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ABSTRACT In the past decades, the emerging concern about food safety has led to the increasing demand
for monitoring food quality across the world. Aiming towards a novel solution for monitoring food, this study
proposes a non-destructive method with self-powering capability for online food monitoring, which can be
extendable to IoT applications. Furthermore, the study introduces a novel deep neural network model to
predict different states of food quality based on the monitoring results. To monitor the variation in food
quality, the paper proposes the detection of total volatile organic compounds (TVOCs) inside the food
packages, which have been released during food deterioration. A low-power sensor mote comprised of a
capacity humidity sensor and a metal-oxide (MOX) gas sensor was manufactured for this purpose. The
self-powering capability of the mote is provided through an energy harvester module, which benefits from
the far-field Radio Frequency EnergyHarvesting (RFEH) technology. The operating frequency of themodule
was chosen at the 915-MHz ISM band. The analysis of the harvester performance showed that the harvester
could generate 3.3-V dc with an RF input power of as low as -8 dBm, which was sufficient for the mote
operation. To verify the proposed solutions, a demonstration to monitor the deterioration of packaged pork
and fish was conducted in eight days under ambient and refrigerated storage conditions, using the self-
developed RF-powered sensor mote. The raw variations in TVOCs were analyzed to evaluate the reliability
of the proposed TVOC-based method. A one-dimensional (1-D) convolutional neural network (CNN) model
was trained on the TVOCs dataset to predict different states of food quality. To investigate the applicability of
the proposed 1-D CNN to multi-class determination of food quality, two other supervised machine learning
algorithms using 2-D inputs, including Multilayer Perceptron (MLP), and Support Vector Machine (SVM),
are studied. Their classification accuracies based on the confusion matrix are identified and compared.

INDEX TERMS Convolutional neural network (CNN), food quality prediction, radio-frequency energy
harvesting, total volatile organic compounds, multilayer perceptron (MLP), support-vector machine (SVM).

I. INTRODUCTION
In recent years, food safety has become a critical issue all
over the world. In 2017, WHO (World Health Organization)
reported that the number of people becoming ill from food-
borne diseases every year was 600million [1]. Approximately
420,000 people were said to be killed due to consuming
contaminated food in one year, also by that report. These
facts present a challenge in monitoring food quality for the
determination of food conditions to protect human health.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

Various methods have been applied for food monitoring.
Traditional and observablemethods that examine the physical
structure of the foods like texture [2], tenderness, flavor,
juiciness, and color yield uncertain results and have a prob-
ability of contaminating the food by touching the samples.
Other approaches detect microorganisms [3] and count their
concentration in food samples [4], based on the concept that
food products, especially those which are highly perishable
such as fish and meat, are spoiled due to the growth of
harmful microorganisms [5]. These methods require direct
contact with the inspected sample, which may destruct the
sample.
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Therefore, this has driven attention towards non-invasive
or non-destructive techniques for monitoring food quality.
Hyperspectral imaging technologies that inspect the changes
in color or texture of the sample have wider prospects with
the latest advances in image processing over the past few
decades [6], [7]. Other sensing-based techniques aim to
measure the biochemical changes of the environment sur-
rounding the food sample, particularly the odors released
by the sample using multisensory-based devices such as
electronic noses [8]. Such systems, though highly reliable,
require complex configurations of associated devices and
time-consuming sampling methods.

Other than these methods, this paper proposes a non-
destructive and simply configured solution to monitor food
quality by tracking the total volatile organic compounds
(TVOCs) released from food. The difference between this
solution and the existing monitoring methods is that it
requires a simpler configuration, which is feasibly imple-
mented with a battery-less system for online foodmonitoring.
The concept behind this idea is that different volatile gases
are generated as a result of a chemical or enzymatic reaction
of different types of microorganisms during food deteriora-
tion [8]–[10]. In other words, this study utilizes TVOCs as an
indicator of monitoring food quality.

Furthermore, this paper aims to show the feasibility of
implementing the proposed method of food quality moni-
toring without batteries. Although many advanced battery
technologies have been recently developed, they still present
some limitations such as toxic chemicals from the batter-
ies, or the requirement of periodic replacement and mainte-
nance. Energy harvesting technologies thus become the focus
of research as a battery replenishment solution [11]–[14].
A variety of sources of energy to harvest has been studied,
including but not limited to solar, wind [15], mechanical
vibration [16], and RF signals [17].

