
Received April 20, 2020, accepted May 4, 2020, date of publication May 7, 2020, date of current version May 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993200

A Cooperative Algorithm for Lane Sorting of
Autonomous Vehicles
AADITYA PRAKASH CHOUHAN , GOURINATH BANDA , AND KANISHKAR JOTHIBASU
Discipline of Computer Science and Engineering, IIT Indore, Indore 453552, India

Corresponding author: Aaditya Prakash Chouhan (phd1501201006@iiti.ac.in)

ABSTRACT In this paper, we propose a generalized algorithm that converts traffic composed of vehicles
located randomly in a set of lanes into sorted traffic in which vehicles are moved into the lane corresponding
to their destination group. Focus is placed on the cooperative behavior of vehicles. The proposed algorithm
architecture divides the entire scenario into various independent sections (called frames) that can be
processed in parallel at the same time. Processing each frame involves solving an optimization procedure
of a nonlinear programming problem reducible to a linear programming problem. The performance of
the proposed algorithm is tested using the Simulation of Urban MObility (SUMO) simulator. Results are
obtained and presented for average sorting distance required for sorting all vehicles in the scenario for
different traffic settings.

INDEX TERMS Intelligent transportation system, lane sorting, linear programming, lane assignment,
vehicle platooning.

I. INTRODUCTION
The autonomous vehicle has become a hot topic among
researchers across the globe. There are various benefits of
autonomous vehicles over the manually driven vehicles such
as they enable children, elderly, disabled people to go from
one place to another independently, they don’t get tired so
there is no problem of drowsiness or lack of attention, they
can save the time of the driver which can be used in other
tasks than driving, etc. One very significant advantage is
that autonomous vehicles have the capability of communicat-
ing among themselves and/or with the infrastructure which
enables them to behave in a manner that is globally best.
This ability to communicate makes any autonomous traffic
scenario a task in which the fleet of vehicles acts as a group.
In this way, the entire fleet of vehicles works in unison to
achieve the objective most efficiently. This level of coordi-
nation is not practically achievable by manually driven vehi-
cles. This is the reason that the introduction of autonomous
vehicles opens up a huge number of possibilities in devising
better algorithms to manage autonomous vehicular traffic in
different scenarios.

Despite the popularity of autonomous vehicles and vehicle
to vehicle communication, works related to cooperative lane
changing are rather scarce in the literature owing to the com-
plex maneuvers involved [1]. So is the case with strategies
related to getting all the vehicles into their destination lanes

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

physically with a cooperative approach. Assigning destina-
tion lane to vehicles in the scenario is a research problem that
goes by the name Lane Assignment [2]–[4]. Lane assignment
techniques aim towards maximizing the traffic efficiency
on a highway by grouping vehicles into groups that have
common interests. This way there will be minimal traffic
disruption events such as platoon splits, lane change, etc.
Lane assignment can be done for individual vehicles as well
as for platoons. The presented work finds application at a
stage that comes after lane assignment i.e. all the vehicles in
the scenario are aware of their destination lane.

This sounds similar to the platooning of vehicles. This
indeed is, except that the inter-spacing of vehicles in a pla-
toon is kept as small as possible. Whereas, in the presented
work, the objective is to just bring every vehicle into their
destination lane and not to form platoons. Platoons can later
be formed by adjusting the inter-spacing of vehicles. This
defines where the presented work may find application i.e.
after the lane assignment and before the platoon formation.
Many platooning related projects have been implemented in
the past to establish the benefits of platooning. Some of them
are PATHproject [5], GCDCproject [6] and amore recent one
is SARTRE [7]. Readers can refer to the survey given in [8]
for various works related to platoon based vehicular systems.

The motivation for the presented work comes from the
fact that though these works talk about platoon assignment
and platoon formation, they don’t specifically talk about how
vehicles will coordinate among themselves and physically
get into the desired lane. For this reason, the presented work

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88759

https://orcid.org/0000-0003-0209-4381
https://orcid.org/0000-0003-1447-4330
https://orcid.org/0000-0003-1625-6548

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

is an attempt to fill a void that is present in the Intelligent
Transportation Systems (ITS) strategies.

Sorting vehicles in lanes is a multi-vehicle lane change
cooperation task. This will include motion planning of mul-
tiple vehicles which is inherently a difficult task due to the
exponential scaling of computational complexity with the
number of vehicles [9]. Authors in [10] analyze cooperative
lane change maneuver of vehicles on a three-lane scenario.
They use a group of eight vehicles because eight vehicles
can cover all possibilities of a three-lane scenario. They
proposed a multi-vehicle Minimum Safety Spacing (MSS)
model between any two vehicles during the lane change.
In [11], the authors formulate the multi-vehicle lane change
motion planning task as a centralized optimal control prob-
lem. They proposed a Progressively Constrained Dynamic
Optimization (PCDO) method for solving the optimal control
problem. In [12], authors have presented an algorithm to
minimize the disruption of traffic flow and thus maximizing
the number of lane changes. They used time slack calculation
and the concept of vehicle grouping and used a distributed
algorithm to solve the problem. In [13], authors have consid-
ered a two-lane scenario with a critical point and presented
an algorithm to perform lane change maneuver before the
critical point.

Most of these works are close to the presented work but do
not share the same objective of sorting vehicles into lanes
in minimum time and space. Reference [13] comes close;
however, the algorithm presented in this paper is a generalized
algorithm in terms of number, width, and availability of lanes.
Availability here means that it is not required to have as
many number of lanes as there are destination groups. Also,
the presented algorithm uses a batch-based approach that
enables us to process each vehicle group in parallel. This
directly results in the efficiency of computation which is
directly reflected in the efficiency of the fleet. Taking inspira-
tion from [14] and [15] in which authors use multi-objective
optimization for controlling autonomous vehicles in two
ITS scenarios, we formulate the cooperative lane change
task as a non-linear optimization problem reducible to a
linear-optimization problem.

