
Received April 10, 2020, accepted April 29, 2020, date of publication May 7, 2020, date of current version June 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993103

GPU Acceleration of a Non-Standard Finite
Element Mesh Truncation Technique
for Electromagnetics
JOSÉ M. BADÍA 1, ADRIAN AMOR-MARTIN 2, (Member, IEEE),
JOSE A. BELLOCH 3, (Member, IEEE), AND LUIS EMILIO GARCÍA-CASTILLO 4, (Member, IEEE)
1Departamento de Ingeniería y Ciencia de Computadores, Universitat Jaume I, 12071 Castellón, Spain
2Lehrstuhl für Theoretische Elektrotechnik, Universität des Saarlandes, 66123 Saarbrücken, Germany
3Departamento de Tecnología Electrónica, Universidad Carlos III de Madrid, 28911 Madrid, Spain
4Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Madrid, Spain

Corresponding author: Adrian Amor-Martin (aamor@tsc.uc3m.es)

This work was supported in part by the Spanish Government under Grant TEC2016-80386-P, Grant TIN2017-82972-R,
and Grant ESP2015-68245-C4-1-P, and in part by the Valencian Regional Government under Grant PROMETEO/2019/109.

ABSTRACT The emergence of General Purpose Graphics Processing Units (GPGPUs) provides new
opportunities to accelerate applications involving a large number of regular computations. However, properly
leveraging the computational resources of graphical processors is a very challenging task. In this paper, we
use this kind of device to parallelize FE-IIEE (Finite Element-Iterative Integral Equation Evaluation), a
non-standard finite element mesh truncation technique introduced by two of the authors. This application
is computationally very demanding due to the amount, size and complexity of the data involved in the
procedure. Besides, an efficient implementation becomes even more difficult if the parallelization has to
maintain the complex workflow of the original code. The proposed implementation using CUDA applies
different optimization techniques to improve performance. These include leveraging the fastest memories
of the GPU and increasing the granularity of the computations to reduce the impact of memory access. We
have applied our parallel algorithm to two real radiation and scattering problems demonstrating speedups
higher than 140 on a state-of-the-art GPU.

INDEX TERMS CUDA, electromagnetics, finite elements, GPU.

I. INTRODUCTION
The Finite Element Method (FEM) is a well-known robust
and versatile tool for the numerical solution of partial differ-
ential equations (PDEs) used in a wide variety of engineering
disciplines and physics [1]–[4]. When FEM is used to model
electromagnetic wave propagation in open region domains,
e.g., in antenna analysis or in Radar Cross Section (RCS)
prediction, the mesh generally needs to be truncated at some
distance of the device/structure under analysis [5]. This kind
of problems can also be found in other applications such as
microwave tomographic imaging, [6], geophysics, [7], and
nanotechnology, [8]. Since a volumetric mesh is needed, the
number of finite elements (and hence unknowns of the prob-
lem) increases rapidly with this truncation distance, exerting
a severe impact on the computational resources required to

The associate editor coordinating the review of this manuscript and

approving it for publication was Chan Hwang See .

solve the problem. On the other hand, the mesh truncation
technique also affects the accuracy of the FEM solution [5].

Different approaches for mesh truncation in electromag-
netic wave propagation have been proposed in the litera-
ture. The use of the so-called ABC (Absorbing Boundary
Conditions, see the review written in [9]) imposes locally
the Sommerfeld radiation condition on the external (trun-
cation) boundaries or the use of a Perfect Matched Layer
(PML, [10]) which are natural choices for FEM. Although
both numerical techniques are very different, they have in
common the fact that they do not alter the sparse character
of the matrices arising from FEM discretizations. However,
both are approximate and they require a significant electrical
distance in order to obtain accurate results. An alternative
approach is to leverage a non-standard FEM discretization of
the infinite exterior domain with infinite elements [11]. The
use of infinite elements seems natural in the context of FEM
but specific implementations are required and its adoption

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 94719

https://orcid.org/0000-0002-5927-0449
https://orcid.org/0000-0002-6123-4324
https://orcid.org/0000-0002-2595-1828
https://orcid.org/0000-0001-5855-5525
https://orcid.org/0000-0001-8439-7321

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

in electromagnetic wave propagation is not extended. The
interested reader is referred to the literature for further details,
e.g., [12]. On the other hand, an integral equation (IE) repre-
sentation of the field in the infinite domain can be used (the
so-called boundary elements [13]) on the interface between
the exterior and interior domains. Boundary elements provide
an exact radiation boundary condition at the continuous level,
allowing the FEM domain to be truncated very close to (or
even at zero distance from) the structure under test and, hence,
reducing the number of unknowns of the problem. However,
boundary elements provide a boundary condition that relates
all unknowns associated with the truncation boundary obtain-
ing dense matrices at the discrete level. The computation of
the mentioned ‘‘all-to-all’’ relations involve costly convolu-
tional operations using the Green’s function (generally in free
space) of the exterior domain.

Two of the authors have proposed a non-standard mesh
truncation technique called FE-IIEE (Finite Element-Iterative
Integral Equation Evaluation), which was introduced in the
context of hybridizationwith asymptotic high frequency tech-
niques (see [14]–[16]). FE-IIEE provides an asymptotically
exact radiation boundary condition by using an IE repre-
sentation of the exterior field while retaining the original
sparse structure of the FEM algebraic system of equations.
Thus, the truncation boundary can be placed very close to the
structure under analysis without affecting the accuracy of the
solution. The exterior scattered field is evaluated on a given
boundary performing a small number of iterations which are
computationally similar to post-process in the IEmethod. The
coupling with FEM is performed by updating the residual of a
local ABC on the exterior boundary, i.e., by simply updating
the right-hand side (RHS) of the FEM algebraic system of
equations.

The rest of the paper is structured as follows. In this section,
we introduce the method to be parallelized, review related
works, and depict our main goals. The FE-IIEE methodology
and formulation are briefly described in Section II. Details
about the GPU implementation of FE-IIEE are included in
Section III. Section IV presents performance results. Finally,
conclusions are drawn in Section V.

A. ACCELERATION OF THE FE-IIEE METHOD
AND RELATED WORK
From the computational point of view, dense algebra opera-
tions and sparse matrix operations are clearly separated since
the conventional flowchart of FEM is not altered and FE-IIEE
appears as a post-process of the solution. Nevertheless, the
convolutional character (double loop) associated to the com-
putations leads to a computational complexity of O(N 2),
being N the number of unknowns associated to the exterior
boundary. Thus, for very large problems, and depending on
the computational resources available, it may be needed or
convenient to introduce acceleration methods that yield to
computational complexities of O(Nα) with α < 2 at the
expense of introducing some (error controlled) approxima-
tions. Several methods have appeared in the literature to

accelerate these type of integral computations, such as the
Fast Multipole Method (FMM) [17], [18], grid approaches
based on Fast Fourier Transform (FFT) (e.g., [19]–[22]),
and those based on algebraic compression (e.g., based on
QR factorization [23], and Adaptive Cross Approximation
(ACA), [24]). The application of ACA with FE-IIEE in the
context of two-dimensional self-adaptive hp finite elements
can be seen in [25].