For the application of food monitoring, we propose using
the far-field RF Energy Harvesting (RFEH) technology
owing to its advantages such as fewer requirements for reg-
ular maintenance and cost-saving ability [17]. Compared to
near-field RFEH, it is considered as an efficient method for
remotely charging low-power sensor devices [18]. In par-
ticular, the far-field technique allows the receiver to extract
the energy from the electric field of propagated radio waves
at a longer distance, which can be several meters, from the
power transmitter than the near-field [17], [18]. In addi-
tion, this technology usually utilizes the unlicensed ISM
(Industrial – Scientific – Medical) radio bands from low
frequency (LF) to super high frequency (SHF). Among these
bands, ultra-high frequency (UHF) power transmission is
considered as an efficient replacement for the batteries [17].
Especially, the 868-950 MHz bands are widely used not
only in research [19], [20] but also in commercial products
(Powercast, STMicroelectronics to name a few). This paper
thus chose the 915-MHz band for the design and operation of
the proposed system.

To verify the proposed methods, we developed a self-
powered sensor mote to wirelessly track the changes in
TVOCs. A novel energy harvester module was integrated into
the mote to harvest the energy from a dedicated RF transmit-
ter. Specifically, two orthogonal antennas, one for harvesting
energy and the other for data transmission, were proposed to
improve the ability of simultaneously harvesting energy and
transferring data.With the proposed configuration, it is shown
in the paper that the mote can harvest sufficient power to mea-
sure and transfer multi-sensing data, including temperature,
relative humidity, and TVOC concentration, without the need
for any external power supply. Figure 1 shows the conceptual
model of the RF-powered food quality tracking system.

FIGURE 1. The proposed RF-powered food quality tracking system: (a) The
conceptual model; (b) The block diagram of the RF-powered sensor mote.

Based on the monitored results, a classification model
was developed to detect different states of food quality.
In this paper, three supervised learning algorithms, including
Convolutional Neural Network (CNN), Multilayer Percep-
tron (MLP), and Support Vector Machine (SVM), have been
deployed. With the emergence of deep learning technology
in recent years, CNN is the first choice to be investigated for
multi-class food quality estimation in this study. One of the
distinct advantages of CNN is that the convolutional layers
can naturally extract inherent properties of the input data
such as mean and variance, while such kinds of information
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can only be provided using the feature extraction process in
conventional neural networks [21]. This feature can hence
simplify the pre-processing procedures of the input data. The
reason behind this fact is that CNN provides an effective
technique to handle any data type (i.e., one-dimensional, two-
dimensional, three-dimensional data) by using kernel filters.

CNN was first known as a popular approach for image
analysis, hence it usually required two- or three-dimensional
input data that were the channels, the widths, and/or the
heights of the images [22], [23]. Soon after, CNN has
been shown to be well applied in the analysis of time- or
frequency-varying signals. Particularly, a CNN model was
used to classify electroencephalography (EEG) signals [24].
The inputs were the recorded EEG samples and correspond-
ing sampling time. In [25], a CNN structure was introduced
to classify five classes of steady-state visual evoked potential
(SSVEP) frequencies. Again, this network required a two-
dimensional map between the channels and the frequencies
as its inputs.

Different than the previous works, this study aims to exam-
ine the applicability of one-dimensional (1-D) CNN to multi-
class determination of food quality. To do so, the developed
CNN model adopts an array of time-varying TVOC data,
which is the main proposed indicator of tracking food quality,
as its inputs. For assessing the performance of the proposed
1-D CNN structure, we study two other classification algo-
rithms using two-scalar inputs, includingMLP and SVM. The
former was selected owing to the fact that it is the most pop-
ular conventional artificial neural network in classification
problems [26], [27]. The latter was chosen owing to its good
classification performance among the conventional machine
learning algorithms, such as Linear Discriminant Analysis
(LDA), and its wide applications [28], [29].

