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ABSTRACT The big percentage of lung adenocarcinomas (LUAD) arising in lifetime nonsmokers and the
low sensitivities of known major tobacco biomarkers urgent the identification of real molecular signatures
for corresponding personalized treatment. Moreover, cancer is presumed to have a symptomatology strongly
dependent on modules of functionally-related genes rather than on a unique important gene. Our aims,
therefore, are to identify signature genes by optimizing the tobacco exposure pattern (TEP) classification
model and to uncover their interaction relationships at different molecular levels. A new method, TTZ,
is proposed to extract features as input variables to TEP classification model. Based on the Z-curve method,
TTZ is able to extract features not only from mutation frequencies but also from sequencing information
of insertions and deletions. Two independent LUAD datasets, The Cancer Genome Atlas (TCGA) and
Broad data, are downloaded to train and test the TEP classification model. Thirty-four genes are identified
as tobacco related mutational signature genes with the accuracies of 93.55% and 92.65% for train and
validation data, respectively. The inference of genetic and protein-protein interaction (PPI) networks uncover
that LAMA1, EGFR, KRAS and TNN are the most connected core genes. Six signature genes are proved
significantly involved in the cilium damage pathway, which is considered as one of the root causes of lung
cancer. The identified signature genes may serve as potential drug targets for the precision medicine of
LUAD.Most importantly, the TTZ feature extractingmethod can be easily extended to other disease or cancer
related mutational signature identification issues.

INDEX TERMS Biological network inference, lung adenocarcinomas, mutation signature identification,
tobacco exposure, Z-curve method.

I. INTRODUCTION
Lung cancer has been the leading cause of cancer-related
mortality throughout the world for decades [1]. Cigarette
smokers are proved to be 15-30 times more likely to get lung
cancer or die from it than lifetime nonsmokers. It is linked
to about 80% to 90% of lung cancers in United States. Even
though tobacco smoking is the major risk for lung cancer,
however, there are still 10-15% of cancer patients of western
world who have no history of tobacco exposure [2], [3]. Most
of them tend to suffer lung adenocarcinoma (LUAD) [4],
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[5]. More importantly, it’s been shown that smoking during
cancer therapy may influence radiotherapy and chemother-
apy outcomes [6]. Therefore, when considering therapies for
LUAD patients, the carcinogenic mechanisms of smokers are
believed to differ from those of nonsmokers [7]–[9]. Unfor-
tunately, more and more well-known major mutations have
been proved high false positive or high false negative by accu-
mulated research results. Taken the two well-known major
mutations frequently present in LUADs, KRAS and EGFR
mutations, as examples: Riely et al. [10] found that KRAS
mutations in LUADs occurred at a frequency of only 25% in
smokers but at a frequency of as high as 15% in nonsmoker;
By contrast, in a large meta-analysis study, Ren et al. [11]
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found that EGFR mutations in NSCLC were approximately
only 5 times more common in nonsmokers than in smokers.
Consequently, the rising proportion of nonsmokers in LUAD
urges the precision treatment for the patients with different
tobacco exposure, which further urges the deep understanding
of the difference in the carcinogenic mechanisms between
smokers and nonsmokers.

Somatic DNA mutations are relatively stable and are
believed to lead to initiation and progression of many types
of cancer. It has been proved that tobacco exposure results in
cancer risk by increasing the somatic mutation load, both in
number and type [9], [12]. The average mutation frequency
is more than 10-fold higher in smokers than in nonsmok-
ers. Uncovering signature mutation genes for the difference
in tobacco exposure pattern (TEP) holds high promise for
the deep understanding of the difference in the carcino-
genic mechanisms between smokers and nonsmokers. Con-
sequently, it holds high promise for fasting development of
personalize treatment for LUAD.

To uncover TEP related mutation signatures, various
efforts have been made to incorporate cancer-specific muta-
tion information into analysis. Most of these tools can be
classified into three categories based on their basic prin-
ciples. 1) Frequency-based methods: identifying signature
genes that are more frequently mutated than the background
mutation rate [9], [13]–[15]. 2) Subnetwork methods: identi-
fying signature genes based on prior knowledge of pathways,
proteins or genetic interactions [16], [17]. 3) Hotspot-based
methods [18]–[20]. The term hotspot refers to hotspot muta-
tion regions, which are driven by positive selection and espe-
cially located in functional domains or important residues for
three-dimensional protein structures [21], [22].

However, despite the rapid progress in computational
approaches to prioritize cancer mutational signature genes
with the advent of next generation sequencing technologies,
the ultimate goal of discovering a complete catalog of genes
truly associated with TEP is far from being achieved. Sig-
nature gene lists predicted from these tools lack consistency
[18]. Many tools are not optimally balanced between preci-
sion and sensitivity [23]. The apparently significant muta-
tion genes tend to be highly enriched for genes encoding
extremely large proteins because of their prominence inmuta-
tion burden caused by the sequence length. Most importantly,
the sequence information of insertions and deletions has
never been considered in any of these tools. Moreover, recent
studies showed that cancer is presumed to have a symptoma-
tology strongly dependent on modules of functionally-related
genes rather than on a unique important gene [24], [25].

Therefore, we proposed a newmutational sequence feature
extracting method, named TTZ-feature, to extract features
from not only mutation frequencies but also from sequences
of insertions and deletions to identify TEP mutational sig-
nature genes for LUAD. Afterwards, networks at genetic
and proteinic levels were inferred to uncover the modules of
functionally related signature genes. Then, pathway analysis
was explored to verify them according to their functions.

FIGURE 1. The study outline. We proposed a new mutational sequence
feature extracting method, named TTZ-feature, to identify tobacco
exposure mutation signature genes using PLS (Partial Least Squares)
algorithm. Afterwards, subnetworks at different molecular levels were
inferred to analyze their relationships. Then, KEGG and GO enrichment
analysis were conducted to analyze their molecular functions and
associated pathways.

TABLE 1. Summary of the sample datasets.

Correspondingly, the aim of this study is two-fold: 1) to
identify mutation signature genes highly related with TEP
from hundreds of thousands of genome-wide genes; 2) To
uncover the important relationships among identified genes
from differentmolecular levels, i.e., gene expression level and
protein level. Fig. 1 shows the study outline.