The objective of this paper is to accelerate the computa-
tions involved in FE-IIEE by usingGraphics ProcessingUnits
(GPUs). In the last years, GPUs have been a hot topic in the
community of numerical methods, [26]–[29]. In the compu-
tational electromagnetics community specifically, a number
of works have been reported, especially for integral equa-
tion techniques (Method of Moments —MoM—) and the
Finite-Difference Time-Domain Method [30]–[34]. In [30],
speedups of 30 in the MoM assembly and of 8 in the iterative
solution with respect to a CPU are reported. CUDA and
OpenMP are applied in [31], reporting a maximum speedup
of 20 for theMultilevel Fast Multipole Algorithm (MLFMA).
A cluster of GPUs and a similar algorithm is used in [32],
showing a speedup of 82 with respect to a single CPU.
An efficient strategy for the parallelization of the MLFMA
is introduced in [34], using single-precision calculations to
obtain a speedup of up to 98 with respect to the sequential
version. In [33] a direct solver (LU decomposition) is applied
toMoM obtaining a speedup of 38 relative also to the sequen-
tial version of the algorithm.

In terms of parallelization, FEM has a different nature
since it is a communication-intensive problem: the work-
load of computing elemental matrices is small compared
with the data communication needed for the finite element
assembly and the matrix solution. Thus, in order to obtain
reasonable performance, GPU-accelerated implementations
typically need to introduce significant changes to the code
workflow and data memory management. Good examples
are [35]–[38] where special techniques to compute the ele-
mental matrices for the finite element assembly are intro-
duced and, specifically, iterative solvers are used increasing
the speedup of the whole code [37], [38]. GPU acceleration
has also been applied on the Discontinuous Galerkin Time
Domain (DGTD) method, which shares some similarities
with FEM. In this context, it is worth noting the work in [35]
where speedups in the whole workflow of the code of up
to 14 with respect to the sequential version are obtained.
However, it must be emphasized that the use of discontin-
uous (non-conforming) approximations makes DGTD very
different from typical FEM and much more suitable for
parallelization.

As FE-IIEE is a non standard technique, its paralleliza-
tion cannot be compared directly with any of the previously
mentioned works. Note that, although FE-IIEE is used in the
context of FEM as a mesh truncation technique, it uses an
IE representation of the exterior field. In this sense, its par-
allelization is partially comparable with the parallelization of
FEM+IE hybrid techniques. The work on GPU acceleration

94720 VOLUME 8, 2020

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

presented in [39] is the most significant. In [39], GPU accel-
eration is introduced in all steps of the code workflow to
obtain a speedup up to 24 (with multi-GPU implementation)
with respect to a multi-threaded CPU solution. Nevertheless,
there are important differences between [39] and the work
presented in this paper. First, the target of this paper is only
the FEM mesh truncation technique and not the whole FEM
code. Because FE-IIEE is a domain decomposition method,
it provides decoupling at the formulation level of the FEM
part and the IE part, the latter appearing as a post-process
of FEM in which the near scattered field is evaluated. The
convolutional operation evaluating the near scattered field is
also present in FEM+IE hybrid techniques, as [39], but it is
later solved in the context of the evaluation of part of the
coefficients of an algebraic system of equations (typically
using an iterative solver and a preconditioner). In addition, the
use of two separate surfaces as source and target in FE-IIEE,
as it will be clear later, avoids the issue of the treatment of
the singularities in the evaluation of the scattered field in
conventional FEM+IE approaches.

B. OBJECTIVES USING GPU
Due to the intrinsic parallelism of FE-IIEE and the high
computational cost of the floating point operations involved,
FE-IIEE seems suitable to be accelerated using GPUs, and
this is precisely the objective of the paper. However, the
acceleration of the present FE-IIEE code implementation is
still a challenging problem for this type of platform due to
the amount, size and complexity of the data. It is important
to point out that a self-imposed prerequisite in this work has
been to perform the GPU acceleration of FE-IIEE without
altering significantly the workflow and data structures of the
original non-GPU code. It is well known that one of the main
drawbacks when using GPU programming is the significant
modification of the original code that usually undergoes in
terms of algorithm workflow and data structures in order
to adapt it to future GPU architectures and preserve the
maintainability of the code. Thus, the challenge has to be
understood also in this context.

In order to achieve the acceleration of present FE-IIEE
implementation, several strategies are employed to leverage
the manycore architecture of the GPU using CUDA [40].
In the CUDA model, the programmer defines the kernel
function including the code to be executed on every core of
the GPU. A grid configuration, which defines the number
of threads and how they are distributed and grouped, must
be built into the main code. The total number of threads
running a kernel by means of thread blocks can exceed the
number of physical cores. At runtime, the scheduler dis-
tributes the thread blocks among Streaming Multiprocessors
(SMs). Therefore, most of the GPU-based research works
in different fields, such as [41], [42], using a priori analysis
of thread blocks and grids sizes to optimize computational
efficiency. Other important issues to take into account are the
occupancy of the GPU, the efficient use of the fastest memory
levels of the GPU, and the granularity of the computations

on every thread [43, Chap. 5]. By considering all of these
factors, we will show considerable acceleration ratios while
keeping the fundamental workflow of the initial sequential
code.

II. FE-IIEE FORMULATION
The FEM code where FE-IIEE is introduced is based on a
weak formulation with a double-curl vector wave equation in
the frequency domain (i.e., time-harmonic case) for a given
problem domain �FEM,

∇×
1
µr

(∇× E)− k20εrE = O, on �FEM (1)

whereE is the electric field, k0 is the wavenumber in vacuum,
andO is the excitation term which is related to impressed cur-
rents within the problem domain. Note that the vector fields
and currents are phasors represented by complex numbers,
i.e., v(r, t) = V (r) exp(jωt), where v is a given vector field
and V its phasor. Symbol ω stands for the angular frequency
and j stands for the imaginary unit. The BVP (Boundary
Value Problem) is closed through the imposition of Dirichlet,
Neumann and Cauchy boundary conditions on 0D, 0N and
0C boundaries respectively,

n̂× E = 0, on 0D, (2)

n̂×
1
µr

(∇× E) = 0, on 0N, (3)

n̂×
1
µr

(∇× E)+ jk0(n̂× n̂× E) = 9, on 0C, (4)

where n̂ is the outward normal unit vector on the surface
where the boundary condition is applied, and9 can be either
the truncation boundary for open region problems (as it is the
case with FE-IIEE) or the excitation related to a waveport.
Note that a dual formulation can be defined with the magnetic
field H as the unknown. For simplicity in the notation the
formulation is restricted to the electric field E.

Then, the variational formulation of the electromagnetic
problem is found applying the Galerkin method on (1)-(4):
Find E ∈ W such that

c1(F,E)− k20 c2(F,E)+ γ c3(F,E) = l(F), ∀F ∈ W ,

(5)

where the bilinear (c1, c2 and c3) and linear forms (l, l9) are
defined as follows

c1(F,E) =
∫
�

(∇× F) ·
(

1
µr

∇× E
)
d�,

c2(F,E) =
∫
�

F · εrE d�,

c3(F,E) =
∫
0C

(
n̂× F

)
·
(
n̂× E

)
d0C, (6)

l(F) =
∫
�

(F · O) d�− l9 (F), (7)

l9 (F) =
∫
0C

(F ·9) d0C, (8)

VOLUME 8, 2020 94721

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

while the space of functions is defined as, [1],

W := {A ∈ H(curl, �), n̂× A = 0 on 0D}. (9)

The discretization of the problem is realized through the
tessellation of �FEM with tetrahedra and the use of the
second order isoparametric curl-conforming basis functions
N i (E =

∑
i giN i) presented in [44]. As a result, a FEM

algebraic system of equations [A]g = b is produced, where
the gi defined above are gathered with g.