In this paper, we propose an algorithm to sort vehicles
in the lane corresponding to their route or destination. The
destination lane of the vehicle can come from a traffic admin-
istrator whose job is to control vehicle travel to increase the
efficiency of the overall traffic system. We assume in this
work that the road considered ends on a four-way intersection
and it has dedicated lanes for all three possibilities at the
intersections which are turning left, turning right and going
straight. To sort vehicles, we first divide the road into smaller
sections called frames. Along with dividing the road length,
vehicles present in the scenario are also divided into frames.
Then for each of these frames, an optimization algorithm
is used to get the best possible arrangement of vehicles
inside the frame. Every frame is kept independent from other
frames whichmeans we can parallelize the processing of each
of these frames. We have assumed the road to be straight.

The rest of the paper is organized as follows: In section II,
we define the scenario under consideration and the under-
lying architecture. Section III presents the lane sorting algo-
rithm. In this section, we discuss associated sub-routines such
as frame creation, Linear Programming (LP) formulation,
frame merge, etc. Later in this section, we discuss a possible
corner case and how it’s been dealt with in sub-section III-F.
In section IV, we present details of simulations performed
and results obtained from it. Later in section V we conclude
the paper.

II. SCENARIO
Consider a long stretch of straight, multi-lane road. Each
lane in this road is drivable and is of the same width (not
necessary). Long here means that we are not considering
distance deadline for our task rather, we are considering that
we have a road with some fixed number of lanes for infinite
(sufficiently long) distance. The length of road required for
any particular traffic setting can then be determined from
the results obtained. The road does have a start line though.
Incoming vehicles enter this road from the start line with
some random velocity bounded by a speed limit of Vmax . All
vehicles are required to have SAE (Society of Automotive
Engineers) level-2 autonomy [16] or more (as the vehicle
will need to perform autonomous longitudinal and latitudinal
movements to change lanes) and are capable of commu-
nicating with the Scenario Controller (SC) using wireless
communication either directly or via Road Side Units (RSU).
Scenario Controller is the central controller which contains
the presented algorithm and is responsible for performing all
associated tasks such as communication and computation.

As shown in Figure 1, the start line is followed by a road
section called Velocity Transition Section (VTS). Incoming
vehicles adjust their velocity in this section to achieve the
common velocity (Vcommon). The length of VTS can be deter-
mined using the Newton’s equations of motion and the limits
over velocity and acceleration of vehicles in the scenario. For
example, for a maximum velocity of 60kmph and minimum
acceleration (or deceleration) of 3m/s2, the required length
of VTS will be 46.3 metres.

FIGURE 1. The figure shows the Velocity Transition Section (VTS) which is
followed by the Lane Sorting Area in the considered scenario.

Vcommon is one of the two parameters that can be varied
to suit the incoming traffic density and available road length.
The other one is frame length (discussed later). Their values
are taken from a lookup table which has previously been
generated using the experiments shown in this paper. In case

88760 VOLUME 8, 2020

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

when sufficiently long stretch of road is available, Vcommon
can be set to the Vmax . Otherwise, Vcommon shall be decreased
with a decrease in the length of the available road because
reduced velocity will give more time to vehicles for adjusting
their position. In some traffic scenarios, different lanes can
have different speed limits for example at highways and to
satisfy the speed limits of all these lanes, the Vcommon can
be chosen from the intersection of the speed limits of all the
lanes. For instance, if all the lanes have different upper limits
on vehicle velocities, the Vcommon will be bounded by the
minimum of these upper limits. In this manuscript we have
considered a scenario that has a lane sorting area prior to an
intersection and this lane sorting area has no speed restric-
tions on individual lanes. By considering such a scenario,
we demonstrate a possible architecture that can be realized
prior to any scenario that is benefited by sorted traffic, for
example, a Tollgate or an intersection, etc. In the experi-
mentation, for demonstration purpose, we have performed
simulations for Vcommon equals to 5m/s, 10m/s and 15m/s.
These velocities in kilometers per hour correspond to 18,
36 and 54 kmph, which are very common for any urban
traffic scenario. We also perform the same set of experiments
for velocities 20m/s, 25m/s, and 30 m/s. These velocities in
kilometers per hour correspond to 72, 90, and 108 kmph.
These velocities cover the range of velocities that is common
for vehicles on a highway.

All incoming vehicles perform wireless communication
with SC and pass their information such as their length,
width, velocity, route, source (incoming) lane (ls), etc. For
simplicity, we have assumed the length of every vehicle to
be the same. SC in return passes Vcommon and the lane in
which vehicle has to shift (destination lane, ld). The des-
tination lane of a vehicle may or may not be the same as
its initial or incoming lane. Deciding the destination lane of
incoming vehicles is a research topic in itself known in the
research community by the name Lane Assignment. Lane
assignment can have different approaches such as grouping
by destination, dynamic grouping, grouping by size [17] etc.
Since in this work, the grouping of vehicles is done based on
the destination direction of each vehicle at the intersection,
we can say that SC is using the grouping by destination
strategy of lane assignment in the background. Although the
considered scenario is an example of grouping by destina-
tion, the presented algorithm may well be used along with
any other lane assignment technique. Vehicles start transiting
to Vcommon as soon as they enter VTS. Lane sorting starts
after vehicles have left VTS and are now in the sorting
area.

