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ABSTRACT Images captured under poor illumination conditions often exhibit characteristics such as
low brightness, low contrast, a narrow gray range, and color distortion, as well as considerable noise,
which seriously affect the subjective visual effect on human eyes and greatly limit the performance of
various machine vision systems. The role of low-light image enhancement is to improve the visual effect
of such images for the benefit of subsequent processing. This paper reviews the main techniques of
low-light image enhancement developed over the past decades. First, we present a new classification of
these algorithms, dividing them into seven categories: gray transformation methods, histogram equalization
methods, Retinex methods, frequency-domain methods, image fusion methods, defogging model methods
and machine learning methods. Then, all the categories of methods, including subcategories, are introduced
in accordance with their principles and characteristics. In addition, various quality evaluation methods for
enhanced images are detailed, and comparisons of different algorithms are discussed. Finally, the current
research progress is summarized, and future research directions are suggested.

INDEX TERMS Review, survey, low-light image enhancement, Retinex method, image enhancement,
quality evaluation.

I. INTRODUCTION
With the rapid development of computer vision technology,
digital image processing systems have been widely used in
many fields, such as industrial production [1], video mon-
itoring [2], intelligent transportation [3], and remote sens-
ing monitoring, and thus play important roles in industrial
production [4], daily life [5], military applications [6], etc.
However, some uncontrollable factors often exist during the
process of image acquisition, resulting in various image
defects. In particular, under poor illumination conditions,
such as indoors, nighttime, or cloudy days, the light reflected
from the object surface may be weak; consequently, the
image quality of such a low-light image may be seriously
degraded due to color distortions and noise [7]–[10]. After
image conversion, storage, transmission and other operations,
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the quality of this kind of low-light image is seriously further
reduced.

Low light, as the name implies, refers to the environ-
mental conditions where illuminance does not meet the nor-
mal standard [11]. Any images captured in an environment
with relatively weak light are often regarded as low-light
images [12], [13]. Nevertheless, it has thus far been impos-
sible to identify specific theoretical values that define a low-
light environment in practical applications, and consequently,
no unified standard exists. Therefore, each image-sensor
manufacturer has its own standards; for example, Hikvision
usually classifies low-light environments into the follow-
ing categories: dark level (0.01 Lux - 0.1 Lux), moonlight
level (0.001 Lux - 0.01 Lux) and starlight level (less than
0.001 Lux). Images captured in these types of environments
exhibit characteristics such as low brightness, low contrast,
a narrow gray range and color distortion as well as consid-
erable noise [14], [15]. Fig. 1 shows three images with low
brightness and their corresponding gray histograms, where
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FIGURE 1. Examples of low-light images.

the X-axis shows the grayscale values and the Y-axis repre-
sents the number of pixels. The pixel values of these images
are mainly focused in the lower range due to the lack of
illumination, and the gray difference of the corresponding
pixels between the various channels of the color image is
limited. There is only a small gap between the maximum
and minimum gray levels of the image. The whole color
layer exhibits deviations, and the edge information is weak;
consequently, it is difficult to distinguish details of the image.
These characteristics reduce the usability of such images,
seriously degrade their subjective visual effect, and greatly
limit the functionality of various visual systems [16]–[18].

To weaken the impact of video/image acquisition from
low-illumination environments, researchers have pursued
various improvements from both the hardware and software
perspectives. One approach is to improve the image acqui-
sition system hardware [19]–[21]. Another is to process the
images after they are generated. Because low-illumination
cameras use high-performance charge-coupled device (CCD)
or complementary metal–oxide–semiconductor (CMOS)
technology, professional low-light circuits, and filters as the
core components to improve the imaging quality for low-
light-level imaging, their manufacturing process is highly
rigorous, and the technology is complex [22]. Although some
professional low-light cameras produced by companies such
as Sony, Photonis, SiOnyx and Texas Instruments (TI) have
appeared on the market, they are not widely used in daily
life because of their high prices. As an alternative approach,
the improvement of software algorithms offers great flex-
ibility, and improving the quality of low-light videos and
images by means of digital image processing has always
been an important direction of research. Therefore, it is of
great significance and practical value to study enhancement
algorithms for low-light images to improve the performance
of imaging devices.

The main purpose of low-light image enhancement is
to improve the overall and local contrast of the image,
improve its visual effect, and transform the image into a form
more suitable for human observation or computer process-
ing, while avoiding noise amplification and achieving good
real-time performance. [23]–[27]. To this end, it is essen-
tial to enhance the validity and availability of data captured

under low illumination to obtain clear images or videos [28].
Such enhancement can not only render images more consis-
tent with the subjective visual perception of individuals and
improve the reliability and robustness of outdoor visual sys-
tems but also allow such images to be more conveniently ana-
lyzed and processed by computer vision equipment, which is
of great importance for promoting the development of image
information mining [29], [30]. Related research results can
be widely applied in fields such as urban traffic monitoring,
outdoor video acquisition, satellite remote sensing, and mil-
itary aviation investigation and can be used as a reference
for studies on topics such as underwater image analysis and
haze image clarity [31]. Moreover, as an important branch
of research in the field of image processing, low-light image
enhancement has interdisciplinary and innovative appeal and
broad application prospects and has become a focus of inter-
disciplinary research in recent years [32]. A large number of
researchers at home and abroad have been paying increasing
attention to this field for quite some time [33]–[38].

In the real world, color images are most commonly used,
so most of the algorithms are either designed for color image
enhancement or derived from gray image enhancement meth-
ods. The major methods are listed below.

(i) Enhancement based on the RGB (red, green, blue) color
space. The specific steps are as follows. The three color
components (R, G and B) are extracted from the original
RGB color image. Then, these three components are each
individually enhanced using a grayscale image enhancement
method. Finally, the three components are merged, and the
enhanced results are output. The specific principle is visually
summarized in Fig. 2. This method is simple but can result
in serious color deviations in the enhanced images because it
neglects the correlations between the components.

FIGURE 2. Image enhancement in the RGB color space.

(ii) Enhancement based on the HSI (hue, saturation, inten-
sity) color space (or the YCbCr, L∗a∗b, YUV color space)
[39]–[42]. The brightness component I in the HSI color
space is separate from and unrelated to the chrominance
component H , i.e., the color information of an image. When
the chrominance does not change, the brightness and satu-
ration will determine all of the image information. Hence,
to enhance a color image, the I and S components are usu-
ally enhanced separately while maintaining the same chro-
maticity H . Fig. 3 shows the flow chart of this enhancement
approach.
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FIGURE 3. Image enhancement in the HSI color space.

In recent years, a common method used to process color
images has been to leave one component unchanged while
enhancing the other components based on a space transfor-
mation. Notably, the available transformations of the color
space are diverse, and the form of an image is not limited to
a certain space. Regardless of the color space used, the pro-
cessing steps are similar to those of an enhancement method
based on the HSI space [43]–[45]. Studies on low-light image
enhancement technology are currently still being conducted
by many researchers. Although promising findings have been
obtained, this technology is still not mature. In particular,
the available algorithms often have a better effect in a certain
aspect than in others. Thus, the field still has significant
research value and offers a large development space that is
attractive to researchers.

The remainder of this paper is organized as follows.
Section II introduces a classification of low-light image
enhancement algorithms according to their underlying prin-
ciples, and the characteristics of the different categories of
algorithms are analyzed in detail. In Section III, related qual-
ity assessment criteria for enhanced images are described.
Several experiments implemented to test the performance of
the representative methods are described in Section IV, and
the conclusions are summarized and future research direc-
tions suggested in the last section.

II. CLASSIFICATION OF LOW-LIGHT IMAGE
ENHANCEMENT ALGORITHMS
Scholars worldwide have proposed many image enhance-
ment algorithms for images captured under low-illumination
conditions to improve low-light videos and images from dif-
ferent perspectives [1], [3], [7]. In accordance with the algo-
rithms used for brightness enhancement, this paper divides
these processingmethods into seven classes: gray transforma-
tion methods, histogram equalization (HE) methods, Retinex
methods, frequency-domain methods, image fusion methods,

FIGURE 4. Classification of low-light image enhancement algorithms.

defogging model methods and machine learning methods.
These methods can be further divided into different sub-
classes in accordance with the differences in their principles.
The overall classification is depicted in Fig. 4.

A. GRAY TRANSFORMATION METHODS
A gray transformation method is a spatial-domain image
enhancement algorithm based on the principle of transform-
ing the gray values of single pixels into other gray values
by means of a mathematical function [46], which is usually
called a mapping-based approach. Such a method enhances
an image by modifying the distribution and dynamic range
of the gray values of the pixels [1], [7]. The main sub-
classes of this type method include linear and nonlinear
transformations.

1) LINEAR TRANSFORMATION
A linear transformation of gray values, also known as a linear
stretching, is a linear function of the gray values of the input
image [1], and the formula is as follows:

g(x, y) = C · f (x, y)+ R (1)

where f (x, y) and g(x, y) represent the input and output
images, respectively, and C and R are the coefficients of the
linear transformation. An image can be enhanced to different
degrees by adjusting the values of the coefficients in the above
formula. A corresponding transformation curve is shown in
Fig. 5(a). A common formula for a linear gray stretch is as
follows:

g(x, y) =
f (x, y)− fmin

fmax − fmin
(gmax − gmin)+ gmin (2)

where fmax and fmin represent the maximum and minimum
gray values of the input image, respectively, and gmax and
gmin represent the maximum and minimum gray values of
the output image, respectively [7]. Thus, the dynamic range
of the image is transformed from [fmin, fmax] to [gmin, gmax]
to enhance the brightness and contrast. Sometimes, the gray
values in only a specific area of the image need to be stretched
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FIGURE 5. Linear transformation curves.

or compressed by applying a piecewise linear transformation
to adjust the contrast; the formula for such a transformation
is as follows.

g(x, y) =



c
a
f (x, y) 0 ≤ f (x, y) ≤ a

d − c
b− a

(f (x, y)− a)+ c a ≤ f (x, y) ≤ b

h− d
e− b

(f (x, y)− b)+ d b ≤ f (x, y) ≤ e

(3)

The various functions in the piecewise formula are
represented by colored polylines in the coordinate system
corresponding to the transformation. The positions of the
discontinuity points must be determined individually for each
specific image. An example of such a piecewise linear trans-
formation curve is shown in Fig. 5(b).

In the piecewise linear transformation method, parameter
optimization can be performed only based on experience
or with considerable human participation; thus, it lacks an
adaptive mechanism. Additionally, it is difficult to achieve
the optimal enhancement effect [46], [47], [47]–[49]. To over-
come these problems, a hybrid genetic algorithm com-
bined with differential evolution has been applied for image
enhancement processing [50]. The optimal transformation
curve was obtained through the adaptive mutation and quick
search capabilities of this algorithm. In summary, the princi-
ple of linear image enhancement is simple and fast to execute,
but the effect is not satisfactory, with some image details
typically being lost due to uneven image enhancement.

2) NONLINEAR TRANSFORMATION
The basic idea of a nonlinear gray transformation is to use
a nonlinear function to transform the gray values of an
image [51]. Frequently used nonlinear transformation func-
tions include logarithmic functions, gamma functions and
various other improved functions [52], [53]. A logarithmic
transformation function implies that there is a logarithmic
relationship between the value of each pixel in the output
image and the value of the corresponding pixel in the input
image. This type of transformation is suitable for an exces-
sively dark image because it can stretch the lower gray values
of the image while compressing the dynamic range of the

pixels with higher gray values [54]. The typical formula is
as follows:

g(x, y) = log(1+ c× f (x, y)) (4)

where c is a control parameter.
The shapes of several logarithmic transformation functions

are shown in Fig. 6(a). A logarithmic transformation function
stretches the gray values of pixels in low-gray-value areas and
compresses the values of pixels in high-gray-value areas.

FIGURE 6. Nonlinear transformation curves.

The gamma function is a nonlinear transformation with
broad application whose formula is as follows:

g(x, y) = f (x, y)γ (5)

where γ denotes the gamma correction parameter, which is
usually a constant. Several gamma transformation curves are
shown in Fig. 6(b).