The problem domain �FEM needs to be truncated for open
region problems. Specifically for FE-IIEE, (4) is employed
on the truncation/exterior boundary (denoted as surface S
hereon). The vector excitation 9 is set to 0 for a radia-
tion/antenna problem (given that the excitation is within S),
while 9 = 9 inc for a scattering problem (in this case, the
excitation is exterior to S, e.g., for RCS prediction). The
vector function 9 inc is obtained by substitution of E = Einc
in (4), where Einc is the given incident field for the problem.
Note that 9 is only analytically known when S is at infinite
distance from the sources (i.e., the structure under analysis).
When S is at a finite distance from the sources, 9 is not
known and has to be numerically estimated. In particular, if
S is close to the sources and 9 is considered as if S would
be at infinity, the error in 9 affects severely the E field
solution, [5]. In this context, FE-IIEE iteratively updates 9
providing an arbitrarily accurate estimation and, hence, an
asymptotically exact radiation boundary condition on S. The
i-th update of 9 is noted in the following as 9(i). These
iterations are seen by the FEM code as a post-process of the
FEM solution performed independently from the main flow
of the ‘‘conventional’’ FEM (see Fig. 1).

Note that FE-IIEE can be viewed as a non-standard mul-
tiplicative Schwarz domain decomposition method where
the original infinite domain is divided into two overlapping
domains: a finite FEM domain �FEM bounded by S, and an
infinite domain exterior to an auxiliary boundary S ′ which is
located within S, as shown in Fig. 2. The overlapping region
is the volume between surfaces S ′ and S and affects substan-
tially to the convergence of the method. At each iteration of
FE-IIEE, the scattered fieldEFE-IIEE and its curl∇×EFE-IIEE
are computed on the surface S from the radiation of the
equivalent electric and magnetic currents on an auxiliary
surface S ′, Jeq,Meq, respectively. This is realized by using the
Equivalence Principle (see for instance [45, Chap. 3]). Thus,
for r ∈ S and r′ ∈ S ′, we compute

EFE-IIEE(r) =
∫∫
©S ′ (Meq(r′)×∇G(r, r′)dS ′

− jkη
∫∫
©S ′ (Jeq(r

′)(G+
1
k2

∇∇G(r, r′)))dS ′, (10)

∇× EFE-IIEE(r) = jkη
∫∫
©S ′ (Jeq(r

′)×∇G(r, r′))dS ′

−

∫∫
©S ′ (Meq(r′)(k2G(r, r′)+∇∇G(r, r′)))dS ′, (11)

where k and η denote the wavenumber and characteristic
impedance of the medium exterior to S ′, and G is the Green’s

FIGURE 1. Workflow of the whole FEM code. The dashed line
encompasses the operations related to the FE-IIEE method. Green boxes
note GPU accelerated operations.

function which, for a homogeneous exterior region, is

G(r, r′) =
1

4πR
e−jkR, (12)

where R = r− r′. By observing the above expressions, it is
clear the convolutional character of the operations involved
in the computation of EFE-IIEE and its curl.
The electric and magnetic currents on S ′ used in (10), (11)

are obtained as the tangential component of the numerical
magnetic and electric field given by FEM, i.e.,

Jeq(r′) = n̂×HFEM = −
1
jkη

n̂×

(∑
i

gi(∇× N i(r′))

)
,

Meq(r′) = −n̂× EFEM = −n̂×

(∑
i

giN i(r′)

)
. (13)

94722 VOLUME 8, 2020

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

FIGURE 2. Decomposition in two overlapping domains for FE-IIEE.

Once EFE-IIEE and its curl are computed, they are substi-
tuted into (4),

9(i)
=9 inc+n̂×

1
µr

(∇×EFE-IIEE)+jk0(n̂×n̂×EFE-IIEE).

(14)

This 9(i) is used to compute l9 (F) using (8) which belongs
to the RHS of the FEM system of equations.

FE-IIEE has already been successfully applied to a number
of problems (see [14]–[16] and [12], [46]–[52]). In prac-
tice, the distance between S and S ′ is a small fraction of
the wavelength, typically in the range of 0.05 λ to 0.2 λ,
hence allowing the truncation boundary to be placed very
close to the sources. Provided S is convex, the convergence
is monotonous and nicely smooth in all cases tested. The
overlapping between the domains, i.e., the distance between
S and S ′, affects the speed of convergence; i.e., the number of
iterations needed to achieve a given error level. Thus, from the
computational point of view, there is a compromise between
the number of iterations and the size of the problem. The
interested reader is referred to [46] for further details.

The workflow of the FE-IIEE algorithm is shown in Fig. 1.
Here, the starting point is assumed to be after the FEM
assembly, see (7). First, an initial guess is set for the first
iteration of FE-IIEE. For antenna/radiation problems, 9(0) is
set to zero. For scattering problems 9(0)

= 9 inc. Then, the
part of the RHS dependent on9 i, i.e., l9 of (8), is computed.

Next, the whole problem is solved. Note that if a direct sparse
solver is used, the factorized matrix may be stored in order
to compute only forward and backward substitutions (which
are computationally cheap) when modifying the RHS in the
subsequent iterations. To compute the value of 9(i), (13),
(12), (10), (11) and (14) are obtained consecutively. Finally,
if the incremental error ||9

(i)
−9(i−1)

||2
||9(i)

||2
is lower than a given

tolerance ε, the final solution has been computed and only
remains to calculate the desired post-process. Otherwise, the
number of iterations may also be fixed.

Note that the part of this workflow accelerated with GPU
corresponds to the steps colored in green in Fig. 1. These
steps concentrate most of the computational work of FE-IIEE
without taking into account the obtention of the FEM solution
system of equations. However, when the FEM matrix is fac-
torized (as it is the case in this paper), only relatively cheap
forward and backward substitutions are performed. The par-
allelization of the computation of EFE-IIEE and∇× EFE-IIEE
requires the evaluation of a double surface integral. The algo-
rithm proposed for it is shown inAlgorithm 1. It is designed to
reuse the highest number of operations. The algorithm shows
a loop unrolling which will also be used to feed the GPU
efficiently, as will be discussed in Section III. Note that the
computation of the electric and magnetic currents Jeq, Meq,
in lines 13 and 14, could also be realized in the inner loop in
line 20. However, this is not efficient as it was to be repeated
for every element in S.

III. GPU PARALLEL IMPLEMENTATION
A. CHALLENGES OF THE PARALLELIZATION
One of the main challenges of parallelizing the FE-IIEE code
is to choose which of its loops is more appropriate to be paral-
lelized using CUDA, as it will be clear later in Section III-B.
The sequential version of the algorithm involves a large
number of loops with five nesting levels (see Algorithm 1).
Several of those loops could be fully parallelized launching
a CUDA thread to execute each iteration. However, the com-
plexity and granularity of the code on the loops are highly
different and, in the same way, the data and the computations
to be performed by each thread. Choosing one loop to be
parallelized determines the data to transfer to the threads, the
ratio between the computation and transference costs and also
the information that can be shared among the threads. Even
the innermost loop involves hundreds of floating point oper-
ations and tens of local data elements used by each thread.
Besides, the number of iterations of each loop can be very
different depending on the problem to solve, the discretization
granularity (number of elements in the mesh) or the number
of right-hand sides of the systems of equations involved.
Therefore, the number of iterations defines the quantity of
threads that can exploit the resources of the GPU and the
granularity of the loop defines the workload of each of those
threads. It is worth repeating here that the parallelization of
the code is within the context of a minimum alteration of the
original non-GPU code.