II. MATERIALS AND METHODS
A. LUAD DATASETS
Two independent datasets of LUAD were downloaded for
training and testing the TEP classification model for signa-
ture gene identification. The somatic variants of the whole
exome sequencing (WXS) of TCGA (Legacy Genomic Data
Commons, https://portal.gdc.cancer.gov/projects) data were
measured with MuTect Variant Calling Pipeline. Mutation
profiles of total 22549 genes of 564 samples were available
for analyzing.
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FIGURE 2. The flowchart of Feature extraction. The first row represents a
WES sequence fragment on which are Gene A and Gene B. The second
row shows a hypothetical sequence for Gene A and Gene B. There are
two SNVs(I, II) in Gene A and INS together with DEL in Gene B. The left
part of ‘Feature Transforms’ is the SNV patterns considered in the TTR
feature. The right part is DEL and INS that can be mapped to Cartesian
coordinate system according to the Z-curve theory. The coordinates of the
sequence variation then can be transformed to ZC feature by the formula.
The sum of all above features together with TNA is the TTZ feature
calculated from the mutated sequence of a gene.

Another LUAD dataset consisting of somatic variants and
clinical information named Broad dataset was downloaded
from a published paper [8]. The mutation variations of its
183 LUAD samples were examined with a combination
of WES or whole genome sequencing (WGS): 159 WES,
23WES andWGS, and only 1WGS. In this study, we focused
only on the WES mutations. Consequently, mutation profiles
of total 14809 genes were used. The information of these two
datasets was summarized in Table 1.

B. THE PROPOSED TTZ FEATURE EXTRACTING METHOD
BASED ON THE Z-CURVE ALGORITHM
To extract useful information as comprehensive as possible,
features should contain information not only from muta-
tion frequencies but also from the mutated sequences from
insertions and deletions (indels). Therefore, the TTZ feature
consists of three parts: ZC feature extracted from indels, TTR
(transversion/transition ratio for a gene) and TNA (total num-
ber of alterations for a gene). The flow of feature extraction
is shown in Fig. 2.

1) ZC FEATURE
Z-curve has been a geometrical approach for genome
sequence analysis since proposed in 1990s. It’s a three-
dimensional curve or a point which represents a given DNA
sequence and necessarily contains all the information that the
corresponding DNA sequence carries. In our case, we cre-
atively extract DEL and INS sequence information of each
gene by applying the Z-curve theory. The resulting curve has a
zigzag shape, hence the name Z-curve. The 3D curve or point

of a given DNA sequence is calculated from the frequencies
of the four bases occurring in it [26].

In the original Z-curve algorithm, the frequencies of
nucleotides A, C, G and T occurring in a DNA fragment are
denoted by a, c, g and t , respectively. Based on the Z-curve
method, a, c, g and t are mapped onto a point in a 3D space,
which are denoted by x, y, z [27].

x = (a+ g)− (c+ t)
y = (a+ c)− (g+ t)
z = (a+ t)− (c+ g)

(1)

Consequently, compared with the wild sequence of a gene,
we can get the 1x, 1y and 1z for the mutated sequence:

1x = (1a+1g)− (1c+1t)
1y = (1a+1c)− (1g+1t)
1z = (1a+1t)− (1c+1g)

(2)

where 1a, 1g, 1c, and 1t are the differences in the frequen-
cies of bases a, g, c and t in themutated and the corresponding
wild sequence of this gene.

According to the quadratic form of x, y and z in [26].

x2 + y2 + z2 = 4S − 1 (3)

where S, the ‘‘genome order index’’ [28], is defined as

S = a2 + c2 + g2 + t2 (4)

Thus, the relationship among x, y, z and a, t , c, g is:

x2 + y2 + z2 + 1 = 4
(
a2 + c2 + g2 + t2

)
(5)

To avoid the Dimensional curse problem (the number of
variables is dozens of times of the number of samples), 1x,
1y and 1z are better to be combined into one variable.

Therefore, we defined the ZC-feature as (6):

ZC =
1x2 +1y2 +1z2 + 1

4
(6)

Consequently, for deletion mutations (DEL) of a mutated
gene:

1xij=−xiDELj=
(
ciDELj+tiDELj

)
−
(
aiDELj+giDELj

)
1yij=−yiDELj=

(
giDELj+tiDEL j

)
−
(
aiDELj+ciDELj

)
1zij=−ziDELj=

(
ciDELj+giDELj

)
−
(
aiDELj+tiDELj

) (7)

where aiDELj, giDELj, ciDELj and tiDELj are the frequencies of
bases A, G, C and T in the jth deleted segment of the ith
gene, respectively; xiDELj, yiDELj and ziDELj are their Z-curve
parameters.

Combining (6) and (7), the ZC-feature of the deletion can
be written as:

ZC iINSj =
1xiINSj2 +1yiINSj2 +1ziINSj2 + 1

4
(8)
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correspondingly, for the inserted fragment (INS) of a mutated
gene:

1xij = xiINSj =
(
aiINSj + giINSj

)
−
(
ciINSj + tiINSj

)
1yij = yiINSj =

(
aiINSj + ciINSj

)
−
(
giINSj + tiINSj

)
1zij = ziINSj =

(
aiINSj + tiINSj

)
−
(
ciINSj + giINSj

) (9)

then

ZC iINSj =
1xiINSj2 +1yiINSj2 +1ziINSj2 + 1

4
(10)

where aiINSj, giINSj, ciINSj and tiINSj are the frequencies of
bases A, G, C and T in an inserted segment of the ith mutated
gene, respectively; xiINSj, yiINSj and ziINSj are their Z-curve
parameters and ZCiINSj is the corresponding ZC-feature.
Hence for the ith mutated gene with k deletions and l

insertions, the corresponding ZC-feature should be:

ZC i =

k∑
j=1

ZC iDELj +

l∑
j=1

ZC iINSj (11)

Through this method, all kinds/lengths of mutation deletions
and insertions can be transformed into a score which varies
only with the mutated sequence.

2) TNA FEATURE
To quantify how many alterations happened to a mutated
gene, TNA (total number of alterations) feature is defined
as the total number of alterations of a mutated gene in a
certain sample compared with its corresponding wild type.
Note: deletion, insertion or any other non-SNV alterations
are all considered.

3) TTR FEATURE
Transversion/transition ratio (TTR) feature is the ratio
between single nucleotide variation types of transversions
and transitions of a mutated gene. In total, there are 8 types
tranversions and 4 types transitions. According to our previ-
ous study, the ratio of C > A/G > T (transversions) vs. C >

T/G > A (transitions) is highly related with TEP. Therefore,
TTR was particularly defined as the ratio of C > A/G > T
(transversions) vs. C > T/G > A (transitions) happened in a
mutated gene.