We summarize the contributions of this study as below:
- A food monitoring solution is proposed that is non-invasive
and simply configured by tracking the TVOC concentra-
tions released by the food;

- A battery-free sensor mote is developed that is able to be
integrated with the proposed non-invasive food monitoring
solution for online food quality tracking. The mote uti-
lizes an RF energy harvester operating at the UHF band
of 915 MHz. To verify its operation, the mote is examined
in a demonstration of food monitoring under ambient and
refrigerated storage conditions;

- Integrated with the non-invasive food monitoring solution,
a new detection kernel based on 1D-CNN is proposed
to compose a complete food spoilage detection model.
The model classifies the freshness of food based on the
measurement data of the proposed battery-less monitoring
system. To investigate the applicability of 1-D CNN in
the problem of multi-class categorization of food quality,
we compare the classification results of the 1-D CNN with
those of MLP and SVM classifiers.
The rest of the paper is organized as follows. Section II

describes the design of the RF-powered sensor mote, the
demonstration of the proposed RF-powered food quality

tracking system under different storage conditions, and
the structures of three investigated classification models.
Section III discusses the demonstration results and the clas-
sification performances of these models. The comparison
results of these models are shown in the same section. The
last section involves our discussions and conclusions.

II. MATERIAL AND METHODS
A. THE RF-POWERED SENSOR MOTE
Figure 1 illustrates the components of the proposed
RF-powered sensor mote. The power necessary for the mote
operation is supplied from the RF energy harvester, while
the food quality is monitored by the sensor module. The
operational frequency of the mote is at the UHF band of
915 MHz.

1) THE RF ENERGY HARVESTER
In this study, the RFEH technology was used to provide the
self-powering capability to the sensor mote. The concept of
RFEH is that it converts the radio waves from an RF transmit-
ter into electrical signals [17]. Therefore, an antenna is critical
to induce the electric field radiated from the transmitter into
an alternating current. In particular, a dipole antenna was
developed in this paper owing to its omnidirectional property,
which is necessary for energy harvesting [30]. To capture as
much energy as possible, its return loss was targeted to be
lower than −20 dB. Additionally, its input impedance was
designed at 50 ohms for the ease of impedance matching. The
FR4 material was chosen as the substrate of the antenna with
1.8mm-thickness. All designswere carried out usingANSYS
HFSS software (ANSYS, Inc., USA).

Figure 2 shows the prototype and the performance of the
designed dipole antenna. An SMA connector was mounted
onto the antenna prototype to measure its performance using
a network analyzer. Parametric analyses were conducted to
optimize the dimensions of the antenna to satisfy the above-
mentioned goals, which were 0.8 mm wide and 138.76 mm
long with the 0.8-mm gap between two arms. To compensate
for the differences between designing and fabricating, a shunt
inductor was integrated to achieve a practical 50-� input
impedance. Consequently, the measured return loss agreed
well with the simulated metric of the proposed antenna
(Figure 2b).

Especially in this paper, a novel array of two orthogonal
dipole antennas, one for energy harvesting (EH antenna) and
the other for wireless communication (signal antenna), was
proposed for simultaneously performing these functions. The
concept of featuring two orthogonal antennas with different
functions was previously introduced in [31] and [32]. Using
parametric analyses, we found that orthogonally polarizing
two dipole antennas at their centers enhanced the perfor-
mance of the EH antenna, as shown in Figure 2c. The sim-
ulated return loss of the EH antenna, if put in the array, was
found at −24.57 dB, which was improved compared to its
performance if standing alone (−23.39 dB).
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FIGURE 2. Antenna performance: (a) Antenna prototype; (b) Simulated
and measured return loss of the antenna; (c) Simulated return loss of the
EH antenna, if standing alone (single antenna), versus its return loss if
placed in the proposed antenna array.

The next functional block of the harvester was the rectifier,
which converts the ac signal into a useful dc voltage sufficient
to the sensor module. There are a variety of rectification
topologies studied over years in the field of RFEH, including
the Greinacher and Dickson multipliers [33], [34]. The latter,
however, are more appropriate in the far-field RFEH [18].
Hence, the Dickson topology was chosen for this research.

The main challenge in harvesting RF energy is the
free-space path loss of the transmitter, which leads to
the attenuation of the power strength. The Friis equation
expresses the relationship between the transmitted (Pt ) and
received (Pr ) power with the distance R between the power
transmitter and the receiver, as follows:

Pr = PtGtGr

(
λ

4πR

)2

, (1)

where Gr and Gt are the gains of receiving and transmitting
antennas, respectively, and λ is the wavelength of the operat-
ing frequency.