Although the presented work is generalized in sense of the
number of lanes i.e. there can be any number of lanes on
the road, we have used for explanation purposes, a scenario
with a road that has three lanes wherever required. We have
abstracted away from the imperfections in communication
to keep the objective of this manuscript clear and that is to
propose a lane sorting algorithm hence the communication is
assumed to be flawless.

III. ALGORITHM
Sorting area and vehicles inside it are divided into various
sections known as Frames. All frames are of the same size
when created and move with a velocity same as the vehicles
contained in it i.e. Vcommon. As a result, the frame-vehicle
association is always preserved unless the frame is to be
merged with some other frame. Frames are created at the start
of the sorting area. A frame after being created can merge
with another frame if required and frames are destroyed
when all their contained vehicles get past the lane sort area.
In between their creation and destruction, they move with
Vcommon velocity. All these frames are nonoverlapping and
every vehicle in the scenario should be associated with a
frame. Frames can have a gap in between them i.e. they are not
necessarily required to be back-to-back as shown in Figure 2.

FIGURE 2. The figure shows a possible distribution of frames on a stretch
of road.

The geometrical center of the vehicle is taken as the posi-
tion of a vehicle. As stated earlier, all vehicles and frames
move with the same longitudinal velocity, when seen from
a perspective of the moving frame i.e. when we see a frame
from a reference moving along with the frame, then it will
look stationary with fixed relative positioning of vehicles
inside it. From this perspective, a lane change maneuver
will look like the vehicle is moving horizontally in between
the lanes given that the vehicle maintains this longitudinal
velocity while changing the lane as well.

In continuation of the above observation, we can say that
a vehicle can perform a safe lane change maneuver if it can
obtain a horizontal space that is nonoverlapping with other
vehicles. We call this horizontal space as Channel.
This reduces our task at hand at this stage to get indepen-

dent channels for vehicles wanting to change lanes to their
destination lanes. We make use of Linear Programming over
the positioning of vehicles in the frame to achieve this task.
But first, we discuss how frames are created in the scenario.

A. FRAME CREATION
To explain how frames are created, let us consider that ini-
tially there are no vehicles in the scenario. As vehicles start
coming in the scenario, they are first added to a temporary
list. A check is made at every step to get the position of the
first vehicle in the scenario. As long as the position of the first
vehicle is less than the frame length, all incoming vehicles are
added to the temporary list. As soon as the first vehicle is past
the frame length, a frame is created and all the vehicles in the
temporary list are assigned to the frame just created and the
temporary list is cleared. Once a frame is created, it starts
moving with the Vcommon velocity. As a result, the relative
positioning of vehicles inside the frame shall be fixed unless
vehicles are in a maneuver to change lane or getting into the

VOLUME 8, 2020 88761

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

assigned position in the frame. After vehicles complete the
maneuver, they will again attain the Vcommon velocity.

As vehicles don’t cross their frame and frames don’t over-
lap, we can say that through frames, the complete scenario
has been divided into various independent sections that can
be processed in parallel. Processing each frame involves for-
mulating a Linear Programming (LP) problem that will return
vehicle positions as a result. In case the solution of the linear
programming formulation is not feasible, the frame is merged
with another frame. We will next discuss the LP formulation.

B. LINEAR PROGRAMMING FORMULATION
As discussed earlier, we breakdown the task of sorting
vehicles on the entire road into sorting vehicles in smaller
road sections called frames. We will now discuss the for-
mulation of the linear programming problem which gives
channel positions as its solution. We first define some sets
of vehicles present in the frame under consideration. The
first set is named Vehicles, it is the set of all the vehicles
inside the frame. There are three subsets of the Vehicles set.
These subsets are SortedVehicles set, UnsortedVehicles set
and SupportingVehicles set. As their names suggest, Sorted-
Vehicles set contains those vehicles that are already in their
destination lane, UnsortedVehicles set contains vehicles that
are not in their destination lane and will demand a channel for
lane-change maneuver, and SupportingVehicle set contains
those vehicles which are not yet in their destination lane but
are behaving as sorted vehicles temporarily. Unsorted vehi-
cles always demand a channel whereas sorted and supporting
vehicles always clear the space for creating channels. We will
discuss later in this section how and when an unsorted vehicle
is made supportive.

Let us consider the frame shown in Figure 3. The frame
starts at fstart and end at fend . Let the vehicle i with initial
position (xi, yi) is being assigned a channel centered at yC i.
Vehicle i will need to shift by a distance of 1yi = (yi − yC i)
to get into its corresponding channel. To keep this shift min-
imum, we would want that the channel should be as close

FIGURE 3. This figure shows a frame along with notations used in
equations.

as possible to the vehicles’ initial position. Along with this,
we would also like to minimize the shift required in the
position of the sorted and unsorted vehicles as well. This
requirement gives us the following objective to our linear
programming problem.

Objective : Min. 6|1yi| ∀i ∈ Vehicles (1)

We will now discuss associated constraints:
1) Vehicles are always separated longitudinally by at

least a safe distance. We call this safe distance as
Safety Gap (SG). This means channels, sorted vehicles
and supporting vehicles should always be positioned
such that vehicles will always have a longitudinal phys-
ical separation of at least SG in between them. The
associated constraint will look like follows.

|(yi +1yi)− (yj +1yj)| ≥ v_len+ SG

∀i, j ∈ Vehicles, i 6= j

|lsj ∈ (lsi, . . . ld i) or ld j ∈ (lsi, . . . ld i) (2)

Here ls and ld represent the source lane and the
destination lane respectively. The condition lsj ∈
(lsi, . . . ld i) or ld j ∈ (lsi, . . . ld i) select vehicles that
can have conflict while changing lanes. For vehicles
that can not possibly conflict with each other while
changing lanes, this constraint is not applicable. v_len
represents length of the vehicle.

