents our TDOA and AOA estimation
methods using soundfield microphones. The simulation and
experimental results in the anechoic chamber are given in
Section IV, and Section V concludes the paper.

Il. 3D SOURCE LOCATION ESTIMATION
This section explains a novel sound source localization
method based on three soundfiled microphone stations. First,
we establish a geometrical relationship between an unknown
position of the sound source and known positions of sen-
sors, over obtained AOA and TDOA observations. Second,
we define a weighted least squares estimator, where the sum
of the squared residuals is minimized with respect to the
error measurement vector. Measurement error is modeled as
a covariance matrix containing measurement uncertainties.
In experimental phase those measurement error parameters
are obtained through testing in the anechoic chamber [56].
Here we presented the theoretical formulation of the local-
ization scenario where a geometric configuration of three
stations m; = [my ;, my ;, mz,,-]T e R3 is used to estimate
the position of the single sound source s = [sy, sy, 5.7 e R3
in 3D space. Assuming that each station on position m; can
determine bearing angles of received sound wave transmitted
from the unknown source position s, geometric relationship
between s and m; can be expressed trough observed AOAs by
nonlinear equation:

Sy —m ,
arctan( J i
Sy —m
91 _ X, l
il Sz — Mg
arctan

(Sx_mxt) —i—(s}—m
=1,2

where 6; € (—m, ) and ¢; € (0, w/2) form an AOA pair
corresponding to azimuth and elevation angles in the right-
hand coordinate system.

Let r; be the Euclidean distance between the source and
microphone m;:

ri=|ls —ml| = \/(s—m,-)T(s—m,-), i=1,23 (2

and r; is the true distance from m; to the unknown source,
then all TDOA observations with respect to m; are given as:

=Atjgxv, i=2,3. 3)

Til =1 —n
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FIGURE 1. Localization geometry.

where t;; is the range difference, At; is the actual TDOA
measurement obtained as the propagation lag between m; and
mj and v is the speed of signal propagation.

To estimate the unknown source position s using
true TDOA and AOA values, we define vector u =
[T21, T31, lclT, lczT, lc3T]T e R® containing two TDOA obser-
vations with respect to m; and three AOA observations pro-
duced from positions mj, my and m3. In practice, the AOA
and TDOA are noisy observations where we assume that true
values are influenced by additive Gaussian noise as:

P o 0; + n;
Ki=Ki+¢€ = |:¢i+mz:|’
T = Tit + &t 4)

When expressing noisy TDOA and AOA in vector form
results in:

h=p+e &)

where fi is actual noisy measurement vector u and & =
lea1, €31, €1, €h, X1 € R is zero-mean Gaussian with
covariance matrix @ € R3*3

For localization scenario shown in Fig 1. we construct a

unit norm vector b; = [cos ¢; cos 6;, cos ¢; sin 6;, sin qﬁ,-]T €
R3 so that bl.Tb,- = 1 and to satisfy the given geometric
relation:

S—m; = V,'b,', i= 1, 2, 3. (6)

By constructing the matrix G; in order to have columns that
are orthonormal basis of the plane orthogonal to b;, it follows
that Gl-TG,- = I»«» and Gini = 0, where I>4> and 0, are
identity matrix and zero vector. Let G; € R3*? be:

sin 6; sin ¢; cos 6;
G;=| —cosb; sing;sinf; |, i=1,23. @)
0 —CoS ¢;

By performing left multiplication on (6) with Gl.T we get
the following expression:
Glu=G"'m;, i=1,23. (8)
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By realizing that bl-Tbj = biji and binl- = 1 we construct
identity:

b/bi+b/bj—b/bi+bbj=0, i#j=123 (9
Equation (9) can be rewritten with respect to m as

ritbi —b1) b +b1) =0, i=23. (10)

where r; is the geometric distance from m; to s. Substituting
(3) as r; in (10) we have ri(b; + b;) = rib; + (r1 + t;1)b1 and
after using (6) as r; = biT(u — m;) equation (10) becomes:

2b;i — b1)'s = (b; — b)) (my +m; —Tiby), i=2,3.