As shown in Fig. 6(b), several different transformation
curves can be obtained by varying the parameter γ . When
γ > 1, the transformation will stretch the dynamic range
of the low-gray-value areas of the image and compress the
range of the high-gray-value areas. In contrast, when γ < 1,
the transformation will compress low gray values and stretch
high gray values. When γ = 1, the output remains the
same [55]. Therefore, different gray regions of an image
can be selectively stretched or compressed by adjusting this
parameter to obtain a better enhancement effect. Drago et al.
suggested that the dynamic range of an image can be effec-
tively compressed by mapping the gray values of the image
using an adaptive logarithmic function [56]. Tao et al. used
a gray value corresponding to the cumulative histogram of
an image with a value of 0.1 to self-adaptively obtain a
nonlinear mapping function that can enhance the brightness
of dark regions while inhibiting the enhancement of bright
regions [57]. Likewise, a low-light color image enhance-
ment algorithm based on a logarithmic processing model was
proposed by Tian et al. [58]. First, this algorithm applies a
nonlinear enhancement process to the brightness components
of an image; then, the membership function is amended by
introducing an enhancement operator. Finally, the enhanced
image is obtained by means of the inverse transform of
the membership function. Huang et al. [59] proposed an
adaptive gamma correction algorithm in which the gamma
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correction parameter is adaptively obtained in accordance
with the cumulative probability distribution histogram.
However, because this gamma correction method relies on
a single parameter, it is prone to cause overenhancement of
bright areas. To overcome this shortcoming, a double gamma
function was constructed by Zhi et al. and adjusted based on
the distribution characteristics of the illumination map [60],
thus improving the gray values in low-brightness areas while
suppressing the gray values in local high-brightness regions.
Moreover, an arctangent hyperbola has been used to map
the hue component of an image to an appropriate range
by Yu et al. [61], and later, low-light image enhancement
based on the optimal hyperbolic tangent profile was pro-
posed [62]. Nonlinear transformation requires more com-
plex calculations and consequently a longer time than linear
transformation [63], [64].

In summary, gray transformation can highlight gray areas
of interest and has the advantages of simple implementation
and fast speed. However, such methods do not consider the
overall gray distribution of an image; consequently, their
enhancement ability is limited, and their adaptability is poor.

B. HISTOGRAM EQUALIZATION (HE) METHODS
If the pixel values of an image are evenly distributed across
all possible gray levels, then the image shows high contrast
and a large dynamic range. On the basis of this charac-
teristic, the HE algorithm uses the cumulative distribution
function (CDF) to adjust the output gray levels to have a
probability density function that corresponds to a uniform
distribution; in this way, hidden details in dark areas can be
made to reappear, and the visual effect of the input image can
be effectively enhanced [65], [66].

1) PRINCIPLE OF HE
In the HE method, the CDF is used as the transformation
curve for the image gray values [67]–[71]. Let I and L denote
an image and its gray levels, respectively. I (i, j) represents the
gray value at the position with coordinates (i, j), N represents
the total number of pixels in the image, and nk represents
the number of pixels of gray level k . Then, the gray-level
probability density function of image I is defined as

p(k) =
nk
N
, (k = 0, 1, 2, . . . ,L − 1) (6)

The CDF of the gray levels of image I is

c(k) =
k∑

r=0

p(r), k = 0, 1, 2, . . . ,L − 1 (7)

The standard HE algorithm maps the original image to an
enhanced image with an approximately uniform gray-level
distribution based on the CDF. The mapping relationship is
as follows:

f (k) = (L − 1)× c(k) (8)

An example of HE is shown in Fig. 7, in which (a) presents
the input low-light image, (b) displays the histogram of the

FIGURE 7. Example of HE on a grayscale image.

input low-light image, (c) presents the enhanced image after
HE, and (d) displays the histogram of the enhanced image.
The principle of the standard HE algorithm is simple and
can be executed in real time. However, the brightness of the
enhanced image will be uneven, and some details may be lost
due to gray-level merging.

FIGURE 8. Basic model of GHE algorithms.

2) BASIC MODELS OF HE METHODS
Depending on the regions considered in the calculation,
HE methods can be divided into global histogram equaliza-
tion (GHE) and local histogram equalization (LHE) [72].
The general concept of a GHE algorithm is illustrated by
the model shown in Fig. 8, where X represents the original
image, Y represents the enhanced image generated by the HE
algorithm, Y = f (X ) represents the traditional HE process
or an improved version, and X1,X2,X3, · · · ,Xn represent n
subimages composed of pixels in the original image that sat-
isfy certain conditions according to a given property, which is
defined asQ(x). The parameter x represents the magnitude of
the image gray value, Y1,Y2,Y3, · · · ,Yn denote the equalized
images corresponding to the n subimages, and the image Y
after equalization is obtained by merging the subimages in
accordance with the pixel positions.

The GHE model has several advantages, such as relatively
few calculations and high efficiency, and it is especially
suitable for the enhancement of overall darker or brighter
images [58]. However, it is difficult for a global algorithm,
which conducts statistical operations based on the gray values
of the whole image, to obtain the optimal recovered values
for each local region. Such an algorithm is unable to adapt
to the local brightness characteristics of the input image,
and consequently, the sense of depth in the image will be
decreased after processing.
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FIGURE 9. Basic model of LHE algorithms.

To solve this problem,many scholars have proposed that an
LHE algorithm should be used instead, and such algorithms
have hence been put into wide practice. The basic idea of
LHE is to apply the HE operation separately to various local
areas of an image. The original image is spatially divided into
multiple subblocks, and equalization is conducted separately
on each subblock to adaptively enhance the local information
of the image to achieve the desired enhancement effect. LHE
methods can be further divided into three approaches [72],
namely, LHE with nonoverlapping subblocks, LHE with
overlapping subblocks and LHE with partially overlapping
subblocks, as shown in Fig. 9. The implementation process
for these algorithms is as follows.

(i) For an input image of a given size, M × N , a subblock
with dimensions of m × n is defined in the upper left corner
of the image, and additional subblocks are defined by moving
along the horizontal and vertical directions with step sizes of
h and w, respectively.
(ii) HE processing is applied to each subblock in the same

manner as for a GHE algorithm.
Then, the results are added to the output image, and the

cumulative number of subblock processing rounds for each
pixel is recorded.

(iii) The next subblocks are defined bymoving horizontally
with the horizontal step size h and vertically with the vertical
step size w. For each subblock that does not exceed the
image boundary, step (ii) is repeated; if no such unprocessed
subblocks remain, the method proceeds to the next step.

(iv) The output image is obtained by dividing the gray
value of each pixel in the output image by the corresponding
cumulative number of subblock processing rounds. The dis-
advantages of this algorithm are the local block effects and
the large number of calculations.

3) HE ALGORITHMS
Many algorithms have been developed based on the
classic HE approach. For example, Kim first proposed

brightness-preserving bi-histogram equalization (BBHE) to
maintain the image brightness [73], in which the input image
is divided into two subimages IL and IU (satisfying the condi-
tions I = IL∪IU and I = IL∩IU = 8) using the mean bright-
ness of the original image as a threshold. HE is then applied
to each subimage to address the issue of uneven brightness in
local areas of the enhanced image. Subsequently, Wang et al.
proposed the equal-area dualistic subimage histogram equal-
ization (DSIHE) algorithm [74]. This algorithm uses the
median gray value of the original image as a threshold to
divide the image into two parts of the same size to maximize
its entropy value, thus overcoming the loss of image infor-
mation caused by the standard HE algorithm. Later, Chen
proposed the minimum mean brightness error bi-histogram
equalization (MMBEBHE) model [75], which minimizes
the mean brightness error between the output image and
the original image. Furthermore, Shen et al. proposed the
iterative brightness bi-histogram equalization (IBBHE) algo-
rithm [76], in which the segmentation threshold is selected
through an iterative method to drive the mean to converge
to the optimum while avoiding the confusion between target
and background that can occur in traditional HE. Similarly,
a BBHE algorithm that preserves color information was pro-
posed by Tian et al. [77]. This algorithm not only retains
the color information of the input image but also enhances
the image details. Other optimization methods, including
local approaches, have also been continuously emerging. For
example, a standard adaptive histogram equalization (AHE)
algorithm was proposed in [78], while in [79], a block iter-
ative histogram method was used to enhance the image con-
trast, and amoving template was used for partially overlapped
subblock histogram equalization (POSHE) processing for
each part of the image. Liu et al. [80] proposed an LHE
method that uses a histogram-number-based gray-level pro-
tection mechanism on the basis of nonoverlapping subblocks.
The spatial positions of the pixels in each block are taken into
account when setting the weights, thus effectively eliminating
the block effect. Huang and Yeh [81] proposed a novel LHE
algorithm that can improve the contrast of an image while
maintaining its brightness. Reza [82] proposed the contrast-
limited adaptive histogram equalization (CLAHE) algorithm.
This algorithm effectively mitigates the block effect that
arises in the enhancement process and limits local contrast
enhancement by setting a threshold, thus avoiding excessive
enhancement of the image contrast. The CLAHE method
can be combined with the Wiener filter (WF) or a finite
impulse response filter (FIRF) for image contrast enhance-
ment, as discussed in [83] and [84], respectively. Based on
BBHE and recursive mean-separate histogram equalization
(RMSHE) [85], an LHE algorithm that maintains image
brightness was proposed in [86]. In this algorithm, RMSHE
is applied to each subblock, thus effectively maintaining the
mean brightness of the subblocks. Based on DSIHE and
RMSHE, a POSHEmethod with equal-area recursive decom-
position was proposed in [87]. In this algorithm, multiple
equal-area recursive decompositions are implemented on the
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subblocks in combination with DSIHE and RMSHE to more
effectively maintain the image brightness compared with
DSIHE. Simultaneously, a bilinear differencemeasure is used
to eliminate the differences in contrast between each subblock
and the two externally adjacent subblocks, thus improving
the visual effect of the image. In addition, an LHE algorithm
based on entropy maximization and brightness maintenance
was proposed in [88] that maximizes the entropy of the
subblocks while leaving their mean brightness unchanged
before and after equalization, thus effectively enhancing the
image details. In [89], the contextual and variational con-
trast (CVC) enhancement algorithm was proposed; in this
algorithm, the two-dimensional histogram and context infor-
mation model of the input image are used to implement
nonlinear data mapping to enhance a weakly lighted image.
In [59], an HE method with gamma correction was pro-
posed and achieved a balance between the quality of the
output image and the computing time. However, the HE
methods discussed above typically fail to effectively elim-
inate the potentially severe interference of noise in weakly
illuminated images; in fact, they may even amplify such
noise. Therefore, researchers have proposed interpolation-
based HE algorithms, in which linear interpolation methods
are used to determine the transformation function for the
current pixels, thus overcoming the "block effect" caused
by nonoverlapping subblocks in HE and achieving a better
enhancement effect. In recent years, the newly proposed
algorithms have all been combined with image analysis.
The background brightness-preserving histogram equaliza-
tion (BBPHE) algorithm [90] divides the input image into the
background region and the target region, while the dominant
orientation-based texture histogram equalization (DOTHE)
algorithm [91] divides the image into textured and smooth
regions. Other typical algorithms include gain-controllable
clipped histogram equalization (GCCHE) [72], recursive
subimage histogram equalization (RSIHE) [92], entropy-
based dynamic subhistogram equalization (EDSHE) [93],
dynamic histogram equalization (DHE) [94], brightness-
preserving dynamic histogram equalization (BPDHE) [95],
bi-histogram equalization with a plateau limit (BHEPL) [96],
median-mean-based subimage-clipped histogram equaliza-
tion (MMSICHE) [97], exposure-based subimage histogram
equalization (ESIHE) [98], adaptively modified histogram
equalization (AMHE) [99], weighted histogram equaliza-
tion (WHE) [100], a histogram modification framework
(HMF) [101], gap adjustment for histogram equalization
(CegaHE) [102], and unsharp masking with histogram equal-
ization (UMHE) [103].

To illustrate the performance of HE methods on color
images, the AMHE [99], BBHE [73], CLAHE [82],
DSIHE [74], HE [66], RMSHE [85], RSIHE [92], and
WHE [100] algorithms are tested here in both the RGB and
HSI color spaces. The test image and its results are shown
in Figs. 10-12.