4) TTZ FEATURE
Taken together, for the ith mutated gene in the jth sample,
TTZ-feature can be calculated as:

TTZ ij = ZC ij + TNAij + TTRij (12)

where TTZij is the TTZ-feature; TNAij is the total number
of alterations; TTRij is the ratio between C > A/G > T
(transversions) and C > T/G > A (transitions); ZCij is the
feature extracted based on the Z-curve method.

From the definition of TTZ-feature, we can see that TNA
and TTR consider both the SNV (single nucleotide varia-
tion) and non-SNV alteration frequencies of mutated genes

while ZC considers the sequence information of non-SNV
alterations. Therefore, TTZ-feature takes both frequency and
sequence information of all types of mutations into consider-
ation. Additionally, it doesn’t need any information beyond
DNA sequence information which makes it very practical for
further applications.

5) PARTIAL LEAST SQUARES (PLS)
PLS is a widely used algorithm for modeling relationship
between sets of observed variables by means of latent vari-
ables. It comprises regression and classification tasks as well
as dimension reducing and modeling [29]. Instead of finding
hyperplanes of minimum variance between the response and
independent variables, it finds a linear regression model by
projecting the predicted variables (i.e., classification labels)
and the observed variables (TTZ features in our case) to a
new lower space. Therefore, it performs very well for the
analysis of high-dimension-small-sample data in bioinfor-
matics. Additionally, the linearity characteristic of it makes
it possible to identify important features according to their
contributions to the classification model, which is the main
aim of this study. Please see the Supplementary document for
more details.

C. THE IDENTIFICATION OF MUTATIONAL SIGNATURE
GENES USING THE DEEP SELECTING METHOD
Besides quantifying mutation information, another big chal-
lenge in identifying the mutational signature genes or the
mutational biomarkers from thousands of genome-wide
genes is the ‘Curse of Dimensionality’. It means the num-
ber of variables is much bigger than the number of avail-
able samples (e.g. 13363 TTZ-features vs. 564 samples in
TCGA LUAD dataset). Therefore, inspired by the concept
of ‘‘Deep Learning’’ methods for extracting features step by
step, the deep selecting method based on PLS algorithm was
proposed to identify TEP signature genes. It consists of the
following steps: 1) initiating a TEP classification model with
TTZ features of whole exome genes as input variables; 2)
sorting genes according to their contributions to the clas-
sification model; 3) removing certain number of the least
important genes; 4) remodeling the classification model; 5)
repeating steps 2-5 iteratively until the classification accuracy
couldn’t be improved anymore. Then the remaining genes are
considered as the signatures since using only TTZ features
extracted from their mutated sequences can accurately predict
the TEP of patients.

For the TEP classification model, the TCGA LUAD sam-
ples were used as the training samples and the Broad LUAD
samples were used as the independent validation samples.
The heavy smokers were taken as positive samples and
nonsmokers were taken as negative samples. 5-fold cross-
validation were performed to train the classification model.
The details and corresponding pipeline are available in Sup-
plementary material and Fig. S1.
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D. CONSTRUCTION OF THE DIFFERENTIAL
COEXPRESSION GENETIC NETWORK
Differential coexpression analysis is emerging as a comple-
ment to conventional gene coexpression analysis in response
to environmental stresses or genetic changes. It’s an efficient
way not only to uncover the unique structural characteristics
of a gene interaction network but also to provide new insights
into the biological significance and the underlying gene cor-
relation dynamics. The differential coexpression network of
signature genes was constructed using their gene expression
data as follows:

1) Calculate Pearson correlation coefficient of each pair
of the identified signature genes with their expression
values in heavy smokers and nonsmokers, respectively.
Gene pairs whose p value >= 0.05 were removed.

2) The difference of coexpression of signature gene i and
gene j under two different conditions h (heavy smokers)
and n (nonsmokers) was measured as:

de =
∣∣∣Pi,jh − Pi,jn ∣∣∣ ∗max(

∣∣∣Pi,jh ∣∣∣, ∣∣∣Pi,jn ∣∣∣) (13)

where Pi,j (differential edge) was the correlation coefficient
between gene i and gene j. Here, we modified the method
proposed by Hsu et al. [30] using the absolute value of∣∣∣Pi,jh − Pi,jn ∣∣∣ to identify differentially coexpressed gene pairs.
The de value of each gene pair was considered as ‘‘weight’’.
The differential coexpression network was visualized using
Cytoscape software [31].

E. INFERENCE OF PPI NETWORK OF SIGNATURE GENES
A weighted PPI network among signature genes was
obtained from the STRING (Search Tool for the Retrieval
of Interacting Genes) database (version 11.0) to search the
known and predicted interactions between related proteins
(https://string-db.org/) [32]. Using it, the interacted pro-
teins or genes can be mapped to a weighted network where
proteins or genes are denoted as nodes and the interactions
are denoted as edges marked with a confidence score (cutoff,
0.4). The visualization of the network was accomplished by
Cytoscape software.

F. GENE ONTOLOGY AND KYOTO ENCYCLOPEDIA OF
GENES AND GENOMES PATHWAY ANALYSIS
The Gene Ontology (GO) knowledgebase is the worldwide
largest source of information about the functions of genes.
It is to develop a comprehensive, computational model of
biological systems, ranging from the molecular to the organic
level, across the multiplicity of species in the tree of life [33].

KEGG (Kyoto encyclopedia of genes and genomes) is
a knowledgebase for systematic analysis of gene functions
at the molecular-level in biological systems, from cells to
organisms and ecosystems. It has been generated by genome
sequencing and other high-throughput experimental tech-
nologies [34]. Both GO and KEGG pathway enrichment
analysis for all signature genes were performed using the

FIGURE 3. Classification plot of both datasets by the 34 significant
tobacco-related gene classifier. Each dot on the plot represents a sample.
The left figure shows the prediction of heavy (in red) and nonsmoker (in
blue) tumors of TCGA (G) and Broad (B) datasets while the right one is the
prediction result for ever and nonsmoker samples. The horizontal line in
both subplots represents the classification boundary of the class
categories (above it is Heavy/Ever group and below it is nonsmoker
group).

OmicShare tools, a free online platform for data analysis
(www.omicshare.com/tools).

Except for KEGG, GO and PPI network, all other analyses
were performed using MATLAB codes. Please refer to sup-
plementary materials for more details.