2) Vehicles associated with a frame should lie com-
pletely inside the frame. This constraint makes all the
frames independent because no vehicle is allowed to
cross the frame boundary. The associated constraints
will look like.

yi +1yi ≥ fstart +
v_len
2
+
SG
2

(3)

yi +1yi ≤ fend −
v_len
2
−
SG
2

(4)

SG
2 is added in both constraints to prevent double safety
spacing between vehicles near the boundary of two
frames.

3) Actual order of vehicles in lanes should be pre-
served. This constraint keeps vehicles in the same lane
in their actual ordering. Since the linear programming
solutionwill contain a change in position in the geomet-
rical center of the vehicle, this constraint will put limits
on the values of 1y such that actual order of vehicles
is maintained.

(yi +1yi)− (yj +1yj) >= v_len+ SG

∀i, j ∈ Vehicles | i 6= j, xi = xj, yi > yj (5)

(yj +1yj)− (yi +1yi) >= v_len+ SG

∀i, j ∈ Vehicles | i 6= j, xi = xj, yj > yi (6)

As we can see that objective and constraint given in equa-
tions 1 and 2 respectively are not in a form appropriate
for linear programming formulation because they contain

88762 VOLUME 8, 2020

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

absolute value functions. To resolve this we can either use a
quadratic programming solver or we could transform these
equations into a form acceptable by linear programming
solvers.We choose the second option as using a quadratic pro-
gramming solver is more resource-intensive than a linear one.

C. TRANSFORMING TO LINEAR PROGRAMMING
To transform these expressions into linear programming
solver acceptable form, we need to add additional variables
and expressions. We do this one by one starting with the
objective itself. To transform the objective, we add an extra
variable named Obj and a variable array 1y in which all the
elements have a lower bound of zero, along with following
additional constraints.

1yi > = 1yi ∀i ∈ Vehicles (7)

1yi > = −1yi ∀i ∈ Vehicles (8)

61yi < = Obj ∀i ∈ UnsortedVehicles (9)

6−1yi < = Obj ∀i ∈ UnsortedVehicles (10)

And our new objective will become

Min. Obj (11)

To transform the constraint given in equation 2 into an
appropriate form, we need to add one binary variable (b) for
each combination of i and j and a variable with a constant
value (M) large enough to satisfy constraints. Every instance
of equation 2 will be replaced by following two constraints.

(yi+1yi)−(yj+1yj)+M ∗ bij ≥ v_len+SG (12)

(yj+1yj)−(yi+1yi)+M ∗ (1−bij) ≥ v_len+SG (13)

The value ofM should be large enough to satisfy the above
equations. We take it to be double the frame length, any larger
value will also work fine. Now, this linear programming is
solved for a solution. In the first iteration, all the unsorted
vehicles inside the frame demand for a channel. If it is feasible
for every unsorted vehicle to get a channel in the first iteration
itself, the solution is obtained. However, if it is not possible
for every vehicle to get a channel, the LP solver will report no
feasible solution. This is where we are required to shift vehi-
cles from the UnsortedVehicles list to the SupportingVehicles
list. This could be done iteratively by shifting one vehicle to
the SupportingVehicles list at each iteration until the solution
is obtained.

After obtaining a solution, vehicles are required to move
into their assigned positions. Unsorted vehicles have to move
into their assigned channels; whereas, sorted and supporting
vehicles move to the positions obtained by solving LP. Every
LP solution is followed by a movement step in which all
vehicles shift to assigned positions and then lane change
maneuvers are performed. After the movement step is over,
the next sorting step is started. This sequence of sorting and
moving is repeated until all vehicles in the frame are sorted.
When traffic is high or in the case when the number of
vehicles destined to one lane is more than the lane capacity,

FIGURE 4. This figure shows a case in which frame merge will be
required as number of vehicles destined to travel in the right
most lane is more than the lane capacity.

it is not possible to get all vehicles in the frame in their
respective lanes. In such a case, the frame is merged with
the frame upstream. We can see an example in Figure 4.
In this figure, the vehicles are shown as the smallest rectangle
that will fit the vehicle when seen from above. Color of the
rectangle mean following:
• Blue: Vehicles destined to go to the left most lane
• Cyan: Vehicles destined to go to the middle lane
• Green: Vehicles destined to go to the right most lane
• Yellow: Vehicles already in their destined lane.
When such a condition occurs, all vehicles in the Unsort-

edVehicles set are shifted to SupportingVehicles set. Thus
to detect this case, we check for the number of elements
in UnsortedVehicles set and SupportingVehicles set. If the
number of elements in UnsortedVehicles set is zero and the
number of elements in SupportingVehicles set is greater than
zero, the frame has to be merged with the frame upstream.

D. CHOOSING VEHICLES FOR SUPPORTING VEHICLES
LIST
Asmentioned earlier, when there is no feasible solution to the
formulated LP problem, vehicles are shifted from Unsorted-
Vehicles set to SupportingVehicles set. This shifting, however,
is not done arbitrarily rather, we need to decide first what
number of vehicles are to be shifted and in what order. If the
number of vehicles to be shifted is not known beforehand,
one vehicle would be shifted in every run followed by formu-
lation and solving of the entire LP problem. And this will be
repeated multiple times until required number of vehicles are
not shifted. Thus not knowing the required number of vehicles
to be shifted would result in an unnecessary delay in compu-
tation. To prevent this, we first find out the required number
of vehicles to be shifted into the SupportingVehicles set.