(i) Equalization and merging of the three R, G and B
subimages

FIGURE 10. Image decomposition (figure best viewed in color).

FIGURE 11. Image enhancement using RGB model (figure best viewed in
color).

FIGURE 12. Image enhancement using HSI model.

The contrast of gray images can be effectively enhanced;
however, for a color image with three components
(R, G and B), serious color distortion of the image may be
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observed if the final image is obtained by simply equalizing
and merging the R, G, and B subimages after equalization.
The main reason is that the traditional HE algorithm exces-
sively enhances the image brightness. If the mean brightness
of one of the three R, G and B subimages of a color image
is too dark or too bright, then the mean brightness of this
subimage after equalization will be near the median gray
value of this component. As a result, the color corresponding
to this subimage will be either strengthened or weakened
after enhancement, resulting in obvious color distortion and
inconsistency in the final color image. Therefore, the primary
goal of HE for a color image using this method is to maintain
the mean brightness of the image while enhancing the image
contrast.

(ii) In the HSI model, only the brightness component is
equalized. In this method, the input color image is first con-
verted from the RGB color space to the HSI color space, and
then HE enhancement is applied to the brightness compo-
nent I. Finally, the color image is converted back to the RGB
space. In this way, the number of equalizations is reduced
from 3 to 1. However, some calculations are still needed for
the transformation between the color spaces, and there is still
a risk of excessive image enhancement.

In summary, HE algorithms can effectively enhance low-
light images and are often used in combination with other
methods. The visual effect of such an image can be improved
based on the contrast and detail enhancement provided by an
HE algorithm. However, these methods can also easily cause
a loss of color fidelity and the generation of noise, resulting
in image distortion.

C. RETINEX METHODS
The Retinex theory, namely, the theory of the retinal cortex,
established by Land and McCann, is based on the percep-
tion of color by the human eye and the modeling of color
invariance [104]. The essence of this theory is to determine
the reflective nature of an object by removing the effects of
the illuminating light from the image. According to Retinex
theory, the human visual system processes information in
a specific way during the transmission of visual informa-
tion, thus removing a series of uncertain factors such as the
intensity of the light source and unevenness of light. Conse-
quently, only information that reflects essential characteris-
tics of the object, such as the reflection coefficient, is retained
[105]–[109]. Based on the illumination-reflection model (as
shown in Fig. 13), an image can be expressed as the product of
a reflection component and an illumination component [110]:

I (x, y) = R(x, y)L(x, y) (9)

where R(x, y) is the reflection component, which represents
the reflective characteristics of the object surface; L(x, y)
is the illumination component, which depends on the envi-
ronmental light characteristics; and I (x, y) is the received
image. L(x, y) determines the dynamic range of the image,
whereas R(x, y) determines the inherent nature of the image.
According to Retinex theory, if L(x, y) can be estimated from

FIGURE 13. Light reflection model.

FIGURE 14. General process of the Retinex algorithm.

I (x, y), then the reflection component can be separated from
the total amount of light, and the influence of the illumination
component on the image can be reduced to enhance the
image [111]. The Retinex algorithm features a sharpening
capability, color constancy, large dynamic range compression
and high color fidelity. The general process of the Retinex
algorithm is shown in Fig. 14, where Log denotes the loga-
rithmic operation and Exp denotes the exponential operation.
Many researchers have proposed effective image enhance-

ment algorithms based on the Retinex theory. First, Land
proposed that the illumination component could be estimated
by using a random path algorithm to reduce the effect of
uneven illumination. However, this random path algorithm is
complex and has a common effect. Later, a two-dimensional
path selection method, namely, the central Retinex algorithm,
was proposed. Its core idea is as follows: an appropriate
surround function is selected to determine the weighting of
the pixel values in the neighborhood of the current pixel,
which are then used to replace the current pixel value. Subse-
quently, Jobson et al. proposed the single-scale Retinex (SSR)
algorithm [112], [113], followed by the multiscale Retinex
(MSR) algorithm and the multiscale Retinex algorithm with
color restoration (MSRCR) [114], [115].

1) SINGLE-SCALE RETINEX (SSR)
Essentially, the SSR algorithm obtains a reflection image by
estimating the ambient brightness. The formula is as follows:

logRi(x, j) = log Ii(x, y)− log[G(x, y)∗Ii(x, y)] (10)

where I (x, y) represents the input image, R(x, y) represents
the reflection image, i represents the various color channels,
(x, y) represents the position of a pixel in the image, G(x, y)
represents the Gaussian surround function, and ∗ represents
the convolution operator.

The formula for the Gaussian surround function is

G(x, y) = Ke(−
x2+y2

σ2
) (11)

where σ is a scale parameter. The smaller the value of this
parameter is, the larger the dynamic range compression of
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the image is, and the clearer the local values are. K is a
normalization factor to ensure that the Gaussian function
satisfies ∫∫

G(x, y)dxdy = 1 (12)

To better mimic the characteristics of the human visual
system, automatic gain compensation is often required; that
is, the output image is mapped to [0, 255] using a linear gray
stretching algorithm. Themathematical formula is as follows:

R′i(x, y) = 255×
Ri(x, y)− Rmin

Rmax − Rmin
(13)

where R′i(x, y) is the output after gray stretching of the ith

color channel, and Rmax and Rmin are the maximum and
minimum gray levels of the original image, respectively.
Fig. 15 shows the enhancement results obtained using the
SSR method when σ is 15, 80 and 250, respectively.

FIGURE 15. Enhancement with the SSR algorithm (figure best viewed in
color).

However, the SSR algorithm has some limitations. It is
difficult to maintain a balance between detailed information
enhancement and color fidelity in images processed with this
algorithm due to the use of a single scale parameter.

2) MULTISCALE RETINEX (MSR)
To maintain a balance between dynamic range compression
and color constancy, Jobson, Rahman et al. extended the
single-scale algorithm to a multiscale algorithm, namely, the
MSR algorithm [114], which is expressed as follows:

MSR = logRi(x, y)

=

k=1∑
N

ωk{log Ii(x, y)− log[Gk (x, y)∗Ii(x, y)]} (14)

N∑
k=1

ωk = 1 (15)

where i represents the three color channels; k represents the
Gaussian surround scales; N is the number of scales, gener-
ally 3; and the ω parameters are the scale weights. Compared
with the SSR algorithm, the MSR algorithm can take advan-
tage of the benefits ofmultiple scales. TheMSR algorithm not
only enhances image details and contrast but also produces
enhanced images that exhibit better color consistency and an
improved visual effect.

3) MULTISCALE RETINEX WITH COLOR
RESTORATION (MSRCR)
During the process of image enhancement, the SSR or MSR
algorithm is applied separately to the three color channels,
R, G and B. Therefore, compared with the original image,
the relative proportions of the three color channels may
change after enhancement, thus resulting in color distortion.
To overcome this problem, MSRCR has been proposed. This
algorithm includes a color recovery factorC for each channel,
which is calculated based on the proportional relationship
among the three color channels in the input image and is then
used to correct the color of the output image to eliminate color
distortion.

The formula for the color recovery factor is as follows:

Ci(x, y) = f (
Ii(x, y)
3∑
i
Ii(x, y)

) (16)

where f denotes the mapping function, and C(x, y) is the
color recovery factor. Jobson et al. found that the best color
recovery effect is achieved when the mapping function is a
logarithmic function, namely,

Ci(x, y) = β × log(α ×
Ii(x, y)
3∑
i
Ii(x, y)

) (17)

The mathematical expression for the MSRCR algorithm
can be obtained by combining formulas (18) and (15):

MSRCR = logRi(x, y)

=

k=1∑
N

Ciωk{log Ii(x, y)− log[Gk (x, y)∗Ii(x, y)]}

(18)

The algorithm takes advantage of the convolution oper-
ation with Gaussian functions. Dynamic range compres-
sion and color constancy are achieved for features at large,
medium and small scales, thus yielding a relatively ideal
visual effect. Experimental results obtained with the SSR,
MSR and MSRCR algorithms are shown in Fig. 16.

FIGURE 16. Enhancement with different Retinex algorithms.

4) OTHER RETINEX ALGORITHMS
Retinex theory conforms to the characteristics of human
visual perception; consequently, it has been widely
applied and developed. Many enhancement algorithms
have been proposed based on Retinex theory [116]–[119].
Kimmel et al. used the transcendental hypothesis to propose

87892 VOLUME 8, 2020



W. Wang et al.: Experiment-Based Review of Low-Light Image Enhancement Methods

a Retinex algorithm based on a variational framework [120],
in which the problem of illumination estimation is trans-
formed into an optimal quadratic programming problem.
Despite its high complexity, this algorithm achieves good
results. Elad et al. proposed a noniterative Retinex algorithm
that can process the edges in an image and suppress noise
in dark areas [121]. Meylan et al. proposed a new model for
presenting images with a high dynamic range and adapting
images both globally and locally to the human visual system.
In this algorithm, an adaptive filter is applied to reduce the
chromatic aberrations caused by halo effects and brightness
modification [122]. Xu et al. proposed a rapid Retinex image
enhancement method that eliminates the halo phenomenon
encountered with the traditional Retinex algorithm in areas
of high light and dark contrast [123].

Likewise, Marcelo et al. proposed a kernel-based Retinex
(KBR) method, which relies on calculating the expected
value of a suitable random-variable-weighted kernel func-
tion to reduce color error and improve details in a shadow
image [124]. In 2011, Ng et al. proposed a total variation
model based on the Retinex algorithm; in this model, the illu-
mination component is spatially smooth, and the reflection
component is piecewise continuous. Moreover, a fast calcu-
lation method was used to solve the minimization problem
posed by the variation model. Finally, the validity of the pro-
posedmodel was verified through experiments [125]. In addi-
tion, Fu et al. proposed a weighted variation model for the
simultaneous reflectivity and illumination estimation (SRIE)
of observed images; this model can precisely retain the esti-
mated reflectivity while inhibiting noise to some extent [126].
Petro et al. proposed a multiscale Retinex algorithm with
chromaticity preservation (MSRCP) [127]. First, the image
brightness data are processed using the MSR algorithm; then,
the results are mapped to each channel in accordance with
the original proportional relationship among the R, G and B
channels. Thus, the image is enhanced while retaining the
original color distribution, and the grayish color typically
observed in images enhanced using the MSRCR algorithm
is effectively improved [128]. Later, Matin et al. optimized
theMSRCPmethod using particle swarm optimization (PSO)
to avoid manual adjustment of the parameters [129].
Chen and Beghdadi [130] proposed an image enhance-
ment algorithm based on Retinex and a histogram stretch
method to maintain the natural color of images. Shen and
Hwang [131] proposed an image enhancement algorithm
based on Retinex with a robust envelope. To avoid color
distortion, Jang et al. [132] proposed an image enhancement
algorithm based on the use of MSR to estimate the main color
of an image. Inspired by Retinex theory, Wang et al. [133],
Xiao et al. [134] used a bionic method to enhance images.
Chang Hsing Lee et al. proposed an adaptive MSR algo-
rithm [135] based on brightness classification. For pix-
els in dark areas and bright areas, higher weights were
given to larger-scale SSR components to enhance the over-
all visual effect of the image. Wang et al. [136] proposed

a bright-pass filter in combination with neighborhood bright-
ness information to maintain image naturalness, not only
improving the image contrast but also better maintaining
natural brightness without requiring naturalness preserved
enhancement (NPE). Based on Retinex theory, some schol-
ars have separated the reflection and illumination compo-
nents and then enhanced the latter using a local nonlinear
transformation model to render a brighter and more natural
image [137]. As an alternative, an enhancement adjustment
factor has been introduced [138] to adjust the enhancement
degrees of different brightness values to avoid noise amplifi-
cation and color distortion. Fu et al. [139] proposed a Retinex
algorithm based on a variation framework that effectively
enhances the contour details of an image while suppressing
abnormal enhancement. In 2014, Zhao proposed a Retinex
algorithm based on a Markov random field model. This
algorithm estimates the illumination component of an image
by means of guided filtering and solves for the reflection
component of the object of interest based on the Markov
random field model; additionally, this algorithm solves prob-
lems such as detail loss, color distortion and halo effects
encountered when the MSRCR algorithm is used to process
nighttime color images [140]. Later, Zhao et al. [141] pro-
posed a Retinex algorithm based on weighted least squares.
Jae et al. [142] proposed an MSR algorithm based on
subband decomposition with a fusion strategy. Moreover,
Liu et al. [143] combined the Retinex algorithmwith bilateral
filtering, thereby effectively improving the color distortion
and detail loss in the final image but also increasing the
complexity of the algorithm [144], [145]. Yin et al. [146],
Mulyantini and Choi [147], Zhang et al. [148], Ji et al. [149],
and Zhang et al. [150] proposed Retinex-based algorithms
combined with guided filters [151]. Particularly during the
early stage of research on Retinex algorithms, scholars
obtained many fruitful findings.