VOLUME 8, 2020 94723

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

Algorithm 1 Computation of EFE-IIEE and ∇ × EFE-IIEE in
All the Integration Points
Input: Elements from S and S ′

Input: Number of RHS, nRHS
1: F Runs through all the elements on S to count the total

number of integration points Nint needed to evaluate (8).
2: for all elemS in S do F Loop for S (size numS)
3: nint← get_num_integration_points (elemS)
4: Nint← Nint + nint F Accumulate for Nint
5: end for F End loop for S
6: FAllocate for array scat_vec=(EFE-IIEE,∇×EFE-IIEE)
7: scat_vec← zeros (6 · Nint · nRHS)
8: for all elemS ′ in S ′ do F Loop for S ′ (size numSp)
9: r′int← get_integration_points (elemS ′)
10: for all r′int do F Loop for int. points on S ′ (size n′int)
11: F Compute Jeq(r′) andMeq(r′) through (13).
12: for all RHS do F Loop for RHS (size nRHS)
13: Jeq(r′int)← get_electric_current (r′int, RHS)
14: Meq(r′int)← get_magnetic_current (r′int, RHS)
15: end for F End loop for RHS
16: end for F End loop for int. points on S ′

17: for all elemS in S do F Loop for S (size numS)
18: rint← get_integration_points (elemS)
19: for all rint do F Loop int. points on S (size nint)
20: for all r′int do F Loop int. points on S ′ (size n′int)
21: F Computes Green’s function through (12).
22: G(rint, r′int)← get_greens_function(rint, r′int)
23: for all RHS do F Loop for RHS (size nRHS)
24: F Scattered field and its curl through (10), (11)
25: uE← get_field(Jeq,Meq, G, RHS) F (10)
26: u∇×E← get_curl(Jeq,Meq, G, RHS) F (11)
27: F Accumulate into scat_vec
28: scat_vec← scat_vec + (uE, u∇×E)
29: end for F End loop for RHS
30: end for F End loop for int. points on S ′

31: end for F End loop for int. points on S
32: end for F End loop for S
33: end for F End loop for S ′

In [53], we used CUDA to parallelize the innermost loop
and obtained excellent performance using a few thousands of
right-hand sides. However, most of the problems that can be
solved using the FE-IEEE code involve only one or at most a
few tens of right-hand sides. Therefore, in this paper we have
chosen to parallelize another loopwith a coarser level of gran-
ularity. Our experimental results show that the performance of
the algorithm depends on the interaction among many factors
that must be adjusted to the problem and to the architecture of
the GPU. Those factors include the total number of threads,
the thread-block size, the shared memory available to each
block and the number of registers available to every thread.

B. GPU PARALLELIZATION
Algorithm 1 summarizes the mains steps of the IIEE part of
the FE-IIEE method (in which the field EFE-IIEE, and its curl

FIGURE 3. Logical structure and size of scat_vec computed by the
algorithm.

∇× EFE-IIEE are computed) as five nested loops. It is worth
noting that, onceEFE-IIEE and∇×EFE-IIEE are obtained, they
are combined following (14) in order to obtain the value of
function 9. This function is further integrated through l9 (F)
in expression (8), which is included in the right-hand side of
the FEM algebraic system of equations.

We point out that a hybrid parallel methodology was orig-
inally present in the FEM code (including FE-IIEE part)
using MPI processes and OpenMP threads within each pro-
cess [51]. However there were still operations in the inner
loops that were not parallelized and that were more suitable
for execution on a GPU accelerator, since these loops involve
massive regular computations with medium- or small-size
granularity.

Fig. 3 depicts a 3D version of the scat_vec, a label
used for denoting the complex scattering vector, computed
by the FE-IIEE method and allocated in line 7 of Algo-
rithm 1. This vector contains the values of EFE-IIEE and
∇ × EFE-IIEE (expressions (10), (11)) in the corresponding
integration points. The first dimension corresponds to the
number of right-hand sides (nRHS), the second dimension to
the total number of integration points on S (Nint), and the
third dimension to the number of elements on S (numS). The
elements are stored sequentially in memory, but we adopt
a 3D representation as we can parallelize the update of the
elements on different dimensions.

Each small square in Fig. 3 represents 6 complex elements
of the vector modified by one iteration of the innermost
loop (line 23) corresponding to a single right-hand side of
the problem to solve. Every iteration of that loop involves
dozens of products and additions of complex and real num-
bers that affect to different elements of scat_vec, and can
be implemented as a kernel to be run by different threads on a
GPU platform, [53]. In this work, the loop to be exploited by
the many-core architecture of the GPU platforms is the one
for S (line 17), in order to increase the number of applications
where this acceleration can be leveraged (even for only one
RHS, e.g., a single antenna). This loop corresponds to one
layer in Fig. 3 and consists of thousands of iterations. To this
end, we have implemented a CUDA kernel where each thread

94724 VOLUME 8, 2020

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

is in charge of one iteration of that loop. Threads can perform
their computations in lockstep modifying synchronously dif-
ferent elements of scat_vec. The kernel is launched once
per iteration of the loop for S ′ (line 8) and receives as inputs
the vectors Jeq,Meq shown in Algorithm 1 and also a vector
containing the coordinates of the integration points on S. Two
important issues to take into account to obtain an efficient
implementation of the kernel are: 1) the occupancy of the
GPU cores, and 2) the management of the different kinds of
GPU memories, [54, Chap. 9]. In order to address the first
issue, we tried to optimize the thread block size to leverage
all the cores of the architecture.

As for the memory usage, we store the vector containing
the result of computing the Green’s function (line 22) and
other auxiliary vectors computed in the innermost loop (line
23) into the local memory of the CUDA threads. Besides, at
every iteration of the loop for RHS, only one thread per block
copies the values of vectors Jeq andMeq to the shared mem-
ory of the block. Using this technique, the number of accesses
to global memory is reduced and this kind of fast memory
is leveraged. Moreover, we minimized the occupancy of the
static shared memory by copying only the 6 complex ele-
ments (96 bytes) required at each iteration of the loop. For
example, these vectors represent a very small percentage of
the 48 KB of this kind of memory available to each thread
block on NVIDIA’s Volta GPU architecture. Therefore, our
use of this small shared memory is independent of the size of
the problem.

In the most recent GPU architectures, the shared memory
and L1 cache are combined into a single data cache. As
we are using only 96 bytes of static shared memory, we
configured the kernel to reduce the portion devoted to this
kind of memory, know as carveout. However, there is no
significant improvement on performance derived from this
strategy.

Nevertheless, our analysis of the parallelization shows that
the main factor that limits the performance of our CUDA
code is the number of registers available in each streaming
multiprocessor. Parallelizing the loop in line 17 of Algo-
rithm 1 to enlarge the level of parallelism greatly increases
the granularity and complexity of the computations of the
kernel and so the number of local variables used in each
thread. Therefore, the maximum occupancy of the GPU is
not reached due to the number of registers per SM. There
is a trade-off between the number of registers and the mem-
ory usage and we have used the best option to implement
our code. Recall that a Volta architecture has 64K regis-
ters per SM, but it can have up to 64 warps active per
multiprocessor.

IV. EXPERIMENTAL EVALUATION
We show results corresponding to two scenarios: (1) a radi-
ation problem from a single antenna and (2) the scattering
problem of the computation of the radar cross section (RCS)
of an object. Regarding the antenna problem, 9 = 0 and

there is only one RHS (the excitation of the antenna). On
the other hand, for the RCS problem, 9 6= 0 and multiple
RHS (one for each desired direction of incidence) are present.
All the computations are evaluated in double-precision, in
contrast to, e.g., [34], [51], where single-precision was
used.