We now explain analytically the process of finding the
required number of vehicles to be shifted into the Support-
ingVehicles set. Let the maximum number of vehicles that
can be accommodated in one lane is lane_max and there are

VOLUME 8, 2020 88763

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

n number of lanes in the scenario. Now for each lane, we need
to find the number of vehicles each lane has to provide
occupancy for in order to perform lane change of vehicles.
Each lane will have to provide occupancy for vehicles of three
classes which are:

1) Vehicles already present in that lane,
2) Vehicles in other lane and destined to that lane and
3) Vehicles in other lane that has to cross that lane in order

to reach its’ destination lane.
For each lane in the scenario, we then add the number of

vehicle occupancies that have to be provided corresponding
to these three classes; let this sum be called num_occupancy.
Number of vehicles that have to be shifted to the Support-
ingVehicles list (N) is then obtained by adding the number
of vehicle occupancy each lane has to provide in excess to
lane_max i.e.

N = 6(num_occupancyi − lane_max)

for i = 1 . . . n ; num_occupancyi > lane_max (14)

N is the number of vehicles that have to bemade supportive
to obtain a solution. In case this number is equal to the number
of unsorted vehicles, at any stage, then there will be no further
feasible solution and the frame will have to be merged to
proceed with lane sorting.

Table 1 gives the occupancy requirements from lanes in
the example scenario shown in Figure 5. The number of
vehicles to be shifted is the addition of difference with the
maximum occupancy (which is 5 for the example case; with
the length of each vehicle = 3meters, SG= 2meters and frame

TABLE 1. The table gives the occupancy requirements from lanes in the
example scenario shown in Figure 5.

FIGURE 5. Example scenario to find number and order of vehicles shifted
into SupportingVehicles set.

length of 25 meters) for lanes having occupancy greater than
maximum occupancy. Hence, we need to shift 1 vehicle to the
SupportingVehicles set.

To get the number of vehicles to be shifted into the Support-
ingVehicles set, an efficient method will be to iterate through
all the vehicles and increment the lane counter for each lane
in between the current lane and the destination lane of the
vehicle. Where lane counter is an integer array with an equal
number of elements as there are the number of lanes and
initialized with zero in all the elements. Python pseudo-code
is given below.
N = 0 # Number of vehicles to be shifted
lane_counter = [0 for i in range(

num_lanes)]
for vehicle in vehicle_list:
l_s = vehicle.source_lane
l_d = vehicle.dest_lane
if l_s < l_d:
for i in range(l_s, l_d):
lane_counter[i] += 1

lane_counter[l_d] += 1

elif: l_s > l_d:
for i in range(l_d, l_s):
lane_counter[i] += 1

lane_counter[l_s] += 1
else:
lane_counter[l_s] += 1

for i in range(num_lanes):
if lane_counter[i] > max_occupancy:
N += (lane_counter[i] -
max_occupancy)

Even after getting the number of vehicles that have to be
made supportive, the decision of choosing which vehicle to
be shifted to the supporting vehicles list is also important.
Choosing wrong vehicles can result in a greater number of
runs for sorting vehicles or it can also result in no solution
at all. For instance, consider the frame shown in Figure 5.
As we can see in this figure, all three unsorted vehicles
(one green and two cyan) can not move into their respective
lanes simultaneously because the middle lane has space to
accommodate only one more vehicle. Hence one vehicle has
to be made supportive. Suppose that green vehicle is made
supportive. Now, since the green vehicle is required to behave
as a sorted vehicle temporarily, it will not shift lane but will
make space for one of the cyan vehicles and that cyan vehicle
will then move into the middle lane. Now, in the next sorting
step, the green vehicle will again be eligible for attempting
to change the lane along with the leftover cyan vehicle. Now
suppose the green vehicle is again made supportive, then in
that case, there will be no space left in the center lane to
accommodate the leftover cyan vehicle. This will end up to
be a no solution case. On the other hand, if the leftover cyan
vehicle is chosen as a supportive vehicle instead of green,

88764 VOLUME 8, 2020

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

the green vehicle would have got a channel to shift to the right
lane and then finally in the next sort step, the remaining cyan
vehicle will get chance to change lane. This example shows
that the selection of vehicles to be made supportive is also
crucial.

To find which vehicles are appropriate to be made sup-
portive we extend the method used to calculate the number
of vehicles to be made supportive. We discussed that there
are three classes of occupancy that a lane has to provide to
allow lane changes to take place. Vehicles of the first class
are already present in the lane and if any of those vehicles are
made supportive then it will not reduce space requirements
from the lane. On the other hand, if any of the vehicles
from the second or third class are made supportive then that
vehicle will not demand channel and hence will reduce space
requirements from that lane. This is the principle behind
selecting supporting vehicles.

For each lane, a list of candidate vehicles is generated by
combining vehicles of second and third class as discussed
above. Then from this list of candidate vehicles, as many
numbers of vehicles are made supportive as there is the
requirement of space in excess to the maximum occupancy
limit from that lane. Let us take the example given in Figure 5.
Since only the middle lane has occupancy requirement in
excess of maximum lane occupancy of 5, we create a can-
didate vehicle list for only that lane. This candidate list will
contain the two cyan vehicles out of which any one can be
chosen as the supportive vehicle.

Although the choice of supportive vehicles from the candi-
date vehicles can be arbitrary, an attempt should be made to
select that vehicle first which is present in multiple candidate
lists. Such vehicles will reduce the number of vehicles to be
made supportive as they reduce the occupancy requirement
of multiple lanes.

When all the discussed steps are followed, we will know
beforehand whether the solution of the LP formulation will
be feasible or not. This will prevent unnecessary runs of the
solver and thus will save time.When a solution does exist and
is returned by the solver, then vehicles are required to move
to the assigned positions. Supporting and Sorted vehicles will
move to clear channels and Unsorted vehicles will move into
their respective channel and later perform the lane change
maneuver.