(11)

A closed form solution was obtained in [26] for two sta-
tions and one source, while in this work, we expand the solu-
tion to work with three stations. Using (8) and (11) together
in matrix form gives:

h=0G"s (12)
h =B, B31,5] G1,55G2, 55 G3]" € R® (13)
Bit = (bi — b)) (my +m; — tyby), i=2,3 (14)
G = [2(b2 — b1), 2(b3 — b1), G1, G2, G3] e R¥** (15)

Equation (12) represents an ideal condition which doesn’t
hold in practice since there is a measurement error € in & and
G matrix. To analyze the influence of the error e for a given
measurement vector it in (5) on localization accuracy, & will
be introduced in (1) and (3) where the true geometric values
of TDOA and AOA will be expressed in terms of their noisy
observations (4). We can approximate (12) up to first order
noise terms which gives:

~

h~G's+Te (16)

where i and G are matrices containing noisy measurements
instead of true TDOA and AOA values as their counterparts h
and G. The formulation of T matrix is shown in (18) - (20), as
shown at the bottom of the next page. From (5) it follows that
Te€ in (16) is zero-mean Gaussian with covariance matrix Q.
To calculate a weighted Least Square estimate of s from (16),
the sum of squared residuals is minimized with the respect to
error measurement vector &.

§ = argmin ||iz — (A;T||2
= arg min(iz — GTs)TW_l(it — GTS)
— 6w 66 "R (17)

where W = TQT7 is weight matrix. The expression (17) is
based on the implicit assumption that the measurement errors
are uncorrelated with each other and that TDOA and AOA
observations have corresponding ogp and o404 uncertainties.
This is insured by modeling Q as a matrix, where the diagonal
elements are given in form of two TDOA and three AOA
variances, setting the rest of off-diagonal entries to null.
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llIl. TDOA-AOA ESTIMATION METHOD

In this section, we explain the proposed approach for estimat-
ing TDOA and AOA values, computed from the real sound
measurements collected by three soundfield microphone sta-
tions. Given that the solution (17) performs minimization of
the sum of squared residuals with respect to measurement
error, it was essential to determine observation uncertain-
ties ogp and o404 of the proposed TDOA-AOA estimation
method in free field conditions. In this work, to ensure uni-
versal reference regarding methods uncertainties, all mea-
surements are made in a small anechoic chamber [56] which
facilitates free-field conditions where no reverberation of
the sound source is present. Fig. 2 displays our measure-
ment setup with three soundfield microphones and a loud-
speaker representing a single sound source inside an anechoic
chamber.

TetraMic 2

TetraMic 3
)
> S |

TetraMic 1

FIGURE 2. Anechoic chamber with triangular stand counting three
soundfiled microphones and speaker representing sound source.

Soundfiled microphone uses 4 subcardioid capsules
mounted as close as possible to form a tetrahedron. Each
soundfield microphone can be viewed as four symmetrical
receivers positioned on the surface of the sphere where it can
produce two distinct sets of audio signals called A-format and
B-format. A-format consists of 4 signals coming from each
microphone capsule arranged as shown in Fig. 3.

4 ’ Z(Up)

?((ant)

Y(Left) iy i (Right)

(Down)

FIGURE 3. Soundfield microphone.

The B-format signals comprise a truncated spherical har-
monic decomposition of the sound field. They correspond to
the sound pressure and the three components of the pressure
gradient at a point in space. The transformation from A to
B-format can be easily performed by knowing the measure-
ment values of the individual capsules in A-format. A linear
system of equations displayed below can be used for format
conversion:

Pw = PLF + PRB + PRF + DLB,
Px = PLF — PRB + DRF — PLB,
Py = PLF — PRB — PRF + PLB.
Pz = PLF — PRB — PRF — PLB, (21)

where p,, is sound pressure signal at the microphone position,
Dx is the sound velocity in the direction back and forth, p, is
the sound velocity information in the direction left to right,
and p, is the sound velocity information in the direction
up and down. Additionally signal filtering can be used to
compensate for inequalities between individual capsules.

To validate estimation algorithm (17) using real mea-
surements, this paper proposes two methods for calculating
TDOA and AOA values from observed sound signal emitted
from unknown source location s.