In terms of hardware, performance tests were carried out
in a server containing an Intel Xeon Gold 6126 processor,
at 2.60 GHz, with 24 cores and 62 GB of DDR4-2666 main
memory. This server also includes a state-of-the-art Tesla
V100 PCIe GPU powered by the NVIDIA Volta architec-
ture [55]. This GPU is composed of 80 StreamingMultiproce-
sor (SM) units with 64 CUDA cores per unit, i.e. 5,120 CUDA
cores in total, a register file with 20,480 KB, an L2 cache with
6,144 KB, and a global memory of 32 GB.

The original FEM code was developed in Fortran
2003 [51]. Thus, a C wrapper was required in order to launch
the CUDA kernel. The experiments were performed with
Linux Ubuntu 19.04. The code was compiled with the 2019
version of the Intel Fortran, C compilers, and the CUDA
verson 10.1. A customization layer over GiD is used to obtain
FEM meshes and to plot the results, [56].

In order to leverage the persistence of the GPU memory
among successive calls from Fortran to the C kernel, we use
static memory to allocate the vectors to store at the global
GPU memory in all the calls to the kernel. previous to the
first iteration of the outermost loop, deallocating the memory
at the end of that loop. Then, we update the same allocated
vector scat_vec among successive calls and only retrieve
the final result from theGPU to the CPU after the last iteration
of the outermost loop.

A. ANTENNA PROBLEM
A pyramidal horn antenna as defined in [57, Chap. 9.4.3]
is considered. The geometry of the problem is included
in Fig. 4(a), and the specific dimensions are detailed
in Table 1.

Six different meshes are tested for the same problem, with
a decreasing size of the elements leading to meshes with the
parameters shown in Table 2. The working frequency is set
to 8.75GHz. Near-field results inside the horn together with
a directivity diagram are included in Fig. 5. Note that the
expected directivity of this antenna is 21.8 dB [57]. Thus, an
excellent agreement is obtained.

We have chosen to carry out a classic study of the parallel
performance of the algorithm by analyzing its speedup with
respect to its sequential version [58, Chap. 5]. This is a
common practice in the literature, e.g., [29], [30], [33], [34].
This analysis assesses the quality of the CUDAparallelization
on a GPU and the performance obtained from a manycore
architecture. An alternative choice would be to compute the
speedup with respect to a multi-threaded version of the code
running only in the CPU. However, this latter option might
have been misleading since the introduction of the multi-
threaded part is not straightforward and relies on some design

VOLUME 8, 2020 94725

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

FIGURE 4. Definition of the pyramidal horn antenna. In (a) and (b), the
cross section through H-plane and E-planes are shown, respectively, and
in (c), the 3D isometric view (including the mesh truncation box) is
pictured.

TABLE 1. Dimensions of the pyramidal horn antenna.

TABLE 2. Sequential times for the antenna problem.

choices for the code that should be taken by the authors.
Therefore, we evaluate the performance of the presented
GPU parallel implementation of FE-IIEE with respect to
its sequential execution in a modern CPU. The number of
interior boundary elements of the surface S ′ (numSp) is, in all
cases, 946 and thus, this is the number of times the kernel is
launched. Table 2 shows the execution time of the sequential
method on the CPU, with one RHS and using meshes with
increasing number of exterior boundary elements. As it is
shown, the sequential time grows linearly with the number
of elements on S, numS.
Leveraging the many-core architecture of the GPU delivers

very high speedups with respect to the sequential CPU exe-
cution. We have tested the CUDA code with different thread
block sizes from 4 to 128 threads-per-block (tpb). Fig. 6
shows that the speedup usually increases with the value of tpb.

FIGURE 5. Results of the antenna simulation at f = 8.75 GHz: (a)
Magnitude of the electric field, (b) Directivity.

FIGURE 6. Effect of the thread-block size in the speedup of the GPU
parallel algorithm with respect to one core of the CPU. Results with one
right-hand side (nRHS = 1).

Also, the speedup remains stable with the size of the problem
once a minimum size (computational load) is reached, which
is a very desirable behaviour which is not always achieved
(see, e.g., [34]).

Fig. 7 shows the results obtained with the best thread block
size on each case. It shows that the speedup grows with numS
and reaches a value of 147 for the largest problem. As we
increase numS, we have more difficulties to leverage the
fastest memories of the GPU.

We have also assessed the effect of using the shared mem-
ory of the GPU on the performance of the algorithm. Fig. 8
compares the speedup obtained with two versions of our
parallel algorithm using the best thread-block size on each
case. On the first version, every block of threads uses static

94726 VOLUME 8, 2020

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

FIGURE 7. Speedup of the GPU parallel algorithm applied to the antenna
problem with respect to one core of the CPU.

FIGURE 8. Effect of using shared memory on the speedup. Results with 1
right-hand side (nRHS = 1).

shared memory to store the values of vectors Jeq and Meq
as described at the beginning of this section. On the second
version, every thread accesses those values on the much
slower global memory of the GPU. We can see that, except
in the case of the smaller problem, the use of shared memory
produces a slight increment of the speedup of the algorithm.

B. RCS PROBLEM
We next address one of the RCS benchmark problems intro-
duced in [59] (specifically, the ogive). A 3D view of the
geometry is included in Fig. 9. The working frequency is set
to 1.19GHz. The vector function 9 inc is computed through
proper substitution of the mathematical expression corre-
sponding to a plane wave in (4). Multiple RHS are mandatory
in the case of computing monostatic RCS for a sweep of
spherical angles. The bistatic RCS for an incident wave at
θ = 90◦, directed to the tip of the ogive in vertical polariza-
tion, is also shown in Fig. 9. A number of fivemeshes, starting
from 27,739 tetrahedra and introducing increasing levels of
refinement, have been simulated.

FIGURE 9. Ogive simulated as RCS problem: (a) Mesh, (b) Bistatic RCS (in
dbλ2 units).

TABLE 3. Sequential times for the RCS problem.

Table 3 shows the time corresponding to the sequential
execution with one and ten RHS and using meshes with
increasing number of exterior boundary elements numS. The
number of interior boundary elements numSp is always 300.
We can observe that the sequential time grows linearly not
only with numS, but also with the number of RHS.

This problem allows us to analyze the effect of the number
of RHS on the optimal thread block size. In the case of one
RHS, the best results were obtained using 32 or 64 threads per
block. On the contrary, in the case of 10 RHS the best results
were obtained with 8 or 16 threads per block, which is smaller
than the warp size for the experimental platform. Launching
less threads per block when the problem size grows is a good
strategy, as it increases the number or registers and the shared
memory available to each thread.

Fig. 10 shows the effect of increasing both numS and nRHS
on the speedup of the CUDA implementation. It illustrates

VOLUME 8, 2020 94727

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

FIGURE 10. Speedup of the GPU parallel algorithm applied to the RCS
problem with respect to one core of the CPU.

FIGURE 11. Effect of using shared memory on the speedup. Results with
10 right-hand sides (nRHS = 10).

that the speedup grows with numS. In the case of 10 RHS
it only decreases with the largest numS because the vectors
do not fit on the faster memories of the GPU and the number
of transactions with global and L2 cache memories quickly
increases with the size of the problem.

The results also show that the best results are obtained with
one RHS due to the GPU memory access pattern. As we can
observe in Fig. 3, for a single RHS every thread accesses
memory positions much closer to each other that when we
increase the number of RHS. This allows a more coalesced
access to memory, which is an important factor to obtain high
performance on GPUs, [54, Chap. 9].