III. RESULTS
A. THE IDENTIFICATION OF MUTATIONAL SIGNATURE
GENES
According to the classification results obtained by the TTZ-
features extracted from different number of genes, the best
classification performance (shown in Fig. 3 and Table 2)
was obtained by a set of 34 genes. The highest classification
performance normally indicates their closest relationship to
predict tumor’s TEP. Therefore, these 34 genes were con-
sequently considered as the potential tobacco-related muta-
tional signatures. Their gene symbols, TTZ-features and
molecular variations are listed in Table S1.

From Table 2, we could see that: for TCGA LUAD train-
ing dataset, sensitivity (SN), specificity (SP) and accuracy
(ACC) are 94.16%, 92.06% and 93.55%, respectively; for
Broad LUAD validation dataset, they are 93.33%, 91.30%
and 92.65%, respectively. All these measurements are higher
than 90%. More importantly, the differences between SNs
and SPs for these two datasets are both small enough, only
2.10% and 2.03%, which means the false classification for
both heavy smokers and nonsmoker samples are better than
good enough.

To further test its performance for new samples,
we extended the samples to all available ever (including
current smokers) and nonsmokers. The corresponding clas-
sification results are also shown in Fig. 3 and Table 2. From
Table 2, we could see that all performances are a bit worse
than that of heavy/nonsmoker classification. But they are
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TABLE 2. The performance of the classification model for the training
and validation datasets using TTZ-features only of the final 34 mutational
signatures.

FIGURE 4. Volcano plot of TTZ-features of the 34 significant
tobacco-related genes. Each dot on the plot is a single gene feature.
Horizontal axis: fold change (in log2 scale); vertical axis: p-value (in
log10 scale). The vertical lines highlight fold changes of {−1} and {+1},
while a horizontal line represents a p-value of 0.05. The red dot
represents the genes with p-value < 0.05 and the triangle and round
bigger markers represent the 34 signature genes.

still greater than 90%, which indicates the generalization
capability for new samples of this model is good enough too.
Consequently, it proves the generalization capability for the
identified TEP signature genes.

The volcano plot of the TTZ-features of the whole
exome genes in TCGA LUAD dataset is shown in Fig. 4.
The corresponding spots of these 34 genes are highlighted
with bigger markers. It is very obvious that TTZ features
of signature genes are all significantly different between
heavy/nonsmokers. Of note, among them, only mean TTZ-
feature in EGFR gene in nonsmokers is more than two-
fold higher than that in heavy smokers. This result is com-
pletely consistent with the well-known knowledge that EGFR
is a mutation signature for nonsmokers [35]. Additionally,
MUC16, TTN, CSMD3 are the three genes whose mutation

FIGURE 5. The differential coexpression genetic network of 31 genes
(31 gene pairs). The soft threshold method was used to calculate the
connectivity of the genes which was expressed using the color of nodes.
The de value was considered as ‘‘weight’’ that was expressed using four
line types, which are dotted line, short dash line, long dash line and solid
line according to its value.

FIGURE 6. The PPI network of 21 signature genes. The network was
drawn by the SRTING database and visualized by Cytoscape software. The
shade of blue and size of nodes represent connectivity (degree) of genes,
which represents the degree of relevance of gene pairs.

patterns are most significantly different in heavy smokers vs.
nonsmokers.

B. GENETIC NETWORK AND PPI NETWORK AMONG
SIGNATURE GENES
Genetic network is shown in Fig. 5. There are 31 links (gene
pairs) consisting of 31 genes in two coexpression networks
that correspond with condition h (heavy smoker sample)
and condition n (nonsmoker sample), respectively. Three
signature genes (PCDH15, RELN, and SALL3) couldn’t be
involved in this network.

Figure 6 shows the PPI network among these 34 genes.
It contains 21 nodes and 21 edges. It shows that 21 out
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of 34 genes have interactions at the protein level. In the
biggest PPI network,EGFR is themajor onewho has themost
interactions with other signature genes at the protein level.
Then KARS and TTN are the second major ones. DNAH9,
DNAH11 and DNAH17 form a small subnetwork.

To further study the related molecular mechanisms in
which the identified signature genes are directly involved,
functional enrichment and pathway analysis were performed.
GO secondary classification map can be seen in Fig. S2.
Signature genes are mostly enriched in anatomical structure
development, single-organism developmental process, bind-
ing and ion binding, extracellular region and other molec-
ular functions. In addition, 34 signature genes are enriched
in 92 KEGG pathways in total, of which PI3K-Akt signaling
pathway, dorso-ventral axis formation, galactose metabolism
are highly significant.

IV. DISCUSSION
Due to the importance of somatic mutations in cancer ini-
tiation and progression, various studies have recently been
conducted to incorporate massive data analysis into cancer-
specific mutation signature identification [9], [15], [17].
However, most methods used only tumor mutation fre-
quencies, tumor mutation burden [36], the frequency ratios
between different categories of SNVs [9], [13], [15], a binary
entity (the presence or absence of a mutation) and other
simple features as variables. The priceless information of the
sequence information of indels has beenwasted due to the fact
that these methods haven’t make any use of it. Consequently,
there are only a few numbers of reports on indels based
mutation signature genes and most of them were achieved by
wet experiments or clinical observations. For example: the
deletion of EGFR [35] and the insertion of HER2 [37]. It’s
in a great necessity to develop a method to quantify mutation
patterns both in number and sequence to uncover mutational
signatures.

To overcome the abovementioned disadvantages, Mut-
SigCV was proposed by Lawrence et al. [38]. The significant
feature of it is the correction for patient-specific and gene-
specific mutational heterogeneities by incorporating DNA
replication timing and transcriptional activity. But the com-
pensation factors about DNA replication timing and tran-
scriptional activity need to be induced from other genes with
similar properties (e.g. replication time, expression level),
which makes it less practical. Additionally, MutSigCV is
limited to recognize drivers to distinguish tumor samples
from non-malignant samples, which makes it unsuitable for
gene identification for personalized cancer treatment.

Therefore, we proposed a new feature extraction method,
named TTZ-feature, to fill in the gap for the identification
of TEP signature genes. Our TTZ-feature can consider muta-
tion frequencies by TNA, SNV mutation spectrums by TTR
and non-SNV segment sequence information by ZC-feature.
More importantly, it does not need any other accessory infor-
mation beyond sequence information. Therefore, it is very

easily extended to other cancer related or disease related
mutation signature gene identification.

PLS based deep selection algorithm was used to train the
TEP classification model and to identify mutational signature
genes with TTZ-features as input variables. By removing
the least important genes iteratively, genes with the best
classification performance were uncovered as the final TEP
mutational signatures. The classification accuracies of both
LUAD training dataset (TCGA) and independent validation
dataset (Broad) are higher than 90%. Additionally, the bal-
ance between sensitivity and specificity are good enough
(only 2.10% and 2.03%) too. These exciting high enough
classification accuracies strongly proved the excellent perfor-
mance of the proposed TTZ-feature.

