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ABSTRACT Developing a controller that enables a walking robot to autonomously adapt its locomotion
to navigate unknown complex terrains is difficult, and the methods developed to address this problem
typically require robot kinematics with arduous parameter tuning or machine learning techniques that
require several trials or repetitions. To overcome this limitation, in this paper, we present continuous, online,
and self-adaptive locomotion control inspired by biological control systems, including neural control and
hormone systems. The control approach integrates our existing modular neural locomotion control (MNLC)
and a newly introduced artificial hormone mechanism (AHM). While the MNLC can generate various gaits
through its modulatory input, the AHM, which replicates the endocrine system, adapts to rapid changes in
onlinewalking frequency and gait in response to different complex terrains. The control approach is evaluated
on an insect-like hexapod robot with 18 degrees of freedom. We provide the results in three sections. First,
we demonstrate the adaptability of the robot with the proposed artificial hormones. Second, we compare the
performance of two robots with and without artificial hormones while walking on different complex terrains
using three performance indexes (stability, harmony, and displacement). Third, we evaluate real-time online
adaptations in the real world through real robot walking on different unknown terrains. The experimental
results demonstrate that the robot with the proposed artificial hormones does not require several learning
trials to adapt its locomotion. Instead, it can continuously adapt its locomotion online, thereby providing
greater success and higher performance than other techniques when walking on all terrains.

INDEX TERMS Adaptive behaviors, artificial hormones, central pattern generators, locomotion control,
neural networks, walking machines.

I. INTRODUCTION
Walking robots can traverse different types of terrain very
well, and their complex structure and control system drive
this walking performance [1]. Many studies in the robotics
field have aimed to apply various control systems to increase
the walking performance on different terrains. For example,
Bjelonic et al. [2], [3], Prágr et al. [4], and Zenker et al. [5]

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiquan Zhao .

used a vision sensor to visualize the type of terrain, and
when the vision-based control system detected the terrain
conditions, it triggered a change in the gait of the walk-
ing robot to achieve a lower cost of transportation (CoT).
Fallon [6], Fućek et al. [7], and Kesper et al. [8] used a rotat-
ing LIDAR scanner and/or a stereo camera to detect obstacles
and stairs to change the walking posture and foot place-
ment of a walking robot accordingly. The aforementioned
techniques rely on exteroceptive sensors to increase the
robot walking performance [2]–[13]. This approach presents
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challenges associated with not only the weight of the sensors
and but also the related electronic components associated
with these walking robots; greater weight corresponds to
greater energy consumption. To overcome the limitation of
the external sensor and added component weight, a pro-
prioceptive sensor is instead considered. Focchi et al. [14]
proposed a static-walking algorithm with proprioceptive
feedback for a quadruped walking robot. The algorithm was
derived from a dynamic model to adjust the robot foot place-
ment. This technique applies proprioceptive sensors such as
the ground reaction force and joint angle sensors to stabilize
the robot body. However, many robot parameters must be pre-
defined in this algorithm, and changes to any one parameter
necessitate the manual recalculation of all the parameters.
Studies have aimed to address the limitations in nonadaptive
and predefined control parameters by developing a control
system that can automatically adjust a robot’s behavior under
changes in the walking terrain. Arena et al. [15] introduced an
error-based learning technique for a hexapodwalking robot to
learn motor skills for walking and climbing over obstacles.
Recently, Hwangbo et al. [16] proposed a reinforcement-
learning-based method to learn the agile and dynamic motor
skills of a walking robot to efficiently walk and recover from
falling in complex configurations. However, these learning
approaches [15], [16] typically require several trials or rep-
etitions, and if the robot encounters an unknown situation,
a new learning scenario is again needed, which is impractical
and time consuming.