We have also assessed the effect of using shared memory
to solve this problem. Unlike in the case of the antenna
problem (see Fig. 11) we can clearly see the large impact of
this optimization on the speedup when using shared memory
to solve the RCS problem. Only with small problems both
versions of the algorithm obtain similar speedups on this par-
ticular problem and configuration. Thus, we have been able to
verify that the behaviour of this CUDA optimization applied
to the FE-IIEE code depends not only on the computational

FIGURE 12. Percentage of the FE-IIEE execution time devoted to different
tasks with 10 right-hand sides.

granularity of the parallel kernel given by the number of right-
hand sides (nRHS), but also on the discretization granularity of
the domains of the problem (numSp and numS). Besides, this
behaviour could be quite different depending on the resources
provided by the GPU architecture.

Finally, the negative effect of the transfer time between the
CPU and the GPU or the time of the sequential component
of the code is very small, as shown in Fig. 12. They both
decrease from 12% to 5% of the total time with one RHS
and they always represent less than 5% with 10 RHS. Thus,
we conclude that the presented implementation limits the
negative effect of transferring information between the CPU
and the GPU even when increasing the size of the problem.

V. CONCLUSIONS
In this paper, we have shown that the efficient use of CUDA
on a state-of-the-art GPU allows us to obtain very large
speedups in the solution of open region electromagnetic prob-
lems. Specifically, a non-standard FEMmesh truncation tech-
nique (called FE-IIEE) has been successfully implemented
in CUDA. Most of the performance of our implementation
arises from leveraging the computational power of the thou-
sands of cores of the GPU. We increased the granularity
of the computations on each thread in order to reduce the
number of kernel launches and the effect of transferring data
between CPU and GPU. Besides, we reduced the use of
global memory by storing most of the data on the faster local
and shared memories available to the threads. We have also
demonstrated that the best thread-block size is not always a
multiple of the warp size. Indeed, this value depends on the
size of the problem and the local and sharedmemory available
to each thread.

Without loss of generality, two specific electromagnetic
problems have been solved: a pyramidal horn as antenna
problem and the computation of the RCS for an ogive.
Speedups higher than 140 on a Volta GPU have been obtained
thanks to the performance of our non-intrusive GPU parallel
algorithm.

94728 VOLUME 8, 2020

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

As futurework, we intend to implement new versions of the
algorithm using OpenMP to parallelize the loop for S (line
17 of Algorithm 1) and compare it with the CUDA version
introduced on this paper and the OpenMP version introduced
by two of the authors on [51]. We also intend to implement
a multi-GPU version of the algorithm trying to improve its
scalability even more.

REFERENCES
[1] P. Monk, Finite Element Methods for Maxwell Equations. London, U.K.:

Oxford Univ. Press, 2003.
[2] M. Salazar-Palma, T. K. Sarkar, L. E. García-Castillo, T. Roy, and

A. R. Djordjevic, Iterative and Self-Adaptive Finite-Elements in Electro-
magnetic Modeling. Norwood, MA, USA: Artech House, 1998.

[3] J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed.
Hoboken, NJ, USA: Wiley, 2002.

[4] P. G. Ciarlet, The Finite Element Methods for Elliptic Problems. NewYork,
NY, USA: North Holland, 1994.

[5] J. M. Jin and D. J. Ryley, Finite Element Analysis of Antennas and Arrays.
Hoboken, NJ, USA: Wiley, 2009.

[6] P.-H. Tournier, I. Aliferis, M. Bonazzoli, M. D. Buhan, M. Darbas,
V. Dolean, F. Hecht, P. Jolivet, I. El Kanfoud, C. Migliaccio, F. Nataf,
C. Pichot, and S. Semenov, ‘‘Microwave tomographic imaging of cere-
brovascular accidents by using high-performance computing,’’ Parallel
Comput., vol. 85, pp. 88–97, Jul. 2019.

[7] E. S. Um, J. Kim, M. J. Wilt, M. Commer, and S.-S. Kim, ‘‘Finite-element
analysis of top-casing electric source method for imaging hydraulically
active fracture zones,’’ Geophysics, vol. 84, no. 1, pp. E23–E35, 2019.

[8] S. M. Musa, Computational Finite Element Methods in Nanotechnology.
Boca Raton, FL, USA: CRC Press, 2012.

[9] T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in
Electromagnetics. London, U.K.: IET, 1995.

[10] J.-P. Berenger, ‘‘A perfectly matched layer for the absorption of elec-
tromagnetic waves,’’ J. Comput. Phys., vol. 114, no. 2, pp. 185–200,
Oct. 1994.

[11] P. Bettess, ‘‘Infinite elements,’’ Int. J. Numer. Methods Eng., vol. 11, no. 1,
pp. 54–64, 1977.

[12] I. Gómez-Revuelto, L. E. García-Castillo, and L. F. Demkowicz, ‘‘A com-
parison between PML, infinite elements and an iterative BEM as mesh
truncation methods for hp self-adaptive procedures in electromagnetics,’’
Prog. Electromagn. Res., vol. 126, pp. 499–519, 2012. [Online]. Available:
http://www.jpier.org/PIER/pier.php?volume=126

[13] P. Silvester and M.-S. Hsieh, ‘‘Finite-element solution of 2-dimensional
exterior-field problems,’’ Proc. Inst. Electr. Eng., vol. 118, no. 12,
pp. 1743–1747, Dec. 1971.

[14] L. E. García-Castillo, I. Gómez-Revuelto, F. S. de Adana, and
M. Salazar-Palma, ‘‘A finite element method for the analysis of radiation
and scattering of electromagnetic waves on complex environments,’’ Com-
put. Methods Appl. Mech. Eng., vol. 194, nos. 2–5, pp. 637–655, Feb. 2005.

[15] I. Gómez-Revuelto, L. E. García-Castillo, M. Salazar-Palma, and
T. K. Sarkar, ‘‘Fully coupled hybrid-method FEM/high-frequency
technique for the analysis of 3D scattering and radiation problems,’’
Microw. Opt. Technol. Lett., vol. 47, no. 2, pp. 104–107, Oct. 2005.

[16] R. Fernández-Recio, L. E. García-Castillo, I. Gómez-Revuelto, and
M. Salazar-Palma, ‘‘Fully coupled hybrid FEM-UTD method using
NURBS for the analysis of radiation problems,’’ IEEE Trans. Antennas
Propag., vol. 56, no. 3, pp. 774–783, Mar. 2008.

[17] R. Coifman, V. Rokhlin, and S. Wandzura, ‘‘The fast multipole method
for the wave equation: A pedestrian prescription,’’ IEEE Antennas Propag.
Mag., vol. 35, no. 3, pp. 7–12, Jun. 1993.

[18] N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for
Helmholtz Equation Three Dimensions (Elsevier Series in Electromag-
netism), I. Mayergoyz, Ed. Amsterdam, The Netherlands: Elsevier, 2004.

[19] J. R. Phillips and J. K. White, ‘‘A precorrected-FFT method for electro-
static analysis of complicated 3-D structures,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 16, no. 10, pp. 1059–1072, Oct. 1997.

[20] J. R. Phillips, ‘‘Error and complexity analysis for a collocation-grid-
projection plus precorrected-FFT algorithm for solving potential integral
equations with Laplace or Helmholtz kernels,’’ in Proc. Copper Mountain
Conf. Multigrid Methods, 1995, pp. 673–688.

[21] E. Bleszynski,M. Bleszynski, and T. Jaroszewicz, ‘‘AIM:Adaptive integral
method for solving large-scale electromagnetic scattering and radiation
problems,’’ Radio Sci., vol. 31, no. 5, pp. 1225–1251, Sep. 1996.