A. TDOA ESTIMATION

The system is composed of an unknown sound source and
three soundfield microphones. If the sound source transmits
a signal at time T = 0, the microphones will sense the

[ —(b, — b)), 0
0 —(b3 —b)7b,
T = 022
02x2
B 0252
[—cos¢g;sing;  — sing; cos6;
L; = | cos¢jcosb — sin ¢; sin 6;
i 0 cos ¢;
Ti = —r; [C°g¢i (1)] i=123.
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signals at the unknown times T1, T2, and T3. Following (3),
the difference between TOAs can be measured as follows:

ATy =T, =Ty,
ATz =T, — T, (22)

where the microphone at position m is taken as a reference.
Note that for the case of three microphones AT3; value could
be additionally calculated to introduce redundancy in the
system. To calculate the time lag between two microphones,
in this work we used the generalized cross-correlation phase
transform (GCC-PHAT) algorithm as follows:

- X1(OIXi(H1*
G = SO
) Pt () X (O]
dpuar(1,1) = arg max(Rparr (d)) (23)

where x; is a sound signal received by the microphone at posi-
tion m;, X; is Fourier transform and kpATH (d) is the inverse
Fourier transform of i-th signal and []* denotes the complex
conjugate. The term L?PHAT corresponds to the estimated time
difference between m; and m;. To estimate TDOA using
soundfield microphones, in this work, A-format is used which
enables to calculate TDOA as average time lag between
corresponding four capsules of the observed microphones
Le dpyar(1LF, irF), dpaar(11B, irB), dpuar(1gs, irp) and
dpuaT(1gF, igr). Note that for this pairwise TDOA calcu-
lation, each soundfield microphone should be aligned with
global coordinate axes. Calculating the range difference from
(3) is straightforward, where v = 331.57 + 0.607\ [m/s]
is speed of sound in the air and A is air temperature in C°.
As already mentioned, algebraic solution (17) assumes that
the measurement vector is corrupted with small Gaussian
noise defined by covariance matrix @, pointing to the need
of investigating the uncertainty of our TDOA estimation
method. In order to analyze our TDOA based estimation per-
formance given measurement duration ¢, we examined uncer-
tainty reduction when the length of the sound signal used for
estimation increases. From the results shown in Fig. 4 it is vis-
ible that by choosing measurement duration ¢ > 300 ms will
provide stable TDOA observations (RD < 5cm). Fig. 4 illus-
trates deviation of time difference regarding m and m; for a
given sound source location s = [160, —30, —2017.

B. AOA ESTIMATION

In this work, we propose a method for calculating AOA
estimation by exploiting B-format signals of the soundfield
microphone. The AOA estimation technique is based on
obtaining directivity vector d = [d,, dy, d;]" € R3. The pro-
cedure is performed by calculating the power of each velocity
signal for a given integration interval ¢, where each velocity
signals corespondent to X, Y, Z component of B-format. Next,
normalization is applied by dividing each p component with

R = /p? + p} + p? where py, py and p; represents the total
power over ¢ for each discrete axis. To produce a pair of AOA
observations from the calculated directional vector d, similar
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expression as (1) is used:

dy
arctan (L)
[91} dx’i
1= d.; ;
Pi arctan | —=t
[d}; +d;,

where 6; and ¢; are angles concerning microphone internal
origin. It should be noted here that (24) is prone to the error
if the axis of each soundfield microphone used for AOA
estimation are not perfectly aligned with the axis of global
geometry.

Following similar logic as in previous subsection III-A,
we investigated the dependency between the directivity error
and integration time i.e. duration of the sound signal used for
calculating AOA observations. From the Fig.5 itis visible that
for + > 400 ms our methods starts to stabilize, providing
estimation results with standard deviation of o404 < 0.5°.
Fig. 5 illustrates standard deviation of the estimated angle of
directional vectors, measured by m given the position of the
sound source s = [160, —30, —2O]T.

i=1,2,3 (24)
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Based on our findings in terms of dependency between
oa04 and ¢ and by following the conclusion regarding orp
and ¢ from subsection III-A, we have chosen duration of the
signal measurement to be 1 = 500ms in all our subsequent
experiments.