The Volcano plot of TTZ-features of the whole exome
of heavy smokers vs. nonsmokers in TCGA LUAD dataset
is shown in Fig. 4 with the 34 signature genes highlighted.
From this figure, we could see that the P-values of the TTZ-
features of identified signature genes are almost the lowest
(in −log10 scale) ones. It means that their mutation patterns
are most significantly different between heavy smokers and
nonsmokers.

Among them, EGFR is the only one whose TTZ-feature
is much higher in nonsmokers than in heavy smokers. It is
well known from wet experiments that EGFR mutation,
which mainly targets nonsmokers and reformed smokers
>15 years. The deletion mutations of EGFR have been
reported strongly related with lung cancer [39]. According to
Table S1, we could see that 17 out of 63 (27%) nonsmokers
have EGFR deletion mutations. The average deletion fre-
quency is 1.06 per sample and the average sequence length is
13.59nt in nonsmoker LUAD patients with EGFR mutation.
The average ZCDel-feature = 5.77 in nonsmoker samples,
which is much higher than that in heavy smokers (ZCDel-
feature = 0.006). These results strongly proved that the ZC-
feature part in TTZ-feature can take the sequence information
of indels into the consideration. Therefore, it can uncover
signature genes whose indels play important roles in cancer.
TP53 has been reported as the most frequently mutated

gene in lung cancer [40]. It’s average TTZ-feature in
heavy smoker and nonsmoker is 0.33 and 0.18, respec-
tively. The corresponding P-value between these two
groups is 0.0012 which means the mutation patterns in
heavy/nonsmokers are significantly different. But compared
with the 34 signature genes, the difference of it in TTZ
features between heavy and nonsmokers isn’t significant
enough. As a result, TP53 isn’t selected as a tobacco-related
mutational biomarker. On the contrary, even CSMD3 is
reported as the second most frequently mutated gene (next to
TP53) in lung cancer, it is identified as the tobacco-associated
signature [41]. The selection of CSMD3 and the deselection
of TP53 both strongly proved that TTZ method isn’t a fre-
quency depending feature.

To prove the contribution of ZC feature in TTZ, we com-
pared the results obtained by using only TNA and TTR
with orwithout ZC. From the receiver operating characteristic
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curves (ROC) shown in Fig. S3, we can see that the perfor-
mance of TTZ-feature model is a better one. This proves the
contribution of sequence information extracted by ZC feature.

The overwhelming predominance in number of SNVmuta-
tion over indels of all training samples (for example, the aver-
age value of SNV per sample is 378.31 while of indels is
16.42) makes ZC-feature is easily to be buried by TNA and
TTR features. Correspondingly, the improvement of ROCs
with ZC compared ROCs without ZC feature isn’t very
extraordinary. Without enough and clear background knowl-
edge or big enough samples of indels, it’s hard to optimize
the weights of these three parts of TTZ-feature up to now.
It needs more research efforts on the regarding issue.

It should be expected that modules composed of
functionally-related genes, rather than one or a few key
genes, play symptomatology roles in cancer initiation and
progression [24], [25]. The enrichment of the interaction
relationships among identified signature genes at genetic and
protein-protein levels strongly proved they work as several
modules of functionally-related genes for the tobacco related
LUAD. From the differential coexpression genetic network,
we can see that only three genes (PCDH15, RELN, and
SALL3) did not appear in the differential coexpression genetic
network.

It is worth noting that the correlation between LAMA1
and LCT and the correlation between ZNF536 and CSMD3
are significantly different in heavy smokers and nonsmokers.
In other words, the regulatory relationships among these
genes may be very sensitive to tobacco exposure pattern. This
may provide a clue for the difference in the carcinogenesis
mechanisms between smokers and nonsmokers.

To further explore the reliability of selected signature
genes, we constructed their PPI network using STRING
database. According to the database description, our network
has significantly more interactions than expected. This means
that our proteins have more interactions among themselves
than what would be expected for a random set of proteins of
similar size. It is well known that genes with higher between-
ness centrality and degree have more features associated with
malignancies, which are usually called ‘hub’ genes. In our
results, the top three genes with highest betweenness cen-
trality have the highest degree. They are EGFR, KRAS and
TNN. Among them, EGFR and KRAS are two famous proto-
oncogenes and their mutations can activate tumor prolifera-
tion. Numerous studies have shown that mutations in these
genes are closely related to the development of lung cancer
[42], [43]. Our results are highly consistent with previous
studies, which shows that our methods and results are reason-
able. On the other hand, some genes such as TNN have rarely
appeared in previous literature on lung cancer research, which
means they need to be paid more attention.

From PPI network shown in Fig. 6, we also discovered
that DNAH9, DNAH11 and DNAH17 formed a small subnet-
work. Studies have shown that the interaction ofDNAH9with
environmental tobacco smoke exposure can cause disease
associated with abnormalities of pulmonary function [44],

[45]. But the roles play by the co-functions of these three
genes remain unclear. It may worth further studying.

GO and KEGG pathway analysis were performed for
34 signature genes (Figure S4). For cellular component,
six signature genes (DNAH9, DNAH11, DNAH17, USH2A,
PCDH15 and PPEF2) were significantly associated with
cilium damage (Fig. S4c). It’s well known that cilium damage
is one of the root causes of lung cancer. The smoke produced
by smoking permeates all layers of the trachea and bronchus,
which affects the cleaning movement function of cilia and
eventually leads to the development of lung cancer. Addition-
ally, the signal transduction, focal adhesion, ErbB signaling
pathway, Wnt signaling pathway and VEGF signaling path-
way etc. also appear in our pathway enrichment results.

From the fact that the EGFR and other mutation percent-
ages of lung adenocarcinoma are quite different between
Asian and Caucasian LUAD patients, therefore, it is neces-
sary to describe the distribution of Asian and Caucasian in the
datasets. However, the proportions of Asian LUAD patients
in both of these datasets are very low (only 0.9%). Thus,
it’s impossible to get any statistically significant conclusion.
Consequently, the results and conclusion obtained here are
more specific to Caucasian LUAD patients.

V. CONCLUSION
Thirty-four genes were identified as tobacco related muta-
tional signature genes for LUAD patients. Genetic network
and PPI network analysis proved these genes co-operate
as modules at different molecular levels. KEGG and GO
analysis were then performed to verify their involvement in
pathways and molecular functions to LUAD initiation and
progression.