Studies have investigated mechanisms to imitate the rapid,
continuous, and online adaptation of living species for appli-
cation in walking robots. One of the most effective mech-
anisms that has been implemented is the introduction of
a hormone-based self-adaptive system in robots [17]–[22].
In nature, hormones are chemicals secreted by the endocrine
glands that provide communication within the organism
regarding disturbances from internal and external environ-
ments. Therefore, in certain cases, the hormone system is
called an endocrine system. An artificial endocrine system
and an artificial neural network have been introduced to
improve power management and task allocation in robots
[18], [19]. Sauzé and Neal [19] used this concept to maintain
a steady-state and autonomous operation for an extended
period in a sailing robot. Moioli et al. [20] applied a similar
concept utilizing homeostatic influencing behaviors; their
proposed multihormone evolutionary artificial homeostatic
system was able to successfully coordinate and demonstrate
differing reactions in wheel robots. Their system was also
robust, managing both internal and external disturbances.
Teerakittikul et al. [21] implemented an artificial hormone
mechanism (AHM) in a wheeled robot to facilitate productive
movements on uneven terrain and address possible faults
occurring in the pitch sensory information of the robot.
Although this hormone mechanism was not designed directly
as a fault detection system in the robot, it could sense
environmental cues and adjust the robot’s behavior according
to dynamic environments.

These previous works indicate that an AHM can provide
fast, continuous, online adaptations; however, most research
on AHMs applied to robots has focused on simple robotic
systems (i.e., low-degree-of-freedom robotic systems) and
simple movements. Therefore, an exciting advancement in
the work proposed herein is the use of an AHM for a many-
degree-of-freedom robotic system with complex movements
to allow the robot to quickly and continuously adapt its walk-
ing behavior to unknown complex terrains without the several
trials typically required during the learning process. This con-
cept of online self-adaptive locomotion control forms the core
of this work.Moreover, we describe how the hormone system,
neural control, and proprioceptive sensory feedback can be
combined for the adaptive locomotion of artificial walking
systems, as observed in biological walking systems. Under
this combination, the hormone system continuously regulates
a neural control parameter, resulting in real-time walking
frequency and gait adaptation. We validate the robustness of
our control approach with six different unknown terrains (flat
terrain, mesa terrain, ramp-up terrain, ramp-down terrain,
rough terrain, and terraced terrain).

Taken together, the main contributions of this work are as
follows:

1) A new online self-adaptive locomotion control tech-
nique is described for autonomously adaptive robot
locomotion that allows for navigation on unknown
complex terrains.

2) This technique, based on neural control and AHMs,
does not need robot kinematics information, an envi-
ronmental model, external (exteroceptive) sensors,
or multiple learning trials or repetitions for adaptive
robot locomotion.

3) The continuous real-time adaptation process of the con-
trol technique is performed online and relies on only
a simple correlation of a predicted foot contact signal
(obtained from a transformation of an efference copy or
amotor command) and the actual incoming foot contact
signal from each robot leg. Thus, this technique can
potentially be applied to different walking robots with
foot contact sensory feedback.

II. METHODS AND MATERIALS
This section explains the bio-inspired robotic platform used
in this study, followed by a description of the online self-
adaptive locomotion control system that allows the robot to
perform various gaits and quickly adapt its gait in an online
manner to deal with different unknown terrains. At the end
of this section, we discuss how we tested and measured
the system performance to demonstrate its efficiency and
robustness.

A. BIO-INSPIRED ROBOT PLATFORM
To investigate and develop the proposed online self-adaptive
locomotion control system, a hexapod robot was employed as
our robotic system (Fig. 1).
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FIGURE 1. Bio-inspired hexapod robot. (a) Hexapod robot simulation.
(b), (c) Real robot [24] with maximum joint angles. Abbreviations: TL,
CL and FL = Tx, Cx and Fx joints of the left leg; TR, CR and FR = Tx, Cx and
Fx joints of the right leg; and 1, 2 and 3 = front, middle and hind legs,
respectively.

A hexapod robot consists of six identical legs. Each leg
consists of three joints that emulate the basic structure of
a cockroach leg without a tarsus. These three joints are the
thoraco-coxal (Tx) joint, the coxa-trochanteral (Cx) joint
and the femur-tibia (Fx) joint. The maximum and minimum
intervals of the joint movements of the legs are presented
in Fig. 1(b) and (c), respectively. Each leg has a foot contact
sensor. In total, the robot has 18 motors and six foot contact
sensors. The foot contact sensors are used as inputs to our
control system as described below.