[22] S. Mo Seo and J.-F. Lee, ‘‘A fast IE-FFT algorithm for solving PEC
scattering problems,’’ IEEE Trans. Magn., vol. 41, no. 5, pp. 1476–1479,
May 2005.

[23] S. M. Seo and J.-F. Lee, ‘‘A single-level low rank IE-QR algorithm for
PEC scattering problems using EFIE formulation,’’ IEEE Trans. Antennas
Propag., vol. 52, no. 8, pp. 2141–2146, Aug. 2004.

[24] M. Bebendorf, ‘‘Approximation of boundary element matrices,’’
Numerische Math., vol. 86, no. 4, pp. 565–589, Oct. 2000.

[25] R. M. Barrio-Garrido, L. E. García-Castillo, I. Gómez-Revuelto, and
M. Salazar-Palma, ‘‘Self-adaptive hp finite element method with iterative
mesh truncation technique accelerated with adaptive cross approxima-
tion,’’ Comput. Math. Appl., vol. 71, no. 10, pp. 1911–1932, May 2016.

[26] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T.Whitaker, ‘‘Architecting the finite
element method pipeline for the GPU,’’ J. Comput. Appl. Math., vol. 257,
pp. 195–211, Feb. 2014.

[27] K. Świrydowicz, N. Chalmers, A. Karakus, and T. Warburton, ‘‘Accel-
eration of tensor-product operations for high-order finite element meth-
ods,’’ Int. J. High Perform. Comput. Appl., vol. 33, no. 4, Jul. 2019,
Art. no. 1094342018816368.

[28] A. Karakus, N. Chalmers, K. Świrydowicz, and T. Warburton, ‘‘A GPU
accelerated discontinuous Galerkin incompressible flow solver,’’ J. Com-
put. Phys., vol. 390, pp. 380–404, Aug. 2019.

[29] Y. Wang, Q. Wang, X. Deng, Z. Xia, J. Yan, and H. Xu, ‘‘Graphics
processing unit (GPU) accelerated fast multipole BEM with level-skip
M2L for 3D elasticity problems,’’ Adv. Eng. Softw., vol. 82, pp. 105–118,
Apr. 2015.

[30] S. Peng and Z. Nie, ‘‘Acceleration of the method of moments calcula-
tions by using graphics processing units,’’ IEEE Trans. Antennas Propag.,
vol. 56, no. 7, pp. 2130–2133, Jul. 2008.

[31] J. Guan, S. Yan, and J.-M. Jin, ‘‘An OpenMP-CUDA implementation
of multilevel fast multipole algorithm for electromagnetic simulation on
multi-GPU computing systems,’’ IEEE Trans. Antennas Propag., vol. 61,
no. 7, pp. 3607–3616, Jul. 2013.

[32] V. Dang, Q. M. Nguyen, and O. Kilic, ‘‘GPU cluster implementation
of FMM-FFT for large-scale electromagnetic problems,’’ IEEE Antennas
Wireless Propag. Lett., vol. 13, pp. 1259–1262, 2014.

[33] Z. Lin, Y. Chen, Y. Zhang, X. Zhao, and H. Zhang, ‘‘An efficient GPU-
based Out-of-Core LU solver of parallel higher-order method of moments
for solving airborne array problems,’’ Int. J. Antennas Propag., vol. 2017,
pp. 1–10, 2017.

[34] E. García, C. Delgado, L. Lozano, and F. Cátedra, ‘‘Efficient strategy for
parallelisation of multilevel fast multipole algorithm using CUDA,’’ IET
Microw., Antennas Propag., vol. 13, no. 10, pp. 1554–1563, Aug. 2019.

[35] H.-T. Meng, B.-L. Nie, S. Wong, C. Macon, and J.-M. Jin, ‘‘GPU accel-
erated finite-element computation for electromagnetic analysis,’’ IEEE
Antennas Propag. Mag., vol. 56, no. 2, pp. 39–62, Apr. 2014.

[36] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, ‘‘Finite ele-
ment matrix generation on a GPU,’’ Prog. Electromagn. Res., vol. 128,
pp. 249–265, 2012. [Online]. Available: http://www.jpier.org/PIER/pier.
php?volume=128

[37] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, ‘‘Communi-
cation and load balancing optimization for finite element electromagnetic
simulations using multi-GPU workstation,’’ IEEE Trans. Microw. Theory
Techn., vol. 65, no. 8, pp. 2661–2671, Aug. 2017.

[38] A. Dziekonski and M. Mrozowski, ‘‘A GPU solver for sparse generalized
eigenvalue problems with symmetric complex-valued matrices obtained
using higher-order FEM,’’ IEEE Access, vol. 6, pp. 69826–69834, 2018.

[39] J. Guan, S. Yan, and J.-M. Jin, ‘‘An accurate and efficient finite element-
boundary integral method with GPU acceleration for 3-D electromagnetic
analysis,’’ IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6325–6336,
Dec. 2014.

[40] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2013.

[41] J. A. Belloch, A. Gonzalez, A. M. Vidal, and M. Cobos, ‘‘On the per-
formance of multi-GPU-based expert systems for acoustic localization
involving massive microphone arrays,’’ Expert Syst. Appl., vol. 42, no. 13,
pp. 5607–5620, Aug. 2015.

[42] J. A. Belloch, A.Gonzalez, E. S. Quintana-Ortí,M. Ferrer, andV.Välimäki,
‘‘GPU-based dynamic wave field synthesis using fractional delay filters
and room compensation,’’ IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 25, no. 2, pp. 435–447, Feb. 2017.

VOLUME 8, 2020 94729

J. M. Badía et al.: GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique

[43] CUDA C Programming Guide, document PG-02829-001_v1, Nvidia,
Aug. 2019.

[44] L. E. García-Castillo and M. Salazar-Palma, ‘‘Second-order Nédélec
tetrahedral element for computational electromagnetics,’’ Int. J. Numer.
Model. Electron. Netw., Devices Fields, vol. 13, nos. 2–3, pp. 261–287,
Mar./Jun. 2000.

[45] R. F. Harrington, Time Harmonic Electromagnetic Fields. New York, NY,
USA: McGraw-Hill, 1961.

[46] R. Fernández-Recio, L. E. García-Castillo, S. L. Romano, and
I. Gómez-Revuelto, ‘‘Convergence study of a non-standard Schwarz
domain decomposition method for finite element mesh truncation in
electromagnetics,’’ Prog. Electromagn. Res., vol. 120, pp. 439–457, 2011.
[Online]. Available: http://www.jpier.org/PIER/pier.php?volume=120

[47] I. Gómez-Revuelto, L. E. García-Castillo, and M. Salazar-Palma, ‘‘Goal-
oriented self-adaptiveHp-strategies for scattering and radiation problems,’’
Prog. Electromagn. Res., vol. 125, pp. 459–482, 2012. [Online]. Available:
http://www.jpier.org/PIER/pier.php?volume=125

[48] D. Garcia-Donoro, I. Martinez-Fernandez, L. E. García-Castillo, Y. Zhang,
and T. K. Sarkar, ‘‘RCS computation using a parallel in-core and out-of-
core direct solver,’’ Prog. Electromagn. Res., vol. 118, pp. 505–525, 2011.
[Online]. Available: http://www.jpier.org/PIER/pier.php?volume=118

[49] R. M. Barrio-Garrido, L. E. García-Castillo, I. Gómez-Revuelto, and
M. Salazar-Palma, ‘‘Self-adaptive Hp finite element method with iterative
mesh truncation technique accelerated with adaptive cross approxima-
tion,’’ Comput. Math. Appl., vol. 71, no. 10, pp. 1911–1932, May 2016.