IV. LOCALIZATION RESULTS AND PERFORMANCE
EVALUATION

This section presents the performance study regarding the
localization accuracy of the proposed SSL approach in the
free field conditions. First, a simulation is made to demon-
strate a margin of localization error regarding uncertainty in
TDOA-AOA observations. To alleviate the dependency on
the particular geometry, TDOA-AOA values are calculated
by sampling the angles between three microphone stations
from a uniform distribution. In total, three scenarios are con-
ducted to analyze how measurement error affects the devi-
ation of localization results compared to theoretical CRLB.
Second, the experimental validation of the simulation results
is made in the anechoic chamber containing one sound source
and three soundfield microphones. Anechoic environment,
however far from being realistic, gives the possibility to
precisely control the environmental conditions and to accu-
rately determine the measurement deviations of the proposed
TDOA-AOA estimation method, which is substantial in this
experiment. If the experiment was carried out in a reverberant
room, the room acoustics would influence the estimation of
TDOA-AOA values and thus obtained measurement uncer-
tainties would not make a universal reference. Identifying
measurement uncertainties ogp and o404, proposed solution
(17) can be tested using estimated TDOA-AOA values calcu-
lated from real sound source.

A. SSL SIMULATION UNDER GAUSSIAN NOISE

This subsection presents performance analysis of the pro-
posed estimation method where it will be shown that for the
given localization scenario, the proposed method can reach
CRLB for Gaussian noise present in TDOA and AOA mea-
surements. For the known source position s, CRLB matrix is
defined by [57]:

CRLB(s) = FIM~'(s) (25)

M T )1 OM
FIM(s) = (— — 26
0) =)0 27 (26)
where FIM is the Fisher information matrix given as (26) for
zero-mean Gaussian with a covariance matrix Q € R8*8,
Taking partial derivative of u with respect to sy, s, and s,
yields:

o
35T = [ca1, ¢31, DT, DI, DI € R®3 (27)
where:
e = M ST g3, (28)
ri r
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—dy.i @ 0
| ?
Dm - _dx,idz,i _dy,idz,i l_z ’
rl.zl,' rl.zli rl.z
li=\Jd},+d}, i=123 (29)
values d, ; = sy — my,; and respectively d, ; and d_ ; are the

difference from source position s and m; for a given direction.

The theoretical value of CRLB presents the best possible
accuracy that estimator can achieve given small measurement
error. To adequately analyze the performance of the proposed
method, evaluation is made in terms of the difference between
the theoretical value of square root CRLB and root mean
square error (RMSE) of the estimation algorithm for a given
measurement error variance O‘/%OA, GI%D. In this work, mea-
surement error covariance matrix Q is modeled as:

02, 0O 0 O O 0 0 0
0 o) 0 0 0O 0 0 0
0 0 0y, O O O 0 O
0- 0 0 0 o5 g 0 0 0
0 0 0 0 o}, 0 0 0
0 0 0 0 0 o3, 0 O
0 0 0 0 0 0 o O
L0 0 0 0 0 0 0 o3

(30)

In total, three different simulations for a sound source
localization scenario is made. Firstly, we inspect the per-
formance of the proposed estimation method when the
uncertainty of TDOA measurement increases. Secondly,
we perform a similar test by increasing the standard deviation
o404. And for the third simulation, a difference of RMSE
from theoretical root CRLB will be analyzed in a scenario
where the range of the source s is increasing from the origin.

For an input simulation data, TDOA and AOA observations
are modeled as (4), where ;7 and k; correspond to true
geometrical values calculated from (1) and (2), while ;1 and
€; are corresponding zero-mean Gaussian noise defined by
error variance ‘7/%0 A o,%D. ‘We should also note that measure-
ment noise between each TDOA and AOA observation is
uncorrelated.

Each simulation results are reported in terms of RMSE

which is defined as RMSE(s) = \/Zlel [|Is; — s||%/L, where
§; is the estimated source position after /-th iteration and s
is true position of the source. L = 500 is the number of
estimation runs for a given ogp, 0404 and s. Note that weight
matrix W in (17) depends on actual source position via (18)
which is not know in advance. We can define W as an identity
matrix I € R3*® to obtain an initial position estimates §1 from
(17) which in this case reduces (17) back to LS estimation.
For the rest of the simulation, the matrix W is computed
using previously estimated source position §;_1 together with
the current AOA observation. Simulation procedure respects
geometric configuration shown in Fig. 1 where three stations
are placed 1 m apart forming vertices of an equilateral triangle
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with the center at the origin and lying on the XY plane.
For each simulation, the calculated RMSE value is given by
averaging results obtained for ten different rotations of the
equilateral triangle around Z-axis.