Our work provided a new method to extract molecular
variation features from mutated sequences for identifying
mutational signature genes using advanced statistical anal-
ysis methods. The satisfactory classification performance
strongly proved the effectiveness of TTZ-feature as variables
for data mining in molecular variation scope. Most impor-
tantly, it opens a novel way for disease-independent muta-
tionalmechanism research to improve precisionmedicine and
to identify new drug targets for the development of personal-
ized treatment.

ACKNOWLEDGMENT
Qien He and Zhewei Qiu contributed equally to this work.

REFERENCES
[1] R. L. Siegel, K. D. Miller, and A. Jemal, ‘‘Cancer statistics, 2016,’’ CA,

A Cancer J. Clinicians, vol. 66, no. 1, pp. 7–30, Jan./Feb. 2016.
[2] D. C.-L. Lam, L. Girard, R. Ramirez,W.-S. Chau,W.-S. Suen, S. Sheridan,

V. P. C. Tin, L.-P. Chung,M. P.Wong, J.W. Shay, A. F. Gazdar,W.-K. Lam,
and J. D. Minna, ‘‘Expression of nicotinic acetylcholine receptor sub-
unit genes in non-small-cell lung cancer reveals differences between
smokers and nonsmokers,’’ Cancer Res., vol. 67, no. 10, pp. 4638–4647,
May 2007.

[3] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman,
‘‘Global cancer statistics,’’ CA, A Cancer J. Clinicians, vol. 61, no. 2,
pp. 69–90, Mar./Apr. 2011.

89038 VOLUME 8, 2020



Q. He et al.: New TTZ Feature Extracting Algorithm to Decipher Tobacco Related Mutation Signature Genes

[4] Y. Liu, Q. Lan, J. M. Siegfried, J. D. Luketich, and P. Keohavong, ‘‘Aber-
rant promoter methylation of p16 and MGMT genes in lung tumors from
smoking and never-smoking lung cancer patients,’’Neoplasia, vol. 8, no. 1,
pp. 46–51, Jan. 2006.

[5] C.-M. Choi, H. C. Kim, C. Y. Jung, D. G. Cho, J. H. Jeon, J. E. Lee,
J. S. Ahn, S. J. Kim, Y. Kim, Y.-D. Choi, Y.-G. Suh, J.-E. Kim, B. Lee,
Y.-J. Won, and Y.-C. Kim, ‘‘Report of the Korean association of lung
cancer registry (KALC-R), 2014,’’ Cancer Res. Treat., vol. 51, no. 4,
pp. 1400–1410, Oct. 2019.

[6] J. Norum and C. Nieder, ‘‘Tobacco smoking and cessation and PD-L1
inhibitors in non-small cell lung cancer (NSCLC): A review of the liter-
ature,’’ ESMO Open, vol. 3, no. 6, Oct. 2018, Art. no. e000406.

[7] R. Govindan et al., ‘‘Genomic landscape of non-small cell lung cancer
in smokers and never-smokers,’’ Cell, vol. 150, no. 6, pp. 1121–1134,
Sep. 2012.

[8] M. Imielinski, A. H. Berger, P. S. Hammerman, B. Hernandez, T. J. Pugh,
E. Hodis, and C. Sougnez, ‘‘Mapping the hallmarks of lung adeno-
carcinoma with massively parallel sequencing,’’ Cell, vol. 150, no. 6,
pp. 1107–1120, Sep. 2012.

[9] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, S. A. Aparicio, S. Behjati,
A. V. Biankin, G. R. Bignell, N. Bolli, A. Borg, A. L. Børresen-Dale, and
S. Boyault, ‘‘Signatures of mutational processes in human cancer,’’Nature,
vol. 500, no. 7463, pp. 415–421, Aug. 2013.

[10] G. J. Riely, M. G. Kris, D. Rosenbaum, J. Marks, A. Li, D. A. Chitale,
K. Nafa, E. R. Riedel, M. Hsu,W. Pao, V. A. Miller, andM. Ladanyi, ‘‘Fre-
quency and distinctive spectrum of KRASmutations in never smokers with
lung adenocarcinoma,’’ Clin. Cancer Res., vol. 14, no. 18, pp. 5731–5734,
Sep. 2008.

[11] J.-H. Ren, W.-S. He, G.-L. Yan, M. Jin, K.-Y. Yang, and G. Wu, ‘‘EGFR
mutations in non-small-cell lung cancer among smokers and non-smokers:
A meta-analysis,’’ Environ. Mol. Mutagen., vol. 53, no. 1, pp. 78–82,
Jan. 2012.

[12] L. B. Alexandrov, Y. S. Ju, K. Haase, P. Van Loo, I. Martincorena,
S. Nik-Zainal, Y. Totoki, A. Fujimoto, H. Nakagawa, T. Shibata,
P. J. Campbell, P. Vineis, D. H. Phillips, and M. R. Stratton, ‘‘Mutational
signatures associated with tobacco smoking in human cancer,’’ Science,
vol. 354, no. 6312, pp. 618–622, Nov. 2016.

[13] T. Cancer Genome Atlas Research Network, ‘‘Comprehensive genomic
characterization of squamous cell lung cancers,’’ Nature, vol. 489,
no. 7417, pp. 519–525, Sep. 2012.

[14] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, and
M. R. Stratton, ‘‘Deciphering signatures of mutational processes operative
in human cancer,’’ Cell Rep., vol. 3, no. 1, pp. 246–259, Jan. 2013.

[15] L. Ding, G. Getz, D. A. Wheeler, E. R. Mardis, M. D. McLellan,
K. Cibulskis, C. Sougnez, H. Greulich, D. M. Muzny, M. B. Morgan, and
L. Fulton, ‘‘Somatic mutations affect key pathways in lung adenocarci-
noma,’’ Nature, vol. 455, no. 7216, pp. 1069–1075, Oct. 2008.

[16] E. Cerami, E. Demir, N. Schultz, B. S. Taylor, and C. Sander, ‘‘Automated
network analysis identifies core pathways in glioblastoma,’’ PLoS ONE,
vol. 5, no. 2, Feb. 2010, Art. no. e8918.

[17] W.-F. Guo, S.-W. Zhang, L.-L. Liu, F. Liu, Q.-Q. Shi, L. Zhang, Y. Tang,
T. Zeng, and L. Chen, ‘‘Discovering personalized driver mutation profiles
of single samples in cancer by network control strategy,’’ Bioinformatics,
vol. 34, no. 11, pp. 1893–1903, Jun. 2018.