These steps are repeated iteratively until all the vehicles
are sorted in the frame. At the start of each iteration, Vehicles
set is divided into the three sub-sets, this means, supporting
vehicles in one iteration will take part as unsorted vehicles in
the next iteration initially and later the division will be done
based on the requirements. Algorithm 1 depicts the complete
work flow that goes in sorting one frame.

E. FRAME MERGE
Aswe have discussed above, when the distribution of vehicles
in the frame is such that either there are a larger number of
vehicles to be shifted into a lane than it’s occupancy limit or
all the unsorted vehicles are required to be made supportive,

Algorithm 1 Sorting Vehicles in a Frame
Input: Frame object
Output: Sorted Frame

1 all_vehicles_sorted = False;
2 while !all_vehicles_sorted do
3 Get SortedVehicles set;
4 Get UnsortedVehicles set;
5 Find N ;
6 if N < len(UnsortedVehicles) then
7 Shift N vehicles to SupportingVehicles set;
8 Solve optimization (LP) problem;
9 if N == 0 then

10 if new_frame == True then
11 Rearrange vehicles in frame;
12 end
13 all_vehicles_sorted = True
14 end
15 Move vehicles;
16 end
17 else
18 if new_frame == True then
19 Rearrange vehicles in frame;
20 end
21 Merge frames;
22 end
23 end

then the solution of the LP problem is not feasible. In such a
case, the frame is to be merged with an another frame. In our
implementation, we have merged such frames with the frame
upstream to that frame. This is because, the frame upstream
have spent greater time in the scenario and is more likely
to be sorted. We have also put the restriction that the frame
upstream should be sorted before it merges. The current frame
will wait for the upstream frame to be sorted before it can
merge and in the mean-time will just continue traveling with
Vcommon velocity. When two frames merge, the fstart of the
following frame is the start position of the new frame and the
fend of the leading frame is the end position of the new frame.
Since a sorted frame might help an unsorted frame in getting
sorted, frames are never destroyed while they are inside the
lane sort area.

In case the first frame in the scenario can’t find a solution,
then it will just increase its frame length to 1.5 times its
current length.

F. REARRANGE VEHICLES IN FRAME
As can be seen in the Algorithm 1, when N is greater than
or equal to the number of unsorted vehicles in the frame,
we will be doing a frame merge operation. This is because
the LP solver will not be able to give any solution for the
positions of the vehicles in the frame and also until the frame
ahead is not sorted, merge operation will be in a pending
state. Now suppose, the frame that needs to merge has just

VOLUME 8, 2020 88765

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

been created and the last vehicle’s front center is just inside
the frame and the rest of the body of the vehicle is outside
the frame as shown in the Figure 6. The last vehicle is in a
dangerous position and will remain in that position because
it’s repositioning is only governed by the solution of the LP
solver. Now since the solution of the LP solver is not feasible,
all the vehicles in this frame will be traveling as they are in
the frame. This creates a vulnerable scenario in which if a
new frame is created just after this frame then the last vehicle
will be inside the following frame’s boundary and can cause
a collision.

FIGURE 6. The figure shows a case where rearrangement of vehicles will
be required to prevent collision. The red vehicle is associated with
Frame 1 but protrudes into Frame 2 as it is not moved by the lane
sorting LP formulation.

To prevent such a scenario, we have a routine that rear-
ranges vehicles in a frame when the frame is created and it’s
N is greater than or equal to the number of unsorted vehicles
in it or when all the vehicles in the frame are already sorted.
The rearrange routine is placed as shown in Algorithm 1
(lines 11 and 19). It contains another LP formulation that
only forces vehicles to be inside the frame. The constraints
are same as constraints given in equations 3 and 4. And the
objective is to minimize the overall vehicle movement. The
variable new_frame is initialized with True when a frame is
created and is set to False after it is processed by either the
sort routine or the rearrange routine for the first time. Now a
question might arise that what if even rearranging of vehicles
inside a frame is not possible? This will only happen when the
incoming vehicles are very tightly packed and the separation
between vehicles is less than the safety gap (SG) that have
been considered in the LP formulation. This puts a limit on
the value of the safety gap we have used in our work. We can
thus make the following statement:
The value of the safety gap (SG) that can be used in the

implementation is limited by the spacing of vehicles in the
incoming traffic. Or we can also say that the minimum value
of the SG that we can use during lane sorting is the average
spacing of vehicles in the incoming traffic.

Please note that the average spacing of vehicles in every
frame in the incoming traffic should also be greater than or
equal to the SG considered.

G. ADJUSTING Vcommon AND FRAME LENGTH
Vcommon and frame length are considered to be constant in the
discussion so far. However, these parameters can be changed
to accommodate variation in the traffic. Decreasing Vcommon
will give more time to the algorithm to sort vehicles in the
scenario thus enabling the algorithm to handle heavier traffic.

On the other hand, by varying the frame length, we can adjust
the batch size of vehicles that are processed at a time. The
experimentation shown in the next section can be repeated
for the given traffic density to decide the values of Vcommon
and frame length that will result in a sorting distance less than
the available road length.

IV. SIMULATION
The algorithm presented considers a general road with n num-
ber of lanes. Every vehicle has a source lane and a destination
lane whichmay ormay not be the same. Vehicles are spawned
into the system on a random lane. However, in the simulation
we consider a scenario consisting of three lanes. The road is
assumed to be destined towards an intersection such that the
vehicles in the scenario are destined to go either right, left or
straight. Thus the objective of the algorithm is to sort vehicles
into the lane corresponding to the destination direction of
vehicles i.e. vehicles destined to go right should be brought to
the right lane, vehicles destined to go left should be brought to
the left lane and the vehicles destined to go straight should be
brought on the middle lane. Vehicles may arrive on any lane
which may or may not be the same as their destination lane.