Results of the first simulation are shown in Fig. 6 For
a fixed parameters o404 = 0.5° and s = [160, 40, 4017
cm, reported RMSE closely follows theoretical CRLB given
increase in ogp. Fig. 7 illustrates the performance of the sec-
ond simulation where o404 varies from [0.5° — 2.5°] while
parameter ogp is fixed at 10 cm leaving source at position
s = [160,40,40]" cm. The third simulation shows the
performance evaluation depending on the distance from the
source for the fixed ogp = 10 cm and o404 = 0.5°. For this
case the source moves away from the origin in accordance
with the expression s = a[50, 50, 5017 where a ranges from
1 to 5. From Fig. 8 it is clear that proposed method provides
near CRLB performance.

B. EXPERIMENTAL EVALUATION

In this section, we present experimental results on sound
source localization in 3D space. Following theoretical sim-
ulation given in subsection IV-A, three TetraMic soundfield
microphones were placed 1 m apart forming vertices of an
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equilateral triangle. Arta measurement software was used as
the white noise generator, which was then converted to the
analog audio signal by MOTU STAGE B-16 audio inter-
face, amplified with Pioneer SA-8500 II sound amplifier and
then played through Magnat 145 801 12 loudspeaker, which
represented the source. The TetraMic is connected to audio
interface via four XLR-M connectors coming from the PPA
receiver. For each soundfield microphone, the four-channel
signal is digitized with the B-16 audio interface and recorded
with Reaper software in A-format. To obtain B-format from
four-channel A-format in this work, we used an official soft-
ware VVMic which also performs the corrections using the
calibration file, provided with the specific microphone.
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FIGURE 9. Measurement plan.

In the experiment we used 48 different sound source loca-
tions. Due to space limitations of our anechoic chamber all
measurements were conducted regarding s, > 0 by following
measurement plan shown in Fig. 9, where after performing
measurements for each 12 different sound source locations,
an equilateral triangle holding TetraMic microphones was
rotated around Z-axis for 90°.

For each source location s; white noise signal of 18s dura-
tion was recorded. As concluded in the previous section,
t = 500 ms interval was chosen for measurements’ duration
which resulted in 36 observations for each source position s;.
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FIGURE 10. Sound source position estimation for 4 different locations in anechoic chamber.

Following the procedure explained in section III, for each
segment we calculated two TDOASs from A-format and three
AOAs from B-format. Measured observations were first used
in (17) to get the initial position estimate §; of the source
which is needed to calculate the weight matrix W. After
obtaining an initial position estimate, method (17) was used
35 more times where for each position update, source esti-
mation from the previous step was used to calculate W
which was used in conjunction with new TDOA and AOA
observations to estimate new sound source position in 3D
space. Since the computational step (17) is performed for
each position update, it is interesting to analyze the efficiency
of (17) in terms of computation time given its corresponding
TDOA-AOA values. In this work, all processing procedures
were carried out on the platform of Matlab 2019 on a 64-bit
PC with the computational capability of Intel(R) Core(TM)
i5 CPU @ 3.80 GHz and memory of 32.00 GB 400 MHz
DDRA4. In the average running time of our algorithm (17)
for initial position estimation is 25.4ms and 3.9 ms for each
additional position update.

To show the effectiveness of the proposed approach,
Fig. 10 illustrates the estimation results for 4 different sound
source locations, where reported RMSE results were 11.17,
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15.56 18.90, and 10.47 cm respectively for each location. It is
interesting to note that the estimate (shown in cyan) distant
from the rest of the estimation group corresponds to the initial
position guess, where the true source location is indicated
by the coordinates label. Narrow estimation spread is clearly
visible.