The equation shows that the power strength decreases at
the rate of the square of the distance. With multi-path fading,
it falls off at a much faster rate, even 1/R4 [17]. To overcome
this issue, multi-stage multipliers are widely used to generate
the required dc voltage level. However, they are bulky and
suffer more power loss due to the power drops on more
rectifying devices, degrading their performance [17].

Therefore, this paper utilized a Dickson-style single-stage
rectifier as shown in Figure 1. Schottky diodes (HSMS-285C,
Avago Technologies, USA) were selected as the rectifying
components owing to their low turn-on voltage (150 mV),
which is the most critical metric in rectifier design [17]. The
stage capacitor CC was chosen following this constraint:

1
2πCCRL

� f0, (2)

where f0 was the operating frequency and RL was the load
resistance. With RL = 15 k� (Section II.A.2), CC was
selected at 33 pF. In addition, a good impedance matching
network between the EH antenna and the rectifier to maxi-
mize the power transferred from the antenna to the rectifier
was obtained with an L-type matching network, following the
method described in [19].

The last component of the harvester was the power super-
visory unit. Instead of using multi-stage multiplication to
generate a sufficient voltage from the low rectifying volt-
age, we adopted a low-power boost charger (BQ25570,
Texas Instruments, USA) owing to its low quiescent current
(500 nA) and low required input power (15 µW). From an
input voltage as low as 330 mV, the chip can step it up
to a useful voltage level from 2.2 V – 5.5 V. Moreover,
the MPPT technology available in the boost charger allowed
the harvester module to maximize the power extracted
from the energy source [35].

To ensure smooth power delivery to the load, a storage
capacitor Cstore is essential. In this paper, a specific power
management scheme was developed for power delivery to
the load. The harvested power was released to the load as
soon as the voltage over Cstore reached a high threshold VH ,
and was disrupted when it dropped to a low threshold VL .
A low-leakage load switch (TPS22860, Texas Instruments,
USA) was used to implement the proposed scheme. The low
and high thresholds were chosen to be 2.8 V and 3.3 V,
respectively.

With the proposed power management scheme, the load
is operational during the dropping phase of the voltage over
Cstore (VHARV ). Therefore, Cstore must be large enough for at
least one operational phase of the load, the sensor module
in this case. In other words, the lower bound of Cstore can be
calculated based on the power consumption of the load during
one phase of the load operation using (3), given by:

Cstore =
Iave ×1T
1V

, (3)

with 1T the duration of one operational phase of the sensor
module, Iave the average current consumption of the module
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during 1T , and 1V the expected voltage drop over Cstore
during 1T . For the worst case, 1V = VH − VL .

2) THE SENSOR MODULE
For a simple low-cost, and low-power hardware implementa-
tion, a single gas sensor that is able to detect a wide range of
VOCs is required. The CCS811 gas sensor (ams AG, Austria)
was chosen owing to its low power consumption (19 µA at
sleep mode) [36]. In addition, a low-power humidity sensor
(HDC1080, Texas Instruments, USA) was integrated to mon-
itor the environment inside the food packages.

The MSP430FR5969 microcontroller (Texas Instruments,
USA) was chosen for processing the sensing data and con-
trolling the module operation owing to its ultra-low power
characteristic. The module wirelessly sent the sensing data
to a UHF reader (ams AG, Austria) using the SL900A
tag chip (ams AG, Austria). This wireless communication
complied with the EPC Radio-Frequency Identity Protocols
Generation-2 [37].

The sensing data were stored at an ultra-low-power micro-
controller (MSP430FR5969, Texas Instruments, USA) and
sent to a UHF tag chip (SL900A, ams AG, Austria) via
the Serial Peripheral Interface (SPI) for the wireless com-
munication with a UHF reader (ams AG, Austria) after-
wards. The communication was compliant with the EPC
Radio-Frequency Identity Protocols Generation-2 [37].

TABLE 1. Current consumption profile of the sensor module.

To satisfy the shortage of power during its operation,
we proposed three functionalmodes of themodule. The active
mode was the state that the module made measurements.
In the transmission mode, only two components including the
tag and themicrocontroller functioned. Lastly, the sleepmode
was programmed to remain the most vital functions of micro-
controller where all other devices are inactive. Table 1 lists
the current consumed by thesemodes and their corresponding
durations, measured at 3.3-V supply power. It was found that
the duration 1T of one operational phase of the module was
289 ms, and the average current Iave consumed by the module
was 3.2 mA, which was equivalent to a 15-k� resistor.