The algorithm may well be applied to a scenario in which
the number of destination direction is not equal to the number
of lanes on the road. In such a case, one or more lanes
will carry the traffic of vehicles corresponding to multiple
destinations. For instance, a road with two lanes, destined
towards an intersection, can have one exclusive lane for the
left turn and a shared lane for right turning and straight going
vehicles.

For simulation, we have used the Simulation for Urban
MObility (SUMO) simulator which is an open-source,
microscopic road traffic simulator. SUMO accepts the sce-
nario, network, and route information in.xml format. The
control logic is implemented inside a Python script which
is interfaced with the SUMO simulator using the value
retrieval and value setting functions given in the Traci library
provided by SUMO. We have used the Mixed Integer Linear
Programming (MIP) solver for formulating and solving linear
programming problems. It is included in the Python package
index and requires Python 3.5 or newer [18]. In the simula-
tion, we have kept the length of the road to be sufficiently
large and then recorded the average distance required by
vehicles to get sorted. The experimentation related source
codes and system setup details have been uploaded on
to GitHub and accessible via the link: https://github.com/
aadiprakash163/lane_sorting For simulations, we have gen-
erated random route files with 50 vehicles corresponding to
traffic densities of 1000, 2000, 3000, 4000 and 5000 vehicles
per hour. The frame length is varied in the range of 5 to
45 meters in steps of 10. Variation of frame length corre-
sponds to varying occupancy limit from 1 vehicle to 9 vehi-
cles in the frame as with the values of vehicle length (3 m)
and safety gap (2m) considered, one vehicle will need a space
of 5 meters.

88766 VOLUME 8, 2020

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

Variation of the average distance to sort with respect to
traffic density and frame length can be seen in Figure 7.
In these figures, on the abscissa, we have varying traffic
density and on the ordinate, we have average sorting distance.
Each line in plots corresponds to different values of frame
length.

FIGURE 7. Average sort time vs. traffic density for different values
of Vcommon.

All these graphs show an increasing trend of average sort-
ing distance with respect to traffic density for each frame
length. However, the frame length of 5 meters has a profound
behavior and this is because this length corresponds to the

FIGURE 8. Variation of average sorting distance with respect to varying
frame length for traffic density = 3000 veh/hr.

occupancy of 1 vehicle in each lane. For very low traffic
in which vehicles are very sparse, this frame length is most
suitable because vehicles will rarely have conflicts and also
will be able to perform lane change as soon as they enter
the scenario. Thus this frame length will result in minimum
sorting distance. On the other hand, at very high traffic, frame
length of one will result in an excessive number of frames
which in turn will result in an increased number of frame
merge requests. Since frames can’t be merged unless the
frame upstream is not completely sorted, this will result in
additional distance traveled while waiting for upstream frame

FIGURE 9. Average sort time vs. traffic density for different values of
Vcommon in highway scenario.

VOLUME 8, 2020 88767

A. P. Chouhan et al.: Cooperative Algorithm for Lane Sorting of Autonomous Vehicles

to get sorted. Thus frame length of 5 meters will result in
maximum sorting distance at very high traffic. Following
thumb-rule can be given by observing:
Appropriate frame length for any traffic density will be the

one that will result in a good balance between the number of
vehicles in the frame and free space present inside the frame
which vehicles can use to get sorted.
For traffic density other than 1000 vehicles per hour, this

balance is found at a frame length greater than 5 meters.
Figure 8 shows a different representation of results for

a traffic density of 3000 vehicles per hour. As we can see
all three lines corresponding to the three velocities, have
minimum sort distance at an intermediate value of frame
length and any other frame length whether greater or smaller
results in higher sort distance.

As the presented algorithm have potential applications in a
highway scenario as well, we extend the above simulations to
velocities common in such a scenario. We perform the same
set of experiments on velocities 20m/s, 25m/s, and 30m/s.
The maximum velocity corresponds to 108 kilometers per
hour, which is towards the higher end of the speed limits as
regulated by authorities in most of the countries [19]–[23].
The performance of the lane sorting algorithm for the set of
higher velocities is given in Figure 9. The most appropriate
choice of Vcommon for any given traffic density and length
of road available can be determined using the discussed
experimentation. Using these experiments, on the range of
the values of Vcommon, frame length, and traffic density and
the average length required by vehicles to sort themselves is
recorded in a look up table. This look up table is then referred
in the future to decide the frame length and Vcommon that has
to be kept so that vehicles incoming with the given traffic
density sort themselves within the available road length. This
look up table based approach is very efficient as there is no
need of additional processing in addition to traffic monitor-
ing, hence less computation and infrastructure is required.

V. CONCLUSION
In this paper, we approached the unexplored problem of
cooperative lane sorting among autonomous vehicles. The
lane sorting problem is presented as a group task that all
the vehicles in the scenario perform cooperatively. The pre-
sented algorithm first simplifies the problem by restricting
each vehicle to maintain a fixed velocity that is common for
all the vehicles in the scenario. This allows us to formulate
a non-linear programming problem reducible to linear pro-
gramming. Application of this linear programming formula-
tion along with a well-structured skeleton of the algorithm
that uses a frame based approach on straight road results
in a collision-free lane sorting of vehicles. The algorithm
presented except assuming a straight road does not assume
any particular scenario rather is generalized in terms of the
number of lanes, incoming traffic density, length of vehicles
and width of lanes. We do specify the safety-gap used in
this paper and discuss how it depends on the inter-spacing
of vehicles in the incoming traffic. The implementation of

the proposed algorithm is performed in the SUMO simulator
and results are presented for different values of traffic density,
velocity, and frame length. The experimentation presented
can be used to decide the frame length andVcommon for a given
traffic density and available road length.