[18] Y. Han, J. Yang, X. Qian, W.-C. Cheng, S.-H. Liu, X. Hua, L. Zhou,
Y. Yang, Q. Wu, P. Liu, and Y. Lu, ‘‘DriverML: A machine learning algo-
rithm for identifying driver genes in cancer sequencing studies,’’ Nucleic
Acids Res., vol. 47, no. 8, p. e45, May 2019.

[19] I. R. Watson, K. Takahashi, P. A. Futreal, and L. Chin, ‘‘Emerging patterns
of somatic mutations in cancer,’’ Nature Rev. Genet., vol. 14, no. 10,
pp. 703–718, Oct. 2013.

[20] D. Tamborero, A. Gonzalez-Perez, and N. Lopez-Bigas, ‘‘Onco-
driveCLUST: Exploiting the positional clustering of somatic mutations to
identify cancer genes,’’ Bioinformatics, vol. 29, no. 18, pp. 2238–2244,
Sep. 2013.

[21] H. Abdi and L. J. Williams, ‘‘Partial least squares methods: Partial least
squares correlation and partial least square regression,’’ Methods Mol.
Biol., vol. 930, pp. 549–579, Jan. 2013.

[22] K. Song, J.-H. Bi, Z.-W. Qiu, R. Felizardo, L. Girard, J. D. Minna, and
A. F. Gazdar, ‘‘A quantitative method for assessing smoke associated
molecular damage in lung cancers,’’ Transl. LungCancer Res., vol. 7, no. 4,
pp. 439–449, Aug. 2018.

[23] J. P. Hou and J. Ma, ‘‘DawnRank: Discovering personalized driver genes
in cancer,’’ Genome Med., vol. 6, no. 7, p. 56, Jul. 2014.

[24] D. P. Cahill, K. W. Kinzler, B. Vogelstein, and C. Lengauer, ‘‘Genetic
instability and darwinian selection in tumours,’’ Trends Biochem. Sci.,
vol. 24, no. 12, pp. M57–M60, Dec. 1999.

[25] D. Hanahan and R. A.Weinberg, ‘‘The hallmarks of cancer,’’Cell, vol. 100,
no. 1, pp. 57–70, Jan. 2000.

[26] R. Zhang and C.-T. Zhang, ‘‘A Brief Review: The Z-curve theory and
its application in genome analysis,’’ Current Genomics, vol. 15, no. 2,
pp. 78–94, Apr. 2014.

[27] C.-T. Zhang and R. Zhang, ‘‘Analysis of distribution of bases in the coding
sequences by a digrammatic technique,’’ Nucleic Acids Res., vol. 19,
no. 22, pp. 6313–6317, Nov. 1991.

[28] C.-T. Zhang and R. Zhang, ‘‘A nucleotide composition constraint of
genome sequences,’’ Comput. Biol. Chem., vol. 28, no. 2, pp. 149–153,
Apr. 2004.

[29] Y. Tan, L. Shi, W. Tong, G. T. Gene Hwang, and C. Wang,
‘‘Multi-class tumor classification by discriminant partial least squares
using microarray gene expression data and assessment of classifi-
cation models,’’ Comput. Biol. Chem., vol. 28, no. 3, pp. 235–243,
Jul. 2004.

[30] C.-L. Hsu, H.-F. Juan, and H.-C. Huang, ‘‘Functional analysis and charac-
terization of differential coexpression networks,’’ Sci. Rep., vol. 5, no. 1,
Oct. 2015, Art. no. 13295.

[31] P. Shannon, ‘‘Cytoscape: A software environment for integrated models
of biomolecular interaction networks,’’ Genome Res., vol. 13, no. 11,
pp. 2498–2504, Nov. 2003.

[32] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas,
M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen,
and C. V. Mering, ‘‘STRING v11: Protein–protein association networks
with increased coverage, supporting functional discovery in genome-
wide experimental datasets,’’ Nucleic Acids Res., vol. 47, no. D1,
pp. D607–D613, Jan. 2019.

[33] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris,
D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E.
Richardson,M. Ringwald, G.M. Rubin, andG. Sherlock, ‘‘Gene ontology:
Tool for the unification of biology,’’ Nature Genet., vol. 25, pp. 25–29,
May 2000.

[34] M. Kanehisa, ‘‘KEGG: Kyoto encyclopedia of genes and genomes,’’
Nucleic Acids Res., vol. 28, no. 1, pp. 27–30, Jan. 2000.

[35] Y. W. Choi, S. Y. Jeon, G. S. Jeong, H. W. Lee, S. H. Jeong,
S. Y. Kang, J. S. Park, J.-H. Choi, Y. W. Koh, J. H. Han, and S. S. Sheen,
‘‘EGFR exon 19 deletion is associated with favorable overall sur-
vival after first-line gefitinib therapy in advanced non–small cell lung
cancer patients,’’ Amer. J. Clin. Oncol., vol. 41, no. 4, pp. 385–390,
Apr. 2018.

[36] S. Heeke and P. Hofman, ‘‘Tumor mutational burden assessment as a
predictive biomarker for immunotherapy in lung cancer patients: Getting
ready for prime-time or not?’’ Transl. Lung Cancer Res, vol. 7, no. 5,
pp. 631–638, Dec. 2018.

[37] Y. Takase, K. Usui, K. Shimizu, Y. Kimura, T. Ichihara, T. Ohkawa,
J. Atsumi, Y. Enokida, S. Nakazawa, K. Obayashi, Y. Ohtaki,
T. Nagashima, Y. Mitani, and I. Takeyoshi, ‘‘Highly sensitive detection
of a HER2 12-base pair duplicated insertion mutation in lung cancer
using the Eprobe-PCR method,’’ PLoS ONE, vol. 12, no. 2, Feb. 2017,
Art. no. e0171225.

[38] M. S. Lawrence et al., ‘‘Mutational heterogeneity in cancer and the search
for new cancer-associated genes,’’Nature, vol. 499, no. 7457, pp. 214–218,
Jul. 11 2013.

[39] S. Dogan, R. Shen, D. C. Ang, M. L. Johnson, S. P. D’Angelo,
P. K. Paik, E. B. Brzostowski, G. J. Riely, M. G. Kris, M. F. Zakowski,
and M. Ladanyi, ‘‘Molecular epidemiology of EGFR and KRAS muta-
tions in 3,026 lung adenocarcinomas: Higher susceptibility of women
to smoking-related KRAS-mutant cancers,’’ Clin. Cancer Res., vol. 18,
no. 22, pp. 6169–6177, Nov. 2012.