In short, Retinex algorithms have clear benefits and can
be easily implemented. These methods can not only increase
the contrast and brightness of an image but also has obvious
advantages in terms of color image enhancement. However,
these algorithms use the Gaussian convolution template for
illumination estimation and do not have the ability to preserve
edges; consequently, they may lead to halo phenomena in
some regions with sharp boundaries or cause the whole image
to be too bright.

D. FREQUENCY-DOMAIN METHODS
With the development of multiscale image analysis tech-
nology, research on image enhancement algorithms has
been extended from the spatial domain to the frequency
domain [152]. Image enhancement methods based on the
frequency domain transform an image into the frequency
domain for filtering by means of Fourier analysis, and the
final image is then inversely transformed back into the spatial
domain. Typical frequency-domain methods include homo-
morphic filtering (HF) and wavelet transform (WT) methods.
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1) HOMOMORPHIC FILTERING (HF)
HF-based enhancement methods use the characteristics of the
illumination-reflection model to transform the illumination
and reflection components in the form of a sum in the log-
arithmic domain rather than a product. A high-pass filter is
used to enhance the high-frequency reflection component and
suppress the low-frequency illumination component in the
Fourier transform domain [7].

The specific steps of the HF process are listed as follows.
(i) In the illumination-reflection model, the illumination

component is multiplied by the reflection component, which
cannot be transformed into the frequency domain. There-
fore, to allow these components to be processed separately,
the logarithmic transformation should first be implemented to
transform these multiplicative components into additive com-
ponents. Taking the logarithm of both sides of equation (10)
yields the following:

ln I (x, y) = ln L(x, y)+ ln R(x, y) (19)

(ii) The image is transformed from the spatial domain into
the frequency domain by means of the Fourier transform,
i.e., the Fourier transform is applied to both sides of the above
equation:

F[ln I (x, y)] = F[ln L(x, y)+ ln R(x, y)] (20)

This equation can be written more concisely as

I (u, v) = L(u, v)+ R(u, v) (21)

where I (u, v), L(u, v) andR(u, v) are the Fourier transforms of
I (u, v), L(u, v) and R(u, v), respectively. The spectral function
L(u, v) is mainly concentrated in the low-frequency range,
while the spectral function R(u, v) is mainly concentrated in
the high-frequency range.

(iii) For contrast enhancement, an appropriate high-pass
filter is selected, and the R(u, v) component in the frequency
domain is enhanced by the transfer function H (u, v). The
resulting expression is as follows:

S(u, v) = H (u, v)I (u, v) = H (u, v)L(u, v)+ H (u, v)R(u, v)

(22)

(iv) The inverse Fourier transform is used to transform
the image from the frequency domain back into the spatial
domain. Let s(u, v) denote the inverse Fourier transform cor-
responding to S(u, v); then, the inverse Fourier transform of
equation (10) is

s(u, v) = F−1(H (u, v)L(u, v))+ F−1(H (u, v)R(u, v))

= hL(x, y)+ hR(u, v) (23)

Therefore, the enhanced image corresponds to the super-
position of the illumination component and reflection
component.
(v) The inverse logarithmic transform G(x, y) =

exp[s(x, y)] is applied to equation (24) to obtain the final
corrected image. Thus, by taking the exponent of both sides of

equation (24), the image after frequency-domain correction is
obtained as follows:

G(x, y) = exp|hL(x, y)| · exp|hR(x, y)| (24)

Therefore, the core of the HF technique is to design an
appropriate filter H (u, v) based on the image properties char-
acterized by the illumination component and the reflection
component in combination with a frequency filter and a gray
transformation to compress the dynamic range and enhance
the contrast. A homomorphic filter has the following general
form:

H (u, v) = (γH − γL)Hhp(u, v)+ γL (25)

where γL < 1 and γH < 1; the purpose of these parameters
is to control the scope of the filter amplitude. Hhp is usually
a high-pass filter, such as a Gaussian high-pass filter, a But-
terworth high-pass filter, or a Laplacian filter. If a Gaussian
filter is used as Hhp, then

Hhp = 1− exp[−c× (D2(u, v)/D2
0)] (26)

where c is a constant that controls the form of the filter.
The larger the value of the transition gradient from low

frequency to high frequency is, the steeper the slope, as shown
in Fig. 17.

FIGURE 17. Amplitude-frequency curve of a homomorphic filter.

FIGURE 18. Flowchart of the HF process.

The specific algorithm flow of the HF method is shown
in Fig. 18. In this figure, Log is the logarithmic transform,
FFT is the fast Fourier transform, H (u,v) is the frequency
filtering function, IFFT is the inverse FFT, and Exp is the
exponential operation.

The traditional HF algorithm requires two Fourier trans-
forms and thus is not suitable for real-time processing.
To address this issue, some scholars have proposed an HF
algorithm based on a spatial filter [153], [154]. The main
idea is similar to that of the traditional HF algorithm.
First, the original image is transformed into the logarithmic
domain, and then, the output of a low-pass filter is used to
estimate the illumination component. Finally, the reflection
component is added to obtain the enhanced image. Because
the traditional HF algorithm does not account for the local
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features of the image space, Zhang and Xie [155] proposed
an HF algorithm based on the block discrete cosine trans-
form (DCT) and removed the block effect after HF by con-
sidering the average boundaries with adjacent subimages as
well as the characteristics of the DCT. Images processed with
this algorithm show a good effect in terms of local con-
trast. A two-channel HF color image enhancement method
based on the HSV color space was proposed in [41] by
Han Lina et al. First, the input color image is transformed
from RGB space into HSV space, thus obtaining separate
chroma-, saturation- and brightness-channel images. Then,
the saturation (S)-channel image is enhanced via Butterworth
HF, and the brightness (V)-channel image is enhanced via
Gaussian HF. Finally, the image is transformed back into
RGB space to obtain the enhanced image. Fig. 19 shows
the effects of enhancement processing with a Gaussian high-
pass filter and presents the histograms corresponding to the
images. The image brightness is improved after the HF pro-
cess, but the image details are fuzzy.

FIGURE 19. HF effect (figure best viewed in color).

Each coin has two sides: HF has the advantage of better
maintaining the original image content, but its disadvan-
tage is that it requires two Fourier transforms, namely, one
exponential operation and one logarithmic operation, and
therefore involvesmore calculation [156]–[158]. If the cut-off
frequency of the high-pass filter is too high, then the dynamic
range will be compressed and details will be lost. If the cut-
off frequency is too low, the dynamic range compression
will be minimal, and the algorithm will lack self-adaptability.
This method is based on the premise of uniform illumination;
consequently, the enhancement effect is poor for nighttime
images with both bright and dark areas.

HF algorithms can remove uneven regions generated by
light while maintaining the contour information of an image.
However, such an algorithm requires two Fourier transfor-
mations, i.e., one exponential operation and one logarithmic
operation, for each pixel in an image; therefore, its computa-
tional burden is large.

2) WAVELET TRANSFORM (WT)
Similar to the Fourier transform, the WT is a mathematical
transform that uses a group of functions called a wavelet
function basis to represent or approximate a signal [159]. The
WT can be used not only to characterize the local features of
signals in the time and frequency domains but also to conduct
a multiscale analysis of functions or signals through oper-
ations such as scaling and translation. Thus, great progress
in image contrast enhancement has been achieved using

WT methods. In a WT-based image enhancement algorithm,
the input image is first decomposed into low-frequency and
high-frequency image components; then, image components
at different frequencies are separately enhanced to highlight
the details of the image. The main idea of the wavelet anal-
ysis method is to apply wavelet decomposition to the orig-
inal image to obtain the wavelet coefficients for different
subbands, adjust these wavelet coefficients, and then apply
the inverse transformation to the new coefficients to obtain
the processed image. Such an image enhancement algorithm
can enhance an image at multiple scales based on the WT.
It is believed that low-illumination conditions have a greater
influence on high-frequency image components, which are
generally concentrated at the edges of an image and in con-
tour regions [160]. Therefore, a WT-based algorithm will
enhance the high-frequency components of the input image
and suppress its low-frequency components. In particular,
the dual-tree complex WT can usually achieve satisfactory
results [161]–[165].

The basic process of WT-based image enhancement is
as follows. Processing of the displacement τ is carried out
for the function ψ(t) describing the basic wavelet (parent
wavelet); then, a wavelet sequence can be obtained by taking
the inner product between the processed ψ(t) and the signal
x(t) to be analyzed at various scales a.

WTx(a, τ ) =
1
√
a

∫
+∞

−∞

x(t)ψ∗
(
t − τ
a

)
dt (a > 0) (27)

The equivalent expression in the frequency domain is

WTx(a, τ ) =
√
a

2π

∫
+∞

−∞

X (ω)ψ∗(aω)ejωτ dω (28)

where X (ω) andψ(ω) represent the Fourier transforms of x(t)
and ψ(t), respectively.

In standardWT-based image enhancement, the input image
is usually first decomposed into one low-pass subimage and
three directional high-pass subimages, namely, a horizon-
tal detail image, a vertical detail image, and a diagonal
detail image. The low-pass subimage represents the low-
frequency information in the image, which corresponds to
smooth regions. The high-pass subimages represent the high-
frequency information in the image, which correspond to
detailed image information. Based on the characteristics of
these subimages, the most effective method is selected to
enhance the coefficients of the different frequency compo-
nents. Finally, the enhanced image in the spatial domain is
obtained through inverse transformation.

The steps of WT-based image enhancement are as
follows [163], [164].

(i) The original image is input.
(ii) The low-frequency and high-frequency components of

the original image are obtained via wavelet decomposition.
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(iii) The wavelet coefficients are nonlinearly enhanced
with a functional relationship that satisfies

Wo =


Wi + G× (T − 1) Wi > T
G×Wi |Wi| ≤ T
Wi − G× (T − 1) Wi < −T

(29)

where G is the gain for the wavelet coefficient, T is the
threshold for the wavelet coefficient, Wi is the wavelet coef-
ficient after image decomposition, and Wo is the wavelet
coefficient after enhancement.

(iv) The enhanced wavelet coefficients are inversely
transformed to obtain the reconstructed enhanced image.

The basic flow of the WT-based image enhancement
process is illustrated in Fig. 20.

FIGURE 20. Flowchart of WT-based image enhancement.

FIGURE 21. WT-based low-light image enhancement (figure best viewed
in color).

The results of WT-based image enhancement are shown
in Fig. 21, where n is the wavelet scale.