REFERENCES
[1] Y. Luo, Y. Xiang, K. Cao, and K. Li, ‘‘A dynamic automated lane change

maneuver based on vehicle-to-vehicle communication,’’ Transp. Res.
C, Emerg. Technol., vol. 62, pp. 87–102, Jan. 2016.

[2] R.W.Hall, ‘‘Longitudinal and lateral throughput on an idealized highway,’’
Transp. Sci., vol. 29, no. 2, pp. 118–127, May 1995.

[3] T.-S. Dao, C. M. Clark, and J. P. Huissoon, ‘‘Distributed platoon assign-
ment and lane selection for traffic flow optimization,’’ in Proc. IEEE Intell.
Vehicles Symp., Jun. 2008, pp. 739–744.

[4] T.-S. Dao, C. M. Clark, and J. P. Huissoon, ‘‘Optimized lane assignment
using inter-vehicle communication,’’ in Proc. IEEE Intell. Vehicles Symp.,
Jun. 2007, pp. 1217–1222.

[5] PATH. Accessed: Apr. 19, 2020. [Online]. Available: http://www.path.
berkeley.edu/

[6] M. Lauer, ‘‘Grand cooperative driving challenge 2011 [ITS Events],’’ IEEE
Intell. Transp. Syst. Mag., vol. 3, no. 3, pp. 38–40, Oct. 2011.

[7] T. Robinson, E. Chan, and E. Coelingh, ‘‘Operating platoons on public
motorways: An introduction to the sartre platooning programme,’’ in Proc.
17th World Congr. Intell. Transp. Syst., vol. 1. 2010, p. 12.

[8] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, ‘‘A survey on platoon-based
vehicular cyber-physical systems,’’ IEEE Commun. Surveys Tuts., vol. 18,
no. 1, pp. 263–284, 1st Quart., 2016.

[9] M. Chen, J. F. Fisac, S. Sastry, and C. J. Tomlin, ‘‘Safe sequential path
planning of multi-vehicle systems via double-obstacle Hamilton-Jacobi-
Isaacs variational inequality,’’ inProc. Eur. Control Conf. (ECC), Jul. 2015,
pp. 3304–3309.

[10] Y. Luo, G. Yang, M. Xu, Z. Qin, and K. Li, ‘‘Cooperative lane-change
maneuver for multiple automated vehicles on a highway,’’ Automot. Innov.,
vol. 2, no. 3, pp. 157–168, Sep. 2019.

[11] B. Li, Y. Zhang, Y. Ge, Z. Shao, and P. Li, ‘‘Optimal control-based
online motion planning for cooperative lane changes of connected and
automated vehicles,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 3689–3694.

[12] D. Desiraju, T. Chantem, and K. Heaslip, ‘‘Minimizing the disruption of
traffic flow of automated vehicles during lane changes,’’ IEEETrans. Intell.
Transp. Syst., vol. 16, no. 3, pp. 1249–1258, Jun. 2015.

[13] M. Atagoziyev and W. Klaus, ‘‘Lane change scheduling for autonomous
vehicles,’’ IFAC-PapersOnLine, vol. 49, no. 3, pp. 61–66, 2016.

[14] X. Li and J.-Q. Sun, ‘‘Signal multiobjective optimization for urban traffic
network,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3529–3537,
Nov. 2018.

[15] X. Li and J.-Q. Sun, ‘‘Defensive driving strategy and control for
autonomous ground vehicle in mixed traffic,’’ inProc. Numer. Evol. Optim.
Workshop (NEO). Tlalnepantla de Baz, Mexico: Springer, Sep. 2016,
pp. 3–44.

[16] SAE Autonomy Levels for Self-Driving Cars. Accessed: Apr. 19, 2020.
[Online]. Available: https://cdn.oemoffhighway.com/files/base/acbm/ooh/
document/2016/03/automated_driving.pdf

[17] R. Hall and C. Chin, ‘‘Vehicle sorting for platoon formation: Impacts on
highway entry and throughput,’’ Transp. Res. C, Emerg. Technol., vol. 13,
nos. 5–6, pp. 405–420, Oct. 2005.

[18] H. G. Santos and T. A. Toffolo. Mixed Integer Linear Programming
With Python. Accessed: Apr. 19, 2020. [Online]. Available: https://
buildmedia.readthedocs.org/media/pdf/python-mip/latest/python-mip.pdf

[19] United States Speed Limits. Accessed: Apr. 19, 2020. [Online]. Available:
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/summary_
state_speed_laws_12th_edition_811769.pdf

[20] United Kingdoms Speed Limits. Accessed: Apr. 19, 2020. [Online]. Avail-
able: https://www.gov.uk/speed-limits

[21] India Speed Limits. Accessed: Apr. 19, 2020. [Online]. Available:
https://pib.gov.in/Pressreleaseshare.aspx?PRID=1539335

[22] Europe Speed Limits. Accessed: Apr. 19, 2020. [Online]. Available:
https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/
speed_limits/

[23] NSW (Australia) Speed Limits. Accessed: Apr. 19, 2020.
[Online]. Available: https://www.rms.nsw.gov.au/roads/safety-rules/road-
rules/speed.html

88768 VOLUME 8, 2020

	INTRODUCTION
	SCENARIO
	ALGORITHM
	FRAME CREATION
	LINEAR PROGRAMMING FORMULATION
	TRANSFORMING TO LINEAR PROGRAMMING
	CHOOSING VEHICLES FOR SUPPORTING VEHICLES LIST
	FRAME MERGE
	REARRANGE VEHICLES IN FRAME
	ADJUSTING Vcommon AND FRAME LENGTH

	SIMULATION
	CONCLUSION
	REFERENCES