[40] Z. Shajani-Yi, F. B. de Abreu, J. D. Peterson, and G. J. Tsongalis, ‘‘Fre-
quency of somatic TP53 mutations in combination with known pathogenic
mutations in colon adenocarcinoma, non–small cell lung carcinoma, and
gliomas as identified by next-generation sequencing,’’ Neoplasia, vol. 20,
no. 3, pp. 256–262, Mar. 2018.

[41] P. Liu et al., ‘‘Identification of somatic mutations in non-
small cell lung carcinomas using whole-exome sequenc-
ing,’’ Carcinogenesis, vol. 33, no. 7, pp. 1270–1276,
Jul. 2012.

VOLUME 8, 2020 89039



Q. He et al.: New TTZ Feature Extracting Algorithm to Decipher Tobacco Related Mutation Signature Genes

[42] O. Arrieta, A. F. Cardona, C. Martín, L. Más-López,
L. Corrales-Rodríguez, G. Bramuglia, O. Castillo-Fernandez,
M. Meyerson, E. Amieva-Rivera, A. D. Campos-Parra, H. Carranza,
J. C. Gómez de la Torre, Y. Powazniak, F. Aldaco-Sarvide, C. Vargas,
M. Trigo, M. Magallanes-Maciel, J. Otero, R. Sánchez-Reyes, and
M. Cuello, ‘‘Updated frequency of EGFR and KRAS mutations in
NonSmall-cell lung cancer in Latin America: The Latin-American
consortium for the investigation of lung cancer (CLICaP),’’ J. Thoracic
Oncol., vol. 10, no. 5, pp. 838–843, May 2015.

[43] T. Kosaka, Y. Yatabe, R. Onozato, H. Kuwano, and T. Mitsudomi, ‘‘Prog-
nostic implication of EGFR, KRAS, and TP53 gene mutations in a large
cohort of Japanese patients with surgically treated lung adenocarcinoma,’’
J. Thoracic Oncol., vol. 4, no. 1, pp. 22–29, Jan. 2009.

[44] M.-H. Dizier, R. Nadif, P. Margaritte-Jeannin, S. J. Barton, C. Sarnowski,
V. Gagné-Ouellet, M. Brossard, N. Lavielle, J. Just, M. Lathrop,
J. W. Holloway, C. Laprise, E. Bouzigon, and F. Demenais, ‘‘Interaction
between the DNAH9 gene and early smoke exposure in bronchial hyper-
responsiveness,’’ Eur Respir J, vol. 47, no. 4, pp. 1072–1081, Apr. 2016.

[45] M. C. Boelens, A. van den Berg, R. S. Fehrmann, M. Geerlings,
W. K. de Jong, G. J. te Meerman, H. Sietsma, W. Timens, D. S. Postma,
and H. J. Groen, ‘‘Current smoking-specific gene expression signature in
normal bronchial epithelium is enhanced in squamous cell lung cancer,’’
J. Pathol., vol. 218, no. 2, pp. 182–191, Jun. 2009.

QIEN HE was born in Jilin City, Jilin, China,
in 1996. He received the B.S. degree in process
equipment and control engineering from Tianjin
University, Tianjin, China, in 2019, where he is
currently pursuing the M.S. degree in chemical
process machinery. His research interests include
computational cancer genomics, big data, and
machine learning algorithms.

ZHEWEI QIU was born in Shijiazhuang, Hebei,
China, in 1994. He received the B.S. and M.S.
degrees in process equipment and control engi-
neering from Northeast University and Tianjin
University, in 2016 and 2019, respectively. He is
currently pursuing the Ph.D. degree in biology
with theMedical School, Tsinghua University. His
research interests include cancer image recogni-
tion, computational biology, and machine learning
algorithms.

YIFAN TONG was born in Tianjin, China, in 1997.
He received the B.S. degree in process equipment
and control engineering from Tianjin University,
Tianjin, China, in 2019, where he is currently
pursuing the M.Eng. degree in chemical process
machinery. His research interests include big data,
machine learning algorithms, and computer vision.

KAI SONG was born in Changchun, Jilin, China,
1975. She received the B.S. and Ph.D. degrees
in control science and engineering from Zhejiang
University, Zhejiang, in 1998 and 2005, respec-
tively. From 2005 to 2007, she was an Assistant
Professor with the Process Equipment and Con-
trol Engineering Department, School of Chemical
Engineering and Technology, Tianjin University,
China. Since 2007, she has been an Associate
Professor with the Process Equipment and Control

Engineering Department, School of Chemical Engineering and Technology,
Tianjin University. She is the author of Introduction of Synthetic Biology (in
Chinese, the first textbook about synthetic biology in China), and more than
80 articles. Her research interests include bioinformatics, synthetic biology,
big data, and other applications of machine learning algorithms in biology,
cancer, and process control. From February 2013 to October 2015, she was
a Visiting Associate Professor with Dr. John Minna’s lab at the Department
of Clinical Science, UT Southwestern Medical Center, Dallas, Texas, USA.
From then on, she started her research and published several articles about
bioinformatics in cancer research cooperating with Dr. John Minna and
Dr. Adi Gazdar. She’s in charge of several projects supported by the National
Natural Science Foundation of China and The National Key Research and
Development Program of China.

89040 VOLUME 8, 2020


	INTRODUCTION
	MATERIALS AND METHODS
	LUAD DATASETS
	THE PROPOSED TTZ FEATURE EXTRACTING METHOD BASED ON THE Z-CURVE ALGORITHM
	ZC FEATURE
	TNA FEATURE
	TTR FEATURE
	TTZ FEATURE
	PARTIAL LEAST SQUARES (PLS)

	THE IDENTIFICATION OF MUTATIONAL SIGNATURE GENES USING THE DEEP SELECTING METHOD
	CONSTRUCTION OF THE DIFFERENTIAL COEXPRESSION GENETIC NETWORK
	INFERENCE OF PPI NETWORK OF SIGNATURE GENES
	GENE ONTOLOGY AND KYOTO ENCYCLOPEDIA OF GENES AND GENOMES PATHWAY ANALYSIS

	RESULTS
	THE IDENTIFICATION OF MUTATIONAL SIGNATURE GENES
	GENETIC NETWORK AND PPI NETWORK AMONG SIGNATURE GENES

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	QIEN HE
	ZHEWEI QIU
	YIFAN TONG
	KAI SONG