In low-light images, it is difficult to distinguish image
noise from image details. A high-frequency analysis is con-
ducted on the WT-decomposed image, and then, to process
the decomposed wavelet coefficients, various thresholds and
enhancement factors are applied to effectively remove noise
while enhancing detail components. Generally, the enhance-
ment effect is better than that of traditional image enhance-
ment algorithms [166]. Zong et al. proposed a contrast
enhancement method based on multiscale wavelet analy-
sis [167]. In this method, a multiscale nonlinear high-pass
function is used to process the wavelet coefficients, thus
enabling the enhancement of ultrasonic images. Loza et al.
proposed an adaptive contrast enhancement method based on
the statistics of local wavelet coefficients [168]. A model for
the local wavelet coefficients was established on the basis
of the binary Cauchy distribution, thus yielding a nonlinear
enhancement function for wavelet coefficient compression.
A WT-based image enhancement algorithm based on a knee
function and gamma correction (KGWT) has been proposed
in which an improved knee function and a gamma trans-
form function are used to enhance the low-frequency coef-
ficients [169]. Then, after enhancement, the low-frequency
coefficients are combined with the high-frequency coeffi-
cients, and finally, the inverse WT is applied to obtain

the enhanced image. The KGWT algorithm improves the
overall brightness and contrast of images. A WT-based
image enhancement algorithm based on contrast entropy was
proposed in [170]. After wavelet decomposition, the low-
frequency components of the image are enhanced via HE,
and the high-frequency components are enhanced by maxi-
mizing the contrast entropy. Likewise, in [171], the singular
value matrices of low-frequency images were obtained with
an enhanced wavelet decomposition approach, which also
achieved an improved image enhancement effect. A fast and
adaptive enhancement algorithm for low-light images based
on the WT was proposed in [172]. In this algorithm, the RGB
input image is transformed into HSV space, and the discrete
wavelet transform (DWT) is applied to the brightness (V )
image to separate high-frequency and low-frequency sub-
bands. The illumination components in the low-frequency
WT subbands of the image are rapidly estimated and removed
using bilateral filtering, while a fuzzy transformation is used
to realize the enhancement and denoising of edge and texture
information. WT-based image enhancement theory is often
combined with other approaches, such as fuzzy theory, image
fusion, and HE. As discussed in [173], [174], after wavelet
decomposition is performed on the original image, HE can
be performed on each subband image individually. Finally,
the inverse WT can be used to reconstruct the enhanced,
noise-reduced image [175]. The WT approach has also been
combined with Retinex theory to enhance low-light images,
thus achieving a better enhancement effect [176], [177].
Russo [178] proposed a method of improving image quality
by means of multiscale equalization in the wavelet domain.
Chen [179] proposed an image enhancement method that
combines wavelet and fractional differential models. The
WT can reflect both the time-domain and frequency-domain
features of an image. Specifically, thismodel not only extracts
edge information from an image but also extracts its overall
structure, which is consistent with the needs of low-light
image enhancement. However, because the wavelet basis
needs to be defined in advance, the application of this algo-
rithm is limited.

The curvelet transform is a multiscale analysis method
developed based on theWT that can overcome the limitations
of the WT by enhancing the curved edges in an image [180].
Starck et al. [181] proposed a multiscale analysis method
based on the curvelet transform and compared it with the
WT algorithm to demonstrate its superiority for color image
enhancement. The curvelet-transform-based enhancement
algorithm achieves a better effect for noisy images; however,
it is not as effective as the WT method for noiseless or
nearly noiseless images. In [182], theWTwas combined with
the curvelet transform to achieve image enhancement with
edge preservation. The specific steps are as follows. First,
the curvelet transform is applied to remove noise without the
loss of edge details; then, the image is enhanced using theWT.
In [183], an improved enhancement algorithm for noisy low-
light color images based on the second-generation curvelet
transform was proposed. A compromise factor for the YUV
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(luminance and chromaticity) color space and an improved
gain function were used to suppress, elevate or maintain the
curvelet coefficients. This approach effectively suppresses
noise while optimally recovering both the edges and smooth
parts in an image acquired under low illumination. Thus,
the image enhancement quality is effectively improved. The
main advantage of image enhancement methods based on
the WT is that they allow the time- and frequency-domain
features of images to be analyzed on multiple scales [184].
Another advantage of wavelet analysis lies in the refined
local analysis capabilities, as such methods have better local
characteristics in both the spatial and frequency domains and
thus are beneficial for analyzing and highlighting the details
of an image. Wavelet analysis is mainly used for infrared
images [185], [186] and medical image enhancement [187].
The disadvantage is that overbright illumination cannot be
avoided.

In summary, frequency-domain-based algorithms can
effectively highlight the details of an image through enhance-
ment of the wavelet coefficients, but they can also easily
magnify the noise in the image. Like other frequency-domain
transformation methods, these image enhancement meth-
ods require large amounts of calculation, and the selec-
tion of the transformation parameters often requires manual
intervention.

E. METHODS BASED ON IMAGE FUSION
Another direction of research on low-light image enhance-
ment involves methods based on image fusion tech-
niques [188]. In these methods, many images of the same
scene are obtained with different sensors, or additional
images are obtained with the same sensor using various imag-
ing methods or at different times. Finally, as much useful
information as possible is extracted from every image to
synthesize a high-quality image, thus improving the utiliza-
tion rate of the image information. The synthesized image
can reflect multilevel information from the original images
to comprehensively describe the scene, thus allowing the
available image information to better meet the requirements
of both human observers and computer vision systems.

1) MULTISPECTRAL IMAGE FUSION
Multispectral image fusion is an improved method of obtain-
ing the details of a low-light imaged scene by fusing a
visible image with an infrared image. Near-infrared (NIR)
light has a longer wavelength and stronger penetration abil-
ity than does visible light, allowing redundant information
to be removed from a filtered infrared image. Addition-
ally, a low-light visible image can provide rich background
information; consequently, better images can be obtained
through image fusion. For example, in amethod developed by
the US Naval Research Laboratory (NRL), images obtained
with an infrared thermal imager are integrated with the R-,
G- and B-channel images obtained with a low-light night
vision device to obtain night vision color images [189]–[191].
Toet et al. proposed a pseudocolor fusion algorithm for

infrared and visible images [192]; this algorithm enhances
the clarity of the image details while retaining the unique
information captured by various sensors. Additionally, this
algorithm involves only addition and subtraction operations
and thus can be implemented using simple hardware in real
time [193]. Zhu et al. proposed a fusion framework for night
vision applications called night vision context enhancement
(FNCE) [194], in which the fused result is obtained by com-
bining decomposed images using three different rules.

Furthermore, many scholars have studied the use of night
vision technology for single- and double-channel low-light
color fusion based on bispectral and trispectral features.
Vision technology has been developed based on low-light
and infrared thermal image fusion, low-light and longwave
infrared image fusion, ultraviolet and low-light image fusion,
and even trispectral color fusion based on low-light, medium-
wave and longwave infrared images [195]–[197]. However,
the visible and infrared images need to be acquired simul-
taneously, which constrains such algorithms in terms of the
hardware conditions necessary to support them. Moreover,
the intelligence and adaptability of these algorithms are poor,
and their parameters need to be artificially set. Therefore,
these algorithms have still not been widely adopted.

2) IMAGE FUSION BASED ON BACKGROUND
HIGHLIGHTING
Generally, image fusion methods based on background high-
lighting rely on the integration of low-light images with
daytime images to enhance the image details, thus improving
the visual effect of the low-light images [198]. The general
process is described as follows. First, an image is obtained
in the daytime under reasonably sufficient lighting condi-
tions for use as the source of the background for the fused
image. Then, another image is obtained in the same position
under low illumination, and the background of this image
is removed. The remainder of the latter image is taken as
the foreground of the fused image. Finally, the background
and foreground are integrated into a single image using a
suitable algorithm. For example, Raskar et al. estimated the
intensity of the mixed gradient field of multiple low-light
images and daytime images of the same scene, thus improv-
ing the visual effect of the low-light images [199]. Rao et al.
proposed a low-light enhancement method based on video
frame fusion [200]. The foreground area of each low-light
video frame was fused with the background area from a
daytime video frame of the same scene to improve the bright-
ness of the low-light video and compensate for detail loss.
In [201], daytime images from the same site at various times
were fused, and the final fused image was obtained using a
moving object extraction technique and weighting processing
based on brightness estimation theory. This process is shown
in Fig. 22.

Multi-image fusion methods such as those presented in
[202], [203] achieve a better enhancement effect but require
high-quality daytime video information from the same scene.
For example, such methods are not suitable for use in
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FIGURE 22. Fusion based on background highlighting.

underground mines, because no high-quality daytime video
information is available for such areas. Therefore, the appli-
cations of these algorithms are limited. Moreover, the large
number of iterations required complicates the calculation.

3) FUSION BASED ON MULTIPLE EXPOSURES
Image fusion is the process of combining multiple images
of the same scene into a single high-quality image that
contains more information than any single input image.
Petschnigg et al. proposed a method of obtaining vari-
ous images with both flash and nonflash technologies and
then realizing low-light image enhancement through image
fusion [204]. In this method, a flash image is captured to
record detailed information of the scene, and a nonflash
image is captured to record the brightness information of the
background. Then, the image detail information is integrated
with the background brightness information. The resulting
image contains not only the details from the flash image
but also the brightness information from the nonflash image.
Similarly, high-dynamic-range (HDR) [205]–[207] imaging
using multiexposure fusion (MEF) techniques has become
very popular in recent years. MEF methods use multiple
images of the same scene with different exposures. The final
HDR image is obtained by synthesizing the best details from
the images corresponding to each exposure time. A gradient-
domain HDR compression algorithm was proposed in [208].
In this algorithm, different gradients are proportionally com-
pressed in the gradient domain of the images, and Pois-
son’s equation is solved in the modified gradient domain
to obtain output images with a low dynamic range. This
algorithm can also reveal detailed information in areas of
various brightness in HDR night images. Li et al. proposed
an image enhancement algorithm based on multiple image
fusion [209]. In this algorithm, multiple images of the same
scene are first acquired with different exposure times, and
then, various details are extracted from each image. Finally,
these details are integrated to generate an enhanced HDR
image [210]. Merianos andMitianoudis combined two image
fusion methods, one for the fusion of the luminance channel
and one for the fusion of the color channels. The fusion out-
put thus derived outperforms both individual methods [211].
In Ref. [212], the author proposed a new fusion approach
in the spatial domain using a propagated image filter. In the
proposed approach, a weight map is calculated for every input
image using the propagated image filter and gradient-domain
postprocessing.

The fusion of multiple images acquired from the same
scene can be applied to effectively enhance low-light images.
Because good-quality image information from the same
scene is needed, methods of this kind have stringent require-
ments in terms of image acquisition; in particular, the camera
equipment needs to be stable. Since a long shooting time is
required, this method cannot be applied for real-time imaging
or video enhancement. Moreover, the enhancement effect for
images of globally low brightness is poor.

FIGURE 23. Fusion based on a single image.

4) FUSION BASED ON A SINGLE IMAGE
Many scholars have studied the synthesis of the entire
dynamic range of a scene [213], [214], including details
extracted in a variety of ways from a single image, to break
the dependence on image sequences, as shown in Fig. 23.
Le and Li [215] improved the contrast of an image by fusing
the original image with the image obtained after a logarithmic
transformation. Yamakawa and Sugita presented an image
fusion technique that used a source image and the Retinex-
processed image to achieve high visibility in both bright and
dark areas [216]. In Ref. [217], Wang et al. adaptively gen-
erated two new images based on nonlinear functional trans-
formations in accordance with the illumination-reflection
model and multiscale theory and used a principal component
analysis (PCA)-based fusion method to enhance a low-light
image. In [218], an adaptive histogram separation method
was used to construct underexposed and overexposed images
from an original image sequence; these images were then sep-
arately processed, and finally, HDR images were generated
via multiexposure image fusion. In addition, Fu et al. [219]
proposed an image enhancement algorithm based on the
fusion of the results of multiple enhancement techniques.
This algorithm integrates multiple image enhancement tech-
niques by means of a linear weighted fusion strategy to
improve the enhancement effect. However, this strategy is
too complex to satisfy real-time requirements. The algorithm
proposed in [220] integrates the color contrast, saturation and
exposure brightness of an original or preprocessed image
by incorporating MSRCR into a pyramid algorithm using
the gold tower technique and specifying different weight
parameters depending on the image information to achieve
the effective color enhancement of a traditional low-light
image. A camera response model (CRM) is often adopted
for generating multiple images [221]. In [222], the authors
proposed a single-image-based method of generating HDR
images based on camera response function (CRF) recon-
struction. Ying et al. [223] proposed a novel bioinspired

87898 VOLUME 8, 2020



W. Wang et al.: Experiment-Based Review of Low-Light Image Enhancement Methods

enhancement model in which the source image is generated
on the basis of a simulated CRM, and the weight matrix
for image fusion is designed using illumination estimation
techniques [224], [225]. Unlike the model presented in [223],
the model presented in the later cited papers avoids any
heuristic judgment of whether an image pixel is underexposed
and thus is more flexible in generating more intermediate
enhancement results. In Ref. [226], a framework based on a
CRM and a weighted least squares strategy was proposed in
which every pixel is adjusted in accordance with a calculated
exposure map and Retinex theory; this framework can pre-
serve details while improving contrast, color correction, and
noise suppression. In addition, Zhou et al. [227] generated
multiple enhanced images based on a lightness-aware CRM
and then performed mid-level fusion of these images based
on a patch-based image decomposition model. This model,
however, has a limited ability to improve images in which one
area is already overenhanced. In this case, the overenhanced
area is even more strongly enhanced, resulting in the loss of
important details.