[50] D. Garcia-Donoro, I. Martinez-Fernandez, L. E. García-Castillo, and
M. Salazar-Palma, ‘‘HOFEM: Higher order finite element method simu-
lator for antenna analysis,’’ in Proc. Int. Conf. Antenna Meas. Appl. Focus
Antenna Syst. (CAMA), New York, NY, USA, Oct. 2016, pp. 1–4.

[51] A. Amor-Martin, D. Garcia-Donoro, and L. E. García-Castillo, ‘‘Higher-
order finite element electromagnetics code for HPC environments,’’ in
Proc. Int. Conf. Comput. Sci. (ICCS), Zurich, Switzerland, Jun. 2017,
pp. 818–827.

[52] D. Garcia-Donoro, S. Ting, L. E. García-Castillo, Y. Zhang, and
T. K. Sarkar, ‘‘Higher order finite element method solver for RCS com-
putation of complex targets,’’ in Proc. IET Int. Radar Conf., Hangzhou,
China, Oct. 2015, pp. 1–4.

[53] J. A. Belloch, A. Amor-Martin, D. Garcia-Donoro, F. J. Martínez-Zaldívar,
and L. E. García-Castillo, ‘‘On the use of many-core machines
for the acceleration of a mesh truncation technique for FEM,’’
J. Supercomput., vol. 75, no. 3, pp. 1686–1696, Mar. 2019,
doi: 10.1007/s11227-018-02739-9.

[54] CUDA C Best Practices Guide, document DG-05603-001_v1, Nvidia,
Aug. 2019.

[55] NVIDIA Tesla V100 GPU Architecture Whitepaper, document WP-08608-
001_v1, Aug. 2017.

[56] A. Melendo, A. Coll, M. Pasenau, E. Escolano, and A. Monros. Accessed:
Nov. 2019. [Online]. Available: https://www.gidhome.com

[57] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. Hoboken,
NJ, USA: Wiley, 2012.

[58] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel
Computing, 2nd ed. Reading, MA, USA: Addison-Wesley, 2003.

[59] A. C. Woo, H. T. Wang, M. J. Schuh, and M. L. Sanders, ‘‘EM program-
mer’s notebook-benchmark radar targets for the validation of computa-
tional electromagnetics programs,’’ IEEE Antennas Propag. Mag., vol. 35,
no. 1, pp. 84–89, Feb. 1993.

JOSÉ M. BADÍA was born in Valencia, Spain. He
received the B.S. degree in computer science from
the Polytechnic University of Valencia, Spain, in
1991, and the Ph.D. degree in computer science in
1996.

Since 1994, he has been a member of the
Department of Computer Science and Engineer-
ing, University Jaume I of Castellón, Spain, where
he was a Teaching Assistant, from 1994 to 1997,
an Assistant Professor, from 1997 to 2000, and an

Associate Professor, since 2000. From 2007 to 2013, he was the Head of
the Department. He has published more than 40 articles in international
conferences and journals. His main research interests include high perfor-
mance computing for dense and sparse algebra, power aware computing, and
parallel data mining.

ADRIAN AMOR-MARTIN (Member, IEEE) was
born in Móstoles, Madrid, in 1989. He received
the degree in telecommunications engineering, the
M.Sc. degree in multimedia and communications,
and the Ph.D. degree in multimedia and communi-
cations from the University Carlos III of Madrid,
in 2012, 2014, and 2018, respectively. He partici-
pated as a Researcher with the University Carlos
III of Madrid, from 2012 to 2018 with differ-
ent scholarships obtained on a competitive basis.

Since 2019, he has been a Postdoctoral Researcher with the Universität
des Saarlandes, Germany. He has authored eight publications in inter-
national journals and 16 contributions to international conferences. His
research interests are focused on the application of numerical methods
to high-performance computational electromagnetics including finite ele-
ments, domain decomposition methods, definition of basic functions, and
hp adaptivity.

JOSE A. BELLOCH (Member, IEEE) received
the degree in telecommunications engineering, the
master’s degree in parallel and distributed comput-
ing, and the Ph.D. degree in computer science from
the Universitat Politècnica de València, Valencia,
Spain, in 2007, 2010, and 2014, respectively. Since
2017, he has been an Assistant Professor with the
Electronic Technology Department, Universidad
Carlos III de Madrid, Madrid, Spain. He was a
Visiting Researcher with the Department of Signal

Processing and Acoustics, Aalto University School of Electrical Engineer-
ing, Espoo, Finland, as a Predoctoral Researcher, in 2013, and as a Postdoc-
toral Researcher, in 2015. He carried out an internshipwith theDepartment of
Measurement and Information Systems, Budapest University of Technology
and Economics, Budapest, Hungary. His current research interests include
centered in applying the new parallel architectures into signal processing
algorithms. He has developed several real-time audio applications related
with multichannel massive filtering, binaural sound, wave field synthesis
systems, and sound source localization using general purpose graphic pro-
cessing units and ARM architectures. He was a recipient of the Extraordinary
Ph.D. Thesis Award in recognition of his Ph.D. thesis. In 2016, he was
honored with a Postdoctoral Fellowship of the Regional Government of
Valencia in order to carry out research with the Universitat Jaume I de
Castellón in collaboration with the Universidad Complutense de Madrid,
Madrid.

LUIS EMILIO GARCÍA-CASTILLO (Member,
IEEE) was born in Madrid, Spain, in 1967. He
received the degree in ingeniero de telecomuni-
cación and the Ph.D. degree from the Universidad
Politécnica de Madrid, in 1992 and 1998, respec-
tively. His Ph.D. thesis received two prizes from
the Colegio Oficial de Ingenieros de Telecomuni-
cación, Spain, and the Universidad Politécnica de
Madrid.

From 1997 to 2000, he was an Associate Pro-
fessor with the Universidad Politécnica de Madrid. From 2000 to 2005, he
was an Associate Professor at the Universidad de Alcalá, Madrid. Since
October 2005, he has been with the Department of Signal Theory and
Communications, Universidad Carlos III de Madrid, Spain. His research
activity and interests are focused in the application of numerical methods to
high performance computational electromagnetics including finite elements,
hp adaptivity, hybrid methods, and domain decomposition methods.

He has authored one book, five contributions for chapters and articles
in books, 45 articles in international journals, and over 100 articles in
international conferences, symposiums, and workshops, plus a number of
national publications and reports. He has leaded as a Principal Investigator
five projects of the National Plan of Research of Spain, one of the Regional
Plan of Research of Madrid, and one with the American Air Force Office
of Scientific Research. He has also participated in a number of projects and
contracts, financed by international, European, and national institutions and
companies.

94730 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11227-018-02739-9

	INTRODUCTION
	ACCELERATION OF THE FE-IIEE METHOD AND RELATED WORK
	OBJECTIVES USING GPU

	FE-IIEE FORMULATION
	GPU PARALLEL IMPLEMENTATION
	CHALLENGES OF THE PARALLELIZATION
	GPU PARALLELIZATION

	EXPERIMENTAL EVALUATION
	ANTENNA PROBLEM
	RCS PROBLEM

	CONCLUSIONS
	REFERENCES
	Biographies
	JOSÉ M. BADÍA
	ADRIAN AMOR-MARTIN
	JOSE A. BELLOCH
	LUIS EMILIO GARCÍA-CASTILLO