3) ENERGY HARVESTING PERFORMANCE
To evaluate the energy harvesting capability of the mote,
in addition to the antenna performance which was discussed
earlier, the RF-to-DC conversion efficiency (PCE) [17] was
investigated.

The efficiency is defined as the ratio of the output
power Pdc of the rectifier to the input RF power Pin,

given as:

PCE =
Pdc
Pin
× 100%. (4)

To obtain this metric, at first, the harvesting antenna
was connected with a spectrum analyzer (N9320A, Keysight
Technologies, USA) to identify Pin at a specific distance d
from the transmitter. Second, the harvester module was
placed at the same distance d and the output voltage of the
rectifier was measured by a voltmeter. The output power Pdc
was then calculated. In this experiment, a 3-W power trans-
mitter (Powercast, USA) was used as the power source of the
module. The distance d varied from 0.1 to 4 m.
As shown in Figure 3, the simulated and measured effi-

ciency curves of the RF energy harvestermodule share similar
behaviors. The simulated efficiency was obtained using the
ADS (Advanced Design System) software. The input RF
power was measured within the range [−8, 8] dBm. The
largest measured rectifying voltage was 6.3 V corresponding
to 8 dBm of the input RF power, resulting in the RF-to-
DC efficiency of 52%. Moreover, the results showed that at
d = 4 m (Pin = −8 dBm), the harvester generated an output
voltage of 480 mV and correspondingly an output power
of 15.36µW. These levels were sufficient for the BQ25570 to
start its function [35]. In other words, the proposed RF har-
vester module could harvest the RF energy at 4 m from the
transmitter.

FIGURE 3. Rectifying voltage and RF-to-DC conversion efficiency of the RF
energy harvester with respect to the input RF power. The green curves
show the rectifying voltage, and the blue curves represent the efficiency.

4) EVALUATION OF THE RF-POWERED SENSOR MOTE
OPERATION
Figure 4a shows the self-developed prototype of the sensor
mote. An experiment to evaluate its operation was conducted
following the paradigm in Figure 1. The distance between the
transmitter and the mote was chosen at 4 meters. The stor-
age capacitor Cstore was the BestCap 6.8-mF super-capacitor
(AVX, USA), which followed the lower bound determined
by (3).

Figure 4b displays the waveform responses of the
self-powered sensor mote during its operation, recorded by
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FIGURE 4. Evaluation of the proposed RF-powered sensor mote: (a) The
prototype of the mote; (b) Waveform signals of the mote. The blue signal
is the output voltage VHARV of the harvester. The green signal represents
the data signal (MOSI – master out slave in) from the microcontroller to
the SL900A tag chip.

an oscilloscope. As expected, after reaching 3.3 V the output
voltage of the harvester dropped to 2.2 V when fed to the
sensor module. During this duration, the mote measured and
sent the sensing data from the microcontroller to the SL900A
tag chip via the MOSI (master out slave in) wire six times
as shown in Figure 4b. When VHARV = 2.8 V, the module
stopped functioning; the data signal dropped to 0 V. The
results showed that the sensor mote could take measurements
six times before the power was exhausted without any exter-
nal power supply.

B. DEMONSTRATION OF THE RF-POWERED FOOD
QUALITY TRACKING SYSTEM
To validate the feasibility of the tracking system, we con-
ducted a demonstration of monitoring the quality of food
using the proposed system. Two kinds of meat, pork (chops)
and fish with 300 grams of each, were examined in 8 days
under ambient and refrigerator temperatures. The developed
sensor mote was placed inside the food packages to track
the changes in the storage environment. The packages were
sealed by silicone to ensure no gas released during the
food deterioration. Figure 5 shows a practical demonstra-
tion of the pork sample under ambient storage temperature.
Although the distance between the transmitter and the sen-
sor mote could be extended up to 4 meters as discussed
earlier, it was configured at 1 m at furthest for the reliable
operation of the mote. The charging time of the harvester,
hence, was about 4.89minutes for one operational duration of
the mote.