It was also interesting to analyze the dependency between
reported RMSE and the number of iterations. From Fig. 11 it
is visible that by using more iterations, (17) will provide bet-
ter results. For longer measurement intervals, we can achieve
even higher accuracy. The obtained result indicates that the
proposed procedure can be used to locate the stationary sound
source with excellent precision in the free-field. We plot
the experimental cumulative distribution function (CDF) of
positioning error RMSE in Fig.12 to show the localization
performance of the proposed weighted least square estimator
(17). CDF in Fig. 12 is calculated for 48 source positions with
a median value of 21.58 cm. Given a measurement interval
of 18 sec, i.e., 36 estimations per point, the worst reported
RMSE value reaches 38.90 cm while the best point has RMSE
of 10.47 cm. From the CDF graph, it is visible that for 90%
source positions, localization error falls within the margin
of 28.38 cm.
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From the presented results, it is evident that the pro-
posed measurement method provides accurate estimations of
azimuth and elevation angles of the unknown sound source
in the anechoic chamber. In particular, free field conditions
play a major role in the acoustic measurements and sound
perception experiments, as the results are influenced only by
the direct-path component of the sound source and not by
multipath component caused by room reflections. Given that
the experimental evaluation in the SSL task was performed
using real sound measurements, the above results indicate
the potential for further research, where it can be expected
that by employing the more robust method for estimating
TDOA, such as method in [54], the results can translate to
real-world cases. Although it is undeniable that the room
acoustics would influence the SSL recognition results, con-
ducting experimental evaluation in a controlled environment
provides universal reference to localization performance.
Since most state-of-the-art TDOA-based SSL either do not
have experimental analysis (where results are given through
simulation) or experimental evaluation is performed in non
reproducible environmental conditions, a direct comparison
is often inaccessible. Regardless of the results obtained under
certain conditions, our comparison with state-of-the-art is

VOLUME 8, 2020

made to demonstrate the performance of the proposed SSL
approach. For instance, the state-of-the-art method in [17]
reported a localization performance of 0.3m in terms of
RMSE concerning the typical room experiment. Authors
also compared themselves with commonly used SRP-HAT
method, and they showed that their approach outperformed
the SRP-HAT method, which reported a localization error
of 0.76m. It is to expect that evaluation results obtained in
the free-field will outperform results obtained in a real-life
environment [17], and from comparison, it can be seen that
the proposed TDOA-AOA approach, based on three sound-
filed microphones, achieves 0.09 m lower localization error
compared to Multilevel B-Splines-Based Learning Approach
and 0.55 m compared to SRP-HAT method [17]. Given the
fact that the SSL results presented are 30% and 72% lower
in terms of RMSE indicate the effectiveness of the proposed
approach in free-filed with great potential to operate under
realistic conditions.

V. CONCLUSION

This paper proposes a sound source localization method in 3D
space using a geometric configuration of three microphone
stations. The closed-form solution for estimating a sound
source location based on two TDOAs and three AOAs is
presented. In this work, a soundfield microphone is used
as a measurement station. By exploiting A-format of the
soundfield microphone, a pair-wise TDOA estimation using a
general cross-correlation is obtained as the time lag between
the signals from two microphones. The method for obtain-
ing AOA measurements is proposed, based on a calculating
directional vector derived from B-format. The investigation
of the impact of the signal measurement interval length on
TDOA and AOA estimation performance is made. The pro-
posed method was evaluated by simulations and physical
experiments in our anechoic chamber. The simulation results
of the sound source localization reported that (17) reaches the
theoretical CRLB performance regarding a small Gaussian
noise presented in measurements. Since (17) can be viewed
as iterative algorithm, an investigation between accuracy and
number of iteration steps was made, concluding that with
a longer recording of the analyzed signals from unknown
source position, we can achieve even higher accuracy. The
obtained experimental results indicate that the proposed pro-
cedure can be used to locate the stationary sound source with
good precision in free-field environment. In our future work,
it is planned to extend the proposed method for multiple
source localization and tracking, first in free-field anechoic
chamber conditions, and later in different SNR and rever-
beration conditions. Special efforts will be put on problems
tackling real-life scenarios, like detecting speech in noisy
environments when distant recording is required, in order to
increase speech recognition performance.
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