In short, the main idea of methods based on image fusion
is that useful information on the same target collected from
multiple sources can be further utilized, without requiring a
physical model, to obtain a final high-quality image through
image processing and computer technology.

These fusion-based methods are simple and can achieve
good results. However, they require two or more different
images of the same scene; therefore, it is difficult to realize
image enhancement within a short time, as is needed for real-
time monitoring situations, and these methods are difficult to
apply and popularize in practice.

F. METHODS BASED ON DEFOGGING MODELS
As one branch of the field of image enhancement, image
defogging techniques have seen great progress and produced
good results in recent years. In 2009, He Kaiming pro-
posed the dark channel prior theory for images, which has
been widely applied [228]. In 2011, a low-light enhance-
ment algorithm [229], also called a bright channel prior
method [230], [231], was proposed by Dong et al. based on
defogging theory; this method relies on the statistical analysis
of a dark primary color version of a low-light inverted image
and a dark primary color version of a foggy image. The main
idea of the algorithm is that when an RGB image captured
in a dark environment is inverted, the visual effect is similar
to that of a daytime image acquired in a foggy environment
(as shown in Fig. 24). Hence, a defogging algorithm based on
a dark channel prior can be used to process the inverted low-
light image; then, the image can be inverted again to obtain
an enhanced low-light image.

This enhancement method greatly improves the image
brightness and enhances the visual details of the image by
analyzing the features of the low-light image and model-
ing them with a foggy image degradation model. The basic
process is shown in Fig. 25. Low-light image enhancement
methods based on dark primary color defogging techniques

FIGURE 24. Comparison of histograms of foggy, low-light and inverted
images.

FIGURE 25. Framework of low-light image enhancement based on a dark
channel prior.

have certain issues. For example, low-light images inevitably
contain noise; however, the foggy image degradation model
used in such an algorithm does not consider the effect of
noise. Therefore, the image noise will typically be amplified,
which will visually impact the results of image enhance-
ment [232]–[234]. Considering the need for noise process-
ing, Liu Yang et al. optimized the processing speed of
such an algorithm without accurately extracting the trans-
mittance; therefore, the final enhanced images exhibited a
blocky effect. Zhang et al. also proposed an optimized algo-
rithm, in which the parameters for transmittance estima-
tion are selected directly based on experience; consequently,
the robustness of this algorithm is poor [235]. Jiang et al.
used filters to remove details and introduced a pyramid oper-
ation to calculate a smooth transmission coefficient, which
not only improved the processing speed but also yielded
better naturalness [236]. Simultaneously, the noise was sup-
pressed. Later, Song et al. [237] improved upon this model
to overcome an issue related to block artifacts. Then, Pang
introduced a gamma transformation to improve the image
contrast [238]. By combining the defogging approach with
bilateral filtering, Zhang et al. proposed a low-light image
enhancement method that can operate in real time. After the
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parameters are initially estimated using a dark channel prior,
they are optimized using a bilateral filter; thus, the effect of
noise is reduced [239]. Tao et al. combined a bright chan-
nel prior with a convolutional neural network (CNN) [240],
and Park et al. combined a bright channel prior [241] with
a Retinex enhancement algorithm. Both achieved improved
results [242]. A fast enhancement algorithm for low-light
video has been proposed by combining Retinex theory with
dark channel prior theory [243], and this algorithm can be fur-
ther combined with scene detection, edge compensation and
interframe compensation techniques for video enhancement.
In [244], a method was proposed to solve the transmittance
problem based on a foggy degradation model and a CNN,
in which the transmission map and atmospheric light map are
amended by means of guided filtering to obtain an enhanced
low-light image. Recently, an enhancement method with
strong illumination mitigation and bright halo suppression
has been presented, which combines a dehazing algorithm
with a dark channel prior and a denoising method to achieve
a better visual effect [245].

Algorithms based on defogging models offer good perfor-
mance with low computational complexity. However, their
physical interpretation is somewhat lacking, and they are
still susceptible to overenhancement in some detailed areas.
Inverted low-light images have their own unique character-
istics, and the direct application of defogging algorithms
to such images is still not an ideal approach for image
enhancement.

G. METHODS BASED ON MACHINE LEARNING
Most existing low-light image enhancement techniques are
model-based techniques rather than data-driven techniques.
Only in recent years have methods based on machine learn-
ing for image enhancement begun to emerge in significant
numbers [246]–[248]. For example, in [249], the reflection
component of an object was represented using a sparse
representation method, and the image details contained in
the reflection component were learned using a dictionary
learning method, thus achieving an improved enhancement
effect. However, noise can easily be introduced during the
machine learning process. An image enhancement method
based on a color estimation model (CEM) was proposed
by Fu et al. [250], in which the dynamic range of color
images in the RGB color space was controlled by adjusting
the CEM parameters to effectively inhibit oversaturation of
the enhanced images. Fotiadou et al. proposed a low-light
image enhancement algorithm based on a sparse image repre-
sentation [251] in which both a low-light condition dictionary
and a daylight condition dictionary were established. The
sparse constraint was used as prior knowledge to update
the dictionaries, and low-light image blocks were used to
approximately estimate the corresponding daylight images.
An image enhancement algorithm based on fuzzy rule reason-
ing [252] was proposed in which three traditional enhance-
ment methods were combined by applying fuzzy theory and
machine learning to establish a set of fuzzy rules, and the best

enhancement algorithm was adaptively selected for different
images to achieve image enhancement. This method can also
be used to objectively and accurately evaluate the image
enhancement effect.

Since 2016, several deep-learning-based methods for
image enhancement have also emerged. For example,
Yan et al. proposed the first deep-learning-based method for
photo adjustment [253]. Lore et al. adopted a stacked sparse
denoising autoencoder in a framework for training an LLNet
for low-light image enhancement [254]. In this framework,
a sparsity regularized reconstruction loss was taken as the
loss function, and deep learning based on the self-encoder
approach was used to learn the features of image signals
acquired under various low-illumination conditions to realize
adaptive brightness adjustment and denoising. Park et al.
proposed a dual autoencoder networkmodel based onRetinex
theory [255]; in this model, a stacked autoencoder was com-
bined with a convolutional autoencoder to realize low-light
enhancement and noise reduction. The stacked autoencoder,
with a small number of hidden units, was used to estimate
the smooth illumination component in the space, and the con-
volutional autoencoder was used to process two-dimensional
image information to reduce the amplification of noise during
the process of brightness enhancement.

CNNs have been used as the basis of deep learning frame-
works in many research works [256]–[259]. Tao et al. pro-
posed a low-light CNN (LLCNN) in which a multistage
characteristic map was used to generate an enhanced image
by learning from low-light images with different nuclei [260].
In [261], a global illumination-aware and detail-preserving
network (GLADNet) was designed. In this network, the input
image is first scaled to a certain size and then passed to
encoder and decoder networks to generate global prior knowl-
edge of the illumination. Based on this prior information
and the original images, a convolutional network is then
used to reconstruct the image details. Ignatov et al. took a
different approach of learning a mapping between images
acquired by a mobile phone camera and a digital single-lens
reflex (DSLR) camera. They built a dataset consisting of
images of the same scene taken by the different cameras [262]
and presented an end-to-end deep learning approach for trans-
lating ordinary photos into DSLR-quality images. Lv et al.
proposed a new network (MBLLEN) consisting of a feature
extraction module (FEM), an enhancement module (EM)
and a fusion module (FM) [263], which produces output
images via feature fusion. Gabriel et al. designed a deep
convolutional neural network (DCNN) [264] based on a large
dataset of HDR images, and Liu et al. trained the DCNN
using only synthetic data to recover the details lost due
to quantization [265]. Gharbi et al. constructed a learning
framework based on a deep bilateral network, thus achieving
real-time processing for image enhancement [266]. Later,
Chen et al. [267] introduced a dataset of raw short-exposure
low-light images (the See-in-the-Dark (SID) database) and
developed a pipeline for processing these images based on
a fully convolutional network (FCN). Through end-to-end
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training, a good improvement over the traditional method of
low-light image processing was achieved.

Based on Retinex theory, Shen et al. [268] analyzed the
performance of the MSR algorithm from the perspective of a
CNN framework and proposed a method of enhancing low-
light images by using an MSR network (MSR-net) based
on a CNN architecture, while Guo et al. [269] proposed
our pipeline neural network consisting of a denoising net
and low light image enhancement net (LLIE-net). Wei et al.
assumed that observed images could be decomposed into
their reflectance and illumination components, collected
a LOw-Light (LOL) dataset containing low-/normal-light
image pairs, and proposed a deep network called Retinex-
Net [270]. Li et al. designed a network called LightenNet
based on a CNN architecture [271]; this network takes a
weakly illuminated image as input and outputs a correspond-
ing illumination map, which is subsequently used to generate
an enhanced image based on the Retinex model. Zhang et al.
built a simple yet effective network called the Kindling the
Darkness (KinD) network [272], which is composed of a
layer decomposition net, a reflectance restoration net, and an
illumination adjustment net, and trained it on pairs of images
captured under different exposure conditions.

Inspired by the multiple image fusion method,
Cai et al. [273] proposed a framework based on aCNN trained
to enhance single images. In this work, thirteen differentMEF
and HDR compression methods were used to generate an
enhanced image for each series of images from a large-scale
multiexposure image dataset. Finally, low-light images were
enhanced by the CNN after end-to-end training on the low-
contrast and high-contrast image dataset. Yang et al. used
two CNNs to build a tool for RGB image enhancement [274]
in which intermediate HDR images are first generated from
the input RGB images to ultimately produce high-quality
LDR images. Nevertheless, generating HDR images from
single images is a challenging problem. To handle both
local and global features, Kinoshita and Kiya proposed an
architecture consisting of a local encoder, a global encoder,
and a decoder trained on tone-mapped images obtained from
existing HDR images [275]. Experimental results showed
its excellent performance compared with conventional image
enhancement methods, including CNN-based methods.

In contrast to supervised learning methods, genera-
tive adversarial network (GAN)-based methods can be
used for image enhancement without training on pairs of
images [276], [277]. For example, Meng et al. proposed a
GAN-based framework for nighttime image enhancement,
which takes advantage of GANs’ powerful ability to generate
images from real data distributions, and the results demon-
strate its effectiveness. To our knowledge, this was the first
time that GANs were applied for the purpose of nighttime
image enhancement [278]. In Ref. [279], the authors fully
utilized the advantages of both GANs and CNNs, using a
transitive CNN to map the enhanced images back to the space
of the source images to relax the need for paired ground-
truth photos. Kim et al. [280] applied local illumination to

make the training images and used an advanced generative
adversarial network to build Low-Lightgan. The key advan-
tages of such networks are that they can be trained easily
and can achieve better experimental results than traditional
enhancers [279].

Undoubtedly, deep-learning-based methods can achieve
excellent performance in low-light image enhancement, and
they also represent a major trend of current development in
image processing research. However, such methods must be
supported by large datasets, and an increase in the complexity
of a model will lead to a sharp increase in the time complexity
of the corresponding algorithm. With the steady growth of
research on low-light image enhancement, not only are some
low-light data available from widely used public benchmark
datasets such as PASCAL VOC [281], ImageNet [282], and
Microsoft COCO [283], but researchers are also building
public datasets specifically designed for low-light image
processing, such as SID [267] and EDD (Exclusively Dark
Dataset) [284].