FIGURE 5. The demonstration of the RF-powered food quality tracking
system: (a) System setup. The reader was from ams AG, Austria; (b) The
food package integrated with the sensor mote.

C. PREDICTIVE MODELS OF FOOD QUALITY ESTIMATION
In this study, deep neural networks are used for the task of
multi-class food quality estimation. Although deep learning
was already adopted in previous studies to analyze physical
signals [24], [25], most of them required 2-D input features
for the classification problem. Other than those studies, this
paper investigates the performance of deep learning in food
quality estimation using 1-D input. To verify the applica-
bility of the proposed 1-D CNN model, we examine two
more classification algorithms using 2-D inputs based on
MLP and SVM.

1) ONE-DIMENSIONAL CNN MODEL
Figure 6 shows the proposed structure of the model.
It includes three major layers: an input,NH hidden layers, and
an output. The input layer consists of two convolutional lay-
ers. As previously mentioned, the featured input was the 1-D
time-varying TVOCs. In particular, n-min TVOC data (with
n the data lengthd in minutes), each of which was termed an
input sample, were used to be fed to the convolutional layers
using five 2-point filter kernels.

Two hidden layers of 500 and 3 nodes, respectively, were
fully connected to each other. It is worth noting that the sec-
ond hidden layer was added for 3-D observation of the clas-
sified data. ReLu (Rectified Linear Unit) was used as the
activation function of the first, while Softplus was chosen as
that of the second layer. To prevent over-fitting, the dropping-
out rates of the convolutional layers were configured at 10%,
while that of the first hidden layer was 30%.

The output layer consisted of four nodes corresponding
to four classes. The Softmax function was selected as its
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FIGURE 6. Structure of the proposed 1-D CNN model for food quality prediction.

activation function. The function takes an N-dimensional
input vector of real numbers and exponentially converts it into
the same dimensional vector of real numbers within the range
of (0,1). The standard Softmax function fi (x) is expressed as:

fi (x) =
exi∑N
k=1 e

xk
, i = 1, . . . ,N , (5)

The network adopted backpropagation as an optimization
method to update the weights of the model. The method is
aimed to find the optimized weights that best fit the model
with the training dataset. For each neuron, its output y is
defined as a function of the weighted sum of all its inputs x:

y = f

 N∑
j=1

wjx j

 , (6)

where f is the activation function that the neuron takes, N is
the number of the inputs coming to the node, and wj is the
weight on the connection from the inputs to node j.
To measure the performance of the network, cross entropy

was selected as the loss function at the output of the network.
In the multi-class classification problem, the overall loss of
the model is the sum of the separate loss of each class label
per observation, which is given as follows:

L = −
M∑
c=1

yx,c log
(
fx,c
)
, (7)

withM the number of classes to be classified, yx,c the binary
indicator (0 or 1) if class label c is correct for observation x,
and fx,c the predicted probability that observation x is in
class c, which is the output of the Softmax activation function.
Moreover, three-fold cross-validation was implemented for
statistically evaluating the performance of the model.

2) MLP MODEL
In addition to the proposed 1-D CNN, an MLP-based neural
network was adopted to compare their classification results,
specifically in food quality estimation. This MLP model uti-
lized two scalars as its input, one is TVOCs and the other is
the storage temperature, which had been implied as another
important indicator to monitor food quality [38].

FIGURE 7. Structure of the proposed 2-D MLP model for food quality
prediction.

Figure 7 shows the structure of the proposed four-class
MLP model. The model comprises a single hidden layer with
20 nodes. The Softmax function was chosen as the activation
function of these hidden neurons. Similar to the evaluation of
the CNN model, cross-entropy loss and three-fold cross- val-
idation were used to evaluate the classification performance
of the MLP classifier.

3) SVM MODEL
Similarly, the input features of the proposed SVM clas-
sifier were the storage temperature and the TVOCs. The
four-class classification problem was solved using the one-
vs-one strategy with six binary SVM classifiers. In particular,
the label ‘‘0’’ was assigned to a class, and the label ‘‘1’’ was
assigned to another class in each classifier. Alternately, these
models were trained to categorize each class. The nonlinear
radial-basis kernel was adopted for this model.

4) LABELING DATA
In supervised machine learning, the input data must be
labeled before being trained. This section describes how the
input features of the CNN and SVM classifiers were labeled,
or how the collected samples were defined, for training.

Currently, to the best of the authors’ knowledge, there has
been no global standard for food quality because different
food types suffer from different spoilage rates at different
storage conditions. Therefore, we considered the recommen-
dation of the U.S. Food and Drug Administration (FDA)
for refrigerator and freezer storage of food products [39].
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FIGURE 8. Food quality monitoring results at ambient temperature:
(a) The TVOC variations after 14 hours of storage. The green and black
curves are the storage temperature (◦C) and relative humidity (%RH),
respectively. The blue and orange curves represent the TVOCs (ppb)
released by the pork and fish samples, respectively; (b) The monitored
data during the first 8 hours of storage.

Accordingly, the fresh pork chops are considered to be safe
when being kept refrigerated (4 ◦C) in up to 5 days, while that
limit for fish is 2 days.

Upon consideration of the FDA recommendations and our
observations, we proposed labeling four states of food quality
with respect to the storage time as listed in Table 2. Only the
monitored data of the refrigerated samples were investigated
in this experiment.

TABLE 2. Definition of four states of food quality and their variation rates
of the TVOCs.

As previously mentioned, one of the benefits of CNN
is that the network not only considers the scalar values of
the inputs but also can extract meaningful information from
the variation of the input data. Therefore, it is more bene-
ficial to compare the variation rates of the selected feature,

the TVOCs, from pork and fish samples. Table 2 also shows
the average rates corresponding to four states of food quality.

III. RESULTS
A. FOOD DEMONSTRATION RESULTS
Figures 8 and 9 report the monitored data under ambient
and refrigerated storage conditions, respectively, from the
demonstration described in Section II.B. In all cases, it was
shown that the TVOCs exponentially increased while the
other indicators, temperature and humidity, were fairly stable.
At ambient temperature, the TVOCs rapidly increased only
after a few hours of monitoring (2 hours in the fish case and
6 hours in the pork case), while this duration was 20 and
80 hours in fish and pork cases, respectively, at refrigerator
temperature. These variations expressed the compatibility
with the findings in [40], [41] that food deterioration gradu-
ally released a variety of volatile gases. Additionally, it could
be observed that when refrigerated, the TVOCs increased
much slower than those under ambient conditions. As widely
known in previous works where the temperature was used
as an indicator of food quality [38], it was concluded that
the quality of food decreased more rapidly at a higher tem-
perature. Our results, hence, showed the reliability of the
TVOC-related food quality indicator.

FIGURE 9. Food quality monitoring results at refrigerator temperature:
(a) The TVOC variations after 200 hours of storage, equivalent to 8 days.
The green and black curves are the storage temperature (◦C) and relative
humidity (%RH), respectively. The blue and orange curves represent the
TVOCs (ppb) released by the pork and fish samples, respectively; (b) The
monitored data during the first 140 hours of storage, equivalent to 6 days.
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B. CLASSIFICATION RESULTS
In this paper, we systematically compared the classification
performance of the three proposed classifiers. The 1-D CNN
model took an array of TVOCs within a period of n-minutes
as its inputs. With the data sampling rate of approximately
5 minutes (Section II.B), we chose n = 15; hence each input
sample of the network contained 3 TVOC values. On the
contrary, an input sample of the MLP or SVM model was
a two-scalar input including one TVOC and one temperature
values. Table 3 shows the numbers of input samples of these
models. Testing datasets were chosen at 33.3% of the total
input samples (three-fold cross-validation) for all models. All
models were developed and trained using Python.

TABLE 3. The numbers of input samples of three classification models.

Figures 10 and 11 show the classification performance
of both the CNN and MLP models in terms of loss versus
epochs. Both models were trained in 5,000 epochs for com-
parison. We observed that the 1-D CNN well trained the

FIGURE 10. Classification performance of the 1-D CNN model: a) in pork
case, (b) in fish case.

FIGURE 11. Classification performance of the 2-D MLP model: a) in pork
case, (b) in fish case.

data of the pork experiment while it was overfitting slightly
in the case of fish data since the epoch 1,000th. Similarly,
the learning process of the two-scalar MLP showed the same
behaviors between the test and the validation curves until the
epoch 3,000th, approximately, in both pork and fish cases.
In general, the classification performance of these models
showed that such numbers of data samples, collected by the
RF-powered sensor mote, were sufficient for training the
proposed classifiers.