III. EVALUATION METHODS
Image quality assessment (IQA) focuses mainly on two
aspects, namely, the fidelity of the image and the readabil-
ity of the image, which can be regarded as subjective and
objective evaluation standards, respectively. A subjective
evaluation method measures image quality on the basis
of the subjective perception of the human visual sys-
tem, i.e., whether the image conveys a certain experience.
However, it is still difficult to accurately simulate the human
visual system. Therefore, current subjective evaluation sys-
tems based on the human visual system can evaluate image
quality only qualitatively rather than quantitatively [285].

A. SUBJECTIVE EVALUATION
In a subjective evaluation method, human observers are asked
to evaluate the quality of processed images in accordance
with their visual effects based on a predetermined evaluation
scale. Such an evaluation depends on subjective assessment
of the image processing results to determine the advantages
and disadvantages of a particular algorithm. The score is
typically divided into 5 grades (1-5 points), and the number
of raters should typically be no fewer than 20 [286]. Some of
the raters should have experience in image processing, while
some should not. The raters will evaluate the visual effects
of the images in accordance with their personal experience
or agreed-upon evaluation criteria. To ensure fairness and
equity, the final scores will be weighted to obtain the final
subjective quality evaluation result for each image. The typi-
cal evaluation standards are summarized in Table 1.

This method is simple and can reflect the visual quality of
images. Such a subjective evaluation can accurately represent
the visual perception of the majority of observers. However,
such an evaluation lacks stability and can be easily affected
by the experimental conditions as well as the knowledge
background, emotional state, motivation and degree of fatigue
of the observer. In studies related to image enhancement,

VOLUME 8, 2020 87901



W. Wang et al.: Experiment-Based Review of Low-Light Image Enhancement Methods

TABLE 1. Criteria for subjective assessment.

it is necessary to provide key details of different magnified
parts of images for comparison to assess, e.g., lack of unifor-
mity. However, this process is time consuming and arduous
in practice and thus often cannot be applied in engineering
applications.

B. OBJECTIVE EVALUATION
An objective evaluation is an evaluation using specific data
and based on certain objective criteria. To the best of our
knowledge, there are no IQA methods that have been specifi-
cally designed for the evaluation of low-light image enhance-
ment methods. Hence, different researchers utilize different
strategies to evaluate their results. At present, the objec-
tive evaluation methods for image enhancement can be
divided into full-reference methods and no-reference meth-
ods depending on whether they require reference images
(ground-truth images or synthetic images). Objective evalua-
tion methods have various advantages, such as simple calcu-
lations, fast execution, ease of quantitative calculation based
on a constructed model, and high stability; therefore, data
from objective evaluations are generally adopted as image
quality scores [287].

1) NO-REFERENCE IQA (NIQA) METRICS
Since no objective reference image is available in the case
of a low-light input image, most methods that are suitable for
low-light image enhancement assessment are based on NIQA
metrics. The most common NIQA metrics include the mean
value (MV), standard difference (STD), average gradient
(AG), and information entropy (IE). In addition, there are sev-
eral general methods available for image quality evaluation,
including the Blind/Referenceless Image Spatial QUality
Evaluator (BRISQUE) [288], the Naturalness Image Quality
Evaluator (NIQE) [289], the BLind Image Integrity Notator
using DCT Statistics (BLIINDS-II) [290], the blind tone-
mapped image quality index (BTMQI) [291], gradient ratio-
ing at visible edges (GRVE) [292], the autoregressive-based
image sharpness metric (ARISM) [293], the no-reference
image quality metric for contrast distortion (NIQMC) [294],
the Global Contrast Factor (GCF) [295], the average informa-
tion content (AIC) [296], the effective measure of enhance-
ment (EME) [297], PixDist [298], and the no-reference
free-energy-based robust metric (NFERM) [299]. The com-
monly used NIQA metrics and related references are shown
in Table 2. Descriptions of several of these metrics follow.

TABLE 2. NIQA metrics and related references.

(i) Mean value (MV). The MV mainly refers to the mean
of the gray values of an image, and it mainly reflects the
color or degree of brightness of the image. The smaller the
image mean is, the darker the image. Conversely, the larger
the mean is, the brighter the image, and the lighter the colors.
The formula is as follows:

µ =
1

M × N

M∑
i=1

N∑
j=1

f (i, j) (30)

whereM and N are the width and height, respectively, of the
image and f (i, j) is the gray value at pixel point (i, j).

(ii) Standard difference (STD). The variance of the gray
values reflects the degree of dispersion of the image relative
to the mean and thus is a measure of the contrast within a
certain range. The larger the variance is, the more information
is contained in the image, and the better the visual effect.
When the variance is smaller, the information contained in
the image is less, and the image is more monochromatic and
uniform. The formula is

STD =

√√√√√√
M∑
i=1

N∑
j=1

f (i, j)(f (i, j)− µ)2

M × N
(31)

whereM and N are the image width and height, respectively;
f (i, j) is the gray value at pixel point (i, j); and µ is the MV
of the image

(iii) Average gradient (AG). The AG represents the clarity
of an image, reflecting the image’s ability to express con-
trasting details. This metric measures the rate of change in
the image values based on changes in the contrast of minute
details or the relative clarity of the image. In an image, faster
gray changes in a certain direction result in larger image
gradients; therefore, this metric can be used to determine
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whether or not an image is clear. The AG can be expressed as

AG =
1

M × N

M∑
i=1

N∑
j=1

√
(∂f /∂x)2 + (∂f /∂y)2

2
(32)

whereM and N are the image width and height, respectively,
and ∂f /∂x and ∂f /∂x are the horizontal and vertical gradi-
ents, respectively.

(iv) Information entropy (IE). Entropy can be used as a
measure of an amount of information and is widely used to
evaluate image quality [300,48]. A static image is regarded
as an information source with random output; the set A of
source symbols is defined as the set of all possible sym-
bols {ai}, and the probability of source symbol ai is P(ai).
Thus, the average information quantity of an image can be
expressed as

H = −
L∑
i=1

P(ai) log2 P(ai) (33)

According to entropy theory, the larger the IE value is, the
larger the amount of information contained in the image, and
the richer the image detail.

2) FULL-REFERENCE IQA (FIQA) METRICS
The most common FIQA metrics include the mean square
error (MSE), the peak signal-to-noise ratio (PSNR), the struc-
tural similarity index metric (SSIM) [301], and the light-
ness order error (LOE) [136]. Other available FIQA
metrics include the patch-based contrast quality index
(PCQI) [302], the colorfulness-based PCQI (CPCQI) [303],
the Gradient Magnitude Similarity Deviation (GMSD) [304],
the visual information fidelity (VIF) [305], the visual
saliency index (VSI) [306], the tone-mapped image qual-
ity index (TMQI) [307], the Statistical Naturalness Measure
(SNM) [307], and the Feature SIMilarity Index (FSIM) [308].
The commonly used NIQAmetrics and related references are
shown in Table 3. Descriptions of several of these metrics
follow.

(i) Mean square error (MSE). This metric represents the
direct deviation between the enhanced image and the original
image; it has the same meaning as the absolute mean bright-
ness error (AMBE) [75].

MSE =
1

M × N

M∑
i=1

N∑
j=1

[f (i, j)− fe(i, j)] (34)

whereM and N are the width and height, respectively, of the
image; f (i, j) represents the input image; and fe(i, j) represents
the enhanced image. In an image quality evaluation, a smaller
MSE value indicates higher similarity between the enhanced
and original images.

(ii) Peak signal-to-noise ratio (PSNR). The PSNR of an
image is the most extensively and commonly used objective
evaluation method for measuring the image denoising effect.
The larger the PSNR value is, the smaller the difference

TABLE 3. FIQA metrics and related references.

between the images before and after processing. An exces-
sively high PSNR indicates that the effect of the denoising
algorithm is not obvious. A smaller PSNR indicates a greater
difference between the images before and after processing.
An excessively low PSNR may suggest that the image is
distorted. The specific expression is as follows:

PSNR = 10 lg
f 2max

MSE
(35)

where fmax is the maximum gray value, fmax = 255.
(iii) Structural similarity index metric (SSIM). The above

methods do not consider the characteristics of the human
visual system when assessing image quality; they compute
only a simple random error between the input image and
the processed image and analyze the difference between the
input and output images from a mathematical perspective.
Therefore, the above metrics cannot fully and accurately
reflect the image quality. Researchers have found that nat-
ural images exhibit certain special structural features, such
as strong correlations between pixels, and these correlations
capture a large amount of important structural information for
an image. Therefore, Wang et al. proposed a method based
on structural similarity for evaluating image quality [301].
The SSIM evaluates the quality of a processed image relative
to the reference image based on comparisons of luminance
(l(f, fe)), contrast (c(f, fe)) and structure (s(f, fe)) between the
two images. These three values are combined to obtain the
overall similarity measure. The formula is as follows:

SSIM = F[1(f , fe), c(f , fe), s(f , fe)] (36)

The flow of the SSIM algorithm is shown in Fig. 26.
The degree of similarity between the two images is

reflected by the value of the SSIM; the minimum value is 0,
and the maximum value is 1. A value closer to 1 indicates
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FIGURE 26. Flowchart of the SSIM algorithm.

that the two images are more similar. Taking the human visual
system as the starting point, this method can effectively sim-
ulate human visual perception to extract information about
the structure of an image. The evaluation result is very close
to the subjective perception of the human eye; therefore, this
metric is widely used in image quality evaluations.

(iv) Lightness order error (LOE). Considering that the
relative order of lightness of different image areas reflects the
direction of the light source and the variation in illumination,
Ref. [136] proposed the LOE metric to measure the discrep-
ancy in lightness order between an original image I and its
enhanced version Ie. The LOE is defined as

LOE =
1

M × N

M∑
i=1

N∑
j=1

RD(i, j) (37)

where RD(i, j) is the difference in the relative lightness order
between the original image f and its enhanced version fe at
pixel (i, j). This difference is defined as follows:

RD(i, j) =
M∑
x

N∑
y

U (L(i, j),L(x, y))⊕ U (Le(i, j),Le(x, y))

(38)

where M and N are the image width and height, respec-
tively; ⊕ is the exclusive-or operator; and L(i, j) and Le(i, j)
are the maximum values among the three color channels at
location (i, j) for f and fe, respectively. The function U (p, q)
returns a value of 1 if p >= q; otherwise, it returns 0. The
smaller the LOE value is, the better the lightness order is
preserved.

The above measures have the following advantages: they
are simple to calculate, have clear physical meanings, and
enable mathematically convenient optimizations.

IV. ANALYSIS OF DIFFERENT ENHANCEMENT METHODS
To compare the enhancement effects of various algorithms as
well as the consistency of subjective and objective evaluation,
experiments using many methods are presented in this paper
for illustration. A test platform was built based on a desktop
computer to verify the algorithms. This system includes an
Intel(R) Core(TM) i7-6700 CPU @3.4 GHz with 16 GB
RAM and the Windows 10 operating system.

FIGURE 27. Low-light images under three illumination conditions
(figure best viewed in color).

FIGURE 28. Two pairs of images with different exposures (figure best
viewed in color).

A. SUBJECTIVE EVALUATION
The test images shown in Fig. 27 represent three different
illumination conditions, namely, uniform low light, uneven
illumination and nighttime; the source images are named
‘Flowers.bmp’, ‘Building.bmp’ and ‘Lawn.bmp’, respec-
tively. In addition, we adopt two pairs of images for reference-
based comparisons, where each pair consists of a low-light
image, as shown in the top row of Fig. 28, and a corresponding
well-exposed image, as shown in the bottom row. In Fig. 28,
the image on the left is named ‘Desk.bmp’, and the image on
the right is ‘Road.bmp’.