The overall accuracy of these models was investigated
through confusion matrix, the most commonly used metric
for classification performance [42]. A confusion matrix is a
two-dimensional matrix, of which one dimension is the actual
class of an object (target class) and the other is the class
predicted by the model (output class). Figure 12 shows the
confusion matrixes of the three proposed classifiers.

For comparison, we compared the accuracy among each
classifier in Table 4. The MLP model with two-scalar inputs
achieved the highest accuracy that was 99% using pork data

TABLE 4. Classification accuracy from each classifier.
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FIGURE 12. Confusion matrix by: (a) the CNN, (b) the MLP, and (c) the SVM models. The left and right figures are
the results using pork and fish data, respectively.

and 93.3% using fish data, respectively. The CNN classi-
fier using 1-D inputs obtained the second-highest accuracy
of 97.9% and 90.6% with pork and fish data, respectively.
The remaining model, SVM, yielded the lowest accuracy of
food quality classification.

IV. DISCUSSION AND CONCLUSIONS
The first conclusion came from the demonstration of the RF-
powered food quality tracking system. From the investigation
in Table 2, it was shown that the TVOCs were released at dif-
ferent rates in different statuses of food quality. The longer the
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food was stored, the higher the variation rate of TVOCs was.
Also, the TVOCs by fish experiment apparently increased
much faster than by pork at the same storage condition. This
was expected because the texture of fish meat is less firm
than that of pork meat [2], hence it is quicker for fish meat to
be decomposed. Additionally, the results of the food demon-
stration showed that the increased release of volatile gases
during the meat spoilage, which could be detected by a single
VOC gas sensor, was a reliable indicator to determine food
quality. Therefore, the investigation denoted the reliability of
the proposed non-invasive method using the TVOC indicator
to track food quality.

The study also showed that the far-field RF energy har-
vesting technologywas appropriate for this detectionmethod.
With three different operational modes of the sensor mod-
ule, the average power consumption of the sensor mote was
optimized for its self-powering operation. The experimental
results affirmed that the proposed RF-powered food quality
tracking system was able to operate six times, without the
need for external power, before the harvested power drained
off at one time of harvesting energy.

One major contribution of the study was the results of food
quality classification using the three proposed classifiers.
Particularly, this study investigated the employment of CNN
using a 1-D feature to predict multi-states of food quality.
Although the best performance was not obtained by the CNN
model (Table 4), the classification results have reflected the
advantage of CNN that it can extract the meaningful data,
both the absolute values and their variation information, from
the array of TVOCs. In other words, it takes into account the
trend of TVOC data without performing the derivative of the
data, which the two other algorithms, MLP and SVM, are not
able to do without pre-processing the input data.

Another advantage of the CNN, compared to the MLP
classifier, is that it can handle any types of data: one-,
two-, or three-dimensional data, using kernel filters to sweep
over the input dataset. On the contrary, the MLP model must
be re-structured and re-trained whenever the input feature is
changed to fit the new input dataset.

With the last investigated technique, SVM, the CNN
yielded significantly higher accuracy than that of the SVM.
In addition, the SVM showed a disadvantage for the
multi-class problem due to a large number of the required
binary SVM classifiers. In the paper, six binary classifiers
were used to train the data, leading to much more com-
putational time and resources. As a result, the proposed
one-dimensional CNN is highly appropriate for the challenge
of multi-class food quality estimation that requires only one
feature, which is the principle of the introduced food spoilage
detection method.

Finally, it was realized through the study that the
RF-powered tracking system based on the TVOC indicator
was highly feasible in food monitoring. Additionally, other
possible applications can be benefited from the proposed
techniques, such as wearable biosensor devices to track and
monitor human health (skin moisture, exhaled breath, etc.),

or portable devices to monitor air quality. Flexible anten-
nas and state-of-the-art CMOS technologies can be further
applied to reduce the size and cost of the proposed sensor
mote, providing more opportunity for the proposed method
to be used in the real world. For data analysis, the 1-D CNN
model was beneficial in processing the time-varying TVOC
signal to yield a good classification of food freshness. Further
studies will be conducted to investigate the determination of
pork meat and fish meat based on TVOCs under different
storage conditions.
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