The experimental results are shown in Figs. 29-33. In these
figures, panel (a) contains the original image, and panels
(b)-(r) display the results of many enhancement methods:
Gamma correction [3], AHE [78], WT [166], BIMEF [223],
CegaHE [102], CRM [225], CVC [89], Dong et al. [229],
MBLLEN [263], HMF [101], LIME [13],MF [219], HE [66],
MSRCP [127], MSRCR [115], NPE [136], and SRIE [126].
As shown in panels (b)-(r), all of these image enhancement
methods improve the visual effect of the original image to
some degree. The details become clearer with the Gamma,
WT, AHE, HMF, CVC, MSRCP and SRIE methods, but
the overall level of brightness is dark. Especially when the
Gamma and CVCmethods are used, the enhancement effects
for the three types of images are similar, while theWTmethod
makes the output image blurred. The AHE method achieves
a better effect when processing uniformly illuminated low-
light images, but a wheel halo effect appears in unevenly
illuminated low-light images. Although the CegaHE, HE,
and MSRCR methods can brighten the entire image, the hue
changes dramatically for an image with uneven illumination,
resulting in the loss of the real color of the original scene.
Although the image brightness after processing with the
SRIE method is not high, this method achieves a consistent
image processing effect for all three types of images, and the
tone recovery effect is superior. By comparison, the Dong,
MBLLEN, MF, NPE, LIME and CRM methods demonstrate
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FIGURE 29. Experimental results on ‘Flowers.bmp’ (figure best viewed in color).

FIGURE 30. Experimental results on ‘Building.bmp’ (figure best viewed in color).

outstanding performance in color and detail enhancement,
and their visual effects are obviously superior to those
of the other abovementioned image enhancement methods.
However, when the Dong and NPE methods are used to
process unevenly illuminated low-light images such as the
‘Building’ and ‘Road’ images, overenhancement appears at
the boundaries. The MF method, MBLLEN method and
CRMmethod better maintain the color of the original images
compared with the above methods, but their overall effect is
no better than that of the LIME method. The LIME method
considers both brightness and hue information and maintains
excellent realistic effects. Hence, the LIME method achieves
higher color fidelity from the perspective of human visual
perception.

B. OBJECTIVE EVALUATION
Based on the above images, experiments for objective qual-
ity evaluation were performed using various IQA methods,
including both NIQA and FIQA metrics.

1) NIQA-BASED EVALUATION
Eight metrics, namely, STD, IE, AG, BLIINDS-II [290],
NIQE [289], BRISQUE [288], the contrast enhancement-
based contrast-changed image quality measure (CEIQ) [311],
and the spatial–spectral entropy-based quality measure
(SSEQ) [312], were employed for NIQA-based evaluation.
The experimental results obtained on ‘Flowers.bmp’, ‘Build-
ing.bmp’ and ‘Lawn.bmp’ are shown in Tables 4–6, and the
best score in terms of each metric is highlighted in bold.
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FIGURE 31. Experimental results on ‘Lawn.bmp’ (figure best viewed in color).

FIGURE 32. Experimental results on ‘Desk.bmp’ (figure best viewed in color).

These data show that the different evaluation metrics assign
different scores to the same image enhancement algorithm
and that the interpretations of the evaluation results are com-
pletely opposite in some cases. The reason is that the tradi-
tional IQA metrics used in this evaluation consider different
aspects of the image obtained after enhancement. For the
three images, no method gets the best score on all metrics.
The HE method achieves the highest scores in terms of
the IE and CEIQ metrics on the three images. The LIME
method achieves the best scores in terms of the AG met-
ric for ‘Building.bmp’ and ‘Lawn.bmp’. The CVC method
achieves the best score on STD metric for ‘‘Flower.bmp’’
and ‘Lawn.bmp’. Overall, the HE and CVC methods are the

top two scoring methods based on these metrics. However,
to some extent, the distortion of chrominance information
causes the results of the objective evaluation to be opposite
to those of the subjective evaluation.

2) FIQA-BASED EVALUATION
For the FIQA-based evaluation, eleven metrics were selected,
namely, MSE, PSNR, SSIM [301], LOE [136], PCQI [302],
GMSD [304], VIF [305], VSI [306], FSIM [308],
RVSIM [313], and IFC [314]. The reference images for
‘Desk.bmp’ and ‘Road.bmp’ are shown in panel (a) of
Fig. 33 and Fig. 34, and the experimental data are listed
in Tables 7 - 8, where the best score in terms of each metric
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FIGURE 33. Experimental results on ‘Road.bmp’ (figure best viewed in color).

TABLE 4. Objective evaluation of various methods on ‘Flowers.bmp’ using NIQA metrics.

TABLE 5. Objective evaluation of various methods on ‘Building.bmp’ using NIQA metrics.

TABLE 6. Objective evaluation of various methods on ‘Lawn.bmp’ using NIQA metrics.

is highlighted in bold. From these data, it can be seen that
the best scores in terms of the different metrics are relatively
concentrated among certain image enhancement algorithms.

For example, the CegaHE method earns the best scores
according to seven of the above eleven metrics on
‘Desk.bmp’. For the image ‘Road.bmp’, BIMEF, CRM and
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TABLE 7. Objective evaluation of various methods on ‘Desk.bmp’ using FIQA metrics.

TABLE 8. Objective evaluation of various methods on ‘Road.bmp’ using FIQA metrics.

TABLE 9. Comparison of time complexity (unit: seconds).

MF achieve four, four and two of the best scores, respectively.
In addition, these three methods have the same scores in
terms of the GMSD and VSI metrics for the evaluation
on ‘Road.bmp’. To some extent, FIQA-based evaluations
provide a more accurate description of the images and
are more consistent with subjective evaluation results than
NIQA-based evaluations are for cases in which reference
images are available.

C. TIME COMPLEXITY
To test the processing speeds of the various methods, experi-
ments were performed using images of various sizes, and all
algorithms were run using MATLAB except the MELLEN
method [263]. Table 9 shows that the Retinex-based meth-
ods (MSR, MSRCR, and MSRCP) have high computational
complexities because of their multiscale Gaussian filtering
operations. The NPE, SRIE and MELLEN methods have
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the lowest computational efficiency for processing a sin-
gle image because of the use of iterative computations to
find the optimal solution. When processing an image with
pixel dimensions of 3200 × 2400, their processing times
are 206 seconds, 649 seconds and 890 seconds, respectively.
In contrast, gamma correction and the various HE-based
methods (AHE, HMF, and CegaHE) are faster, and their
run times are only slightly affected by an increase in the
image size. In particular, when the gamma correction method
is run on an image of 3200 × 2400 pixels, it needs only
70 milliseconds to run, which is 1/12700th of the run time of
the SRIE method. Therefore, the gamma correction method
has an absolute advantage in terms of run time. For images
with pixel dimensions of 1600 × 1200, the gamma method
methods and the HE-based methods can be used under real-
time conditions.

The IQA metrics considered above are not completely
consistent with subjective human perception and thus are
not suitable for the direct evaluation of enhanced low-light
images. They need to be combined with subjective evalua-
tions based on human vision. Therefore, there is a great need
to design and develop an objective quality assessment method
for low-light image enhancement that shows good agreement
with the mechanism of human vision.

V. CONCLUSION
This paper summarizes sevenwidely used classes of low-light
image enhancement algorithms and their improved versions
and describes the underlying principles of the different meth-
ods. Then, it introduces the current quality evaluation system
for low-light images and identifies the problems with this
existing system. Finally, many representative image enhance-
ment methods are evaluated using both subjective and objec-
tive evaluation methods. The characteristics and performance
of the existing methods are analyzed and summarized, and
the shortcomings of the present work in this field are further
revealed. The essential purpose of low-light image enhance-
ment is to improve the image contrast both globally and
locally in a certain range of the gray space in accordance
with the distribution of the gray values of the original image
pixels. Simultaneously, it should be ensured that the enhanced
image shows good image quality with regard to the character-
istics of human visual perception, noise suppression, image
entropy maximization, brightness maintenance, etc. The mer-
its and shortcomings of the various methods are summarized
in Table 10.

Based on the limitations of the current methods, care must
be taken in image enhancement to ensure an appropriate
balance among several factors, such as the image color, visual
effect and information entropy, while attempting to improve
the visibility of the image contrast. However, the existing
algorithms all have certain disadvantages, such as loss of
detail, color distortion, or high computational complexity;
thus, current low-light image enhancement techniques can-
not guarantee the performance of a vision system in a low-
light environment. In future research on low-illumination

TABLE 10. Merits and shortcomings of different methods.

image enhancement, researchers should focus on the follow-
ing tasks:

(i) Improve the robustness and adaptive capabilities of
low-light image enhancement algorithms. The robustness and
adaptive capabilities of the existing methods are insufficient
to meet the requirements of practical applications. The ideal
method should be able to adaptively adjust to different appli-
cation conditions and different types of low-light images.

(ii) Reduce the computational complexity of the available
algorithms. To satisfy the needs of practical applications, real-
time methods are often in demand; however, most of the
existing methods currently require a long processing time.
In addition, the results of the existing methods are still
susceptible to certain problems, such as color deviations
and detail ambiguity. The high-performance processors in
graphics processing units (GPUs) allow such algorithms to
be parallelized, which can significantly improve their pro-
cessing speed and may ultimately enable real-time image
enhancement.

(iii) Establish a standard quality evaluation system.
At present, there are too few specialized low-light image
datasets, and the quality evaluation system is not mature. This
limits the further development of this research field and the
selection of suitable enhancement and restoration methods
for practical applications.

(iv) Develop a video-based enhancement algorithm.
Currently, most of the research in this field has focused on
single images, and research on video enhancement has not
received sufficient attention; by contrast, video processing
plays a greater role in practical applications. There is an
urgent need to solve the problems related to the efficiency
of low-illumination video processing, interframe consistency
and so on.

In summary, thus far, no image enhancement algo-
rithm exists that is optimal in terms of all of the above
issues simultaneously. Therefore, it is necessary to select
the most suitable image enhancement algorithm based on
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application-specific requirements. It is hoped that image
enhancement technology can be advanced to a higher level
through in-depth studies of these enhancement algorithms,
thus allowing this technology to play an important role in
multiple disciplines.

APPENDIX
Abbreviation Phrase
HE Histogram equalization
CDF Cumulative distribution function
GHE Global histogram equalization
LHE Local histogram equalization
BBHE Brightness-preserving bi-histogram

equalization
DSIHE Dualistic subimage histogram

equalization
MMBEBHE Minimum mean brightness error

bi-histogram equalization
IBBHE Iterative of brightness bi-histogram

equalization
AHE Adaptive histogram equalization
POSHE Partially overlapped subblock histogram

equalization
CLAHE Contrast-limited adaptive histogram

equalization
FIRF Finite impulse response filter
RMSHE Recursive mean-separate histogram

equalization
CVC Contextual and variational contrast
BBPHE Background brightness-preserving

histogram equalization
GCCHE Gain-controllable clipped histogram

equalization
RSIHE Recursive subimage histogram

equalization
DHE Dynamic histogram equalization
BPDHE Brightness-preserving dynamic histogram

equalization
EDSHE Entropy- based dynamic subhistogram

equalization
BHEPL Bi-histogram equalization with a plateau

limit
MMSICHE Median-mean based subimage-clipped

histogram equalization
ESIHE Exposure-based subimage histogram

equalization
AMHE Adaptively modified histogram

equalization
WHE Weighted histogram equalization
HMF Histogram modification framework
CegaHE Gap Adjustment for Histogram

Equalization
SSR Single-scale Retinex
MSR Multiscale Retinex
MSRCR Multiscale Retinex with color restoration
KBR Kernel-based Retinex

SRIE Simultaneous reflectivity and illumination
estimation

MSRCP Multiscale Retinex with chromaticity
preservation

NPE Naturalness preserved enhancement
WT Wavelet transform
DCT Discrete cosine transform
KGWT Knee function and Gamma correction
HDR High dynamic range
CNN Convolutional neural network
DCP Dark channel priori
CEM Color estimation model
LLCNN Low-light CNN
MEF Multiple exposure image fusion
IQA Image quality assessment
HVS Human visual system
AG Average gradient
MSE Mean square error
PSNR Peak signal-to-noise
SSIM Structural similarity index
BIQI Blind image quality index
BRISQUE Blind/referenceless image spatial quality

evaluation
NIQE Naturalness image quality evaluator
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