The simulation toolkit LPZrobots [23], which creates a
physically realistic simulation environment, was employed
to first test our control scheme before finally evaluating the
real robot (Fig. 1(b)–(c)). This toolkit is based on the open
dynamics engine (ODE). The physical parameters of the
simulated robot are similar to those of the real robot in terms
of the geometry, mass distribution, motor torque/speed, and
sensors.

The robot was developed based on a modular robot frame-
work (MORF) (Fig. 1(b)–(c) [24]). Its 18 joints are driven
by smart servo motors (4.2N·m, XM430-350 Dynamixel).
The foot contact sensory feedback of each leg is calculated
from a motor torque sensor, built into the smart motor. The
calculated foot contact feedback is used for the proposed
controller. The robot is powered by a Li-ion battery (14.8V,
4Ah). An Intel NUC i7 processor is used as the embedded
controller. The robot has a weight of 4.5 kg.

B. ADAPTIVE LOCOMOTION CONTROL SYSTEM
The adaptive locomotion control system (ALCS, Fig. 2)
is a bio-inspired mechanism that generates locomotion
and enables real-time self-adaptation online. This ability is
enabled by a combination of modular neural locomotion
control (MNLC) and anAHM.While theMNLC can generate
various gaits through its modulatory input (MI), the AHM,
which replicates the endocrine system, allows for fast, con-
tinuous, and online walking frequency and gait adaptation.
A schematic diagram of the ALCS is shown in Fig. 2. The
proposed locomotion control system is inspired by a biolog-
ical homeostatic control system [25]. In principle, the home-
ostatic control system can maintain balance in the body’s
internal state through an interaction between the nervous
system (implemented as the MNLC in our control system)

FIGURE 2. Adaptive locomotion control system (ALCS, in the frame)
consisting of two main components: a modular neural locomotion control
(MNLC, light gray) and an artificial hormone mechanism (AHM, dark
gray). The system receives only foot contact feedback (proprioceptive
feedback) and generates motor commands to control the joint angles of
the robot legs. Parts of the motor commands are copied (efference
copies) and transformed into expected foot contact feedback through a
forward model in the AHM. The expected feedback is then correlated with
the real foot contact feedback for the walking frequency and gait
adaptation (see text for details).
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and the endocrine system (implemented as the AHM in our
control system).

1) MODULAR NEURAL LOCOMOTION CONTROL
To generate various robot gaits, we use the MNLC (Fig. 3),
which was developed by Manoonpong et al. [26]. The reason
why MNLC is selected for our control system is because
it is generic, does not require robot kinematics, and can
generate various gaits by simply changing only one control
input, i.e., the MI. This system consists of four key mod-
ules that are modeled using artificial neural networks. All
neurons are standard additive nonspiking neurons. Although
the functionalities of these neurons are not key contributors
here, we briefly describe their functionalities because they
are important for support of the artificial hormone system
(described below) to generate adaptive locomotion. Further
details of the neural models for each module are presented
in [26].

FIGURE 3. Modular neural locomotion control (MNLC) with four main
modules.

The first module is a recurrent neural network with two
tanh neurons and full connectivity. The synaptic connec-
tions of the network were empirically adjusted and set in
accordance with the network dynamics, staying in the region
of the Neimark-Sacker bifurcation, where the quasiperiodic
attractors appear [27]. In this way, the network acts as a
central pattern generator (CPG), generating rhythmic patterns
with different frequencies. An extrinsic MI is projected to the
mutual synaptic connections between the neurons to regulate

the connections, thereby resulting in changing the frequency
of the neural outputs or the CPG signals.When theMI is high,
the walking frequency is high, leading to a fast gait, and when
the MI is low, the walking frequency is low, leading to a slow
gait, as illustrated in Fig. 4. In this study, the MI is regulated
by the AHM for frequency and gait adaptation.

FIGURE 4. Relationship between the MI and the walking gait.

The second module is a neural CPG postprocessing net-
work that shapes the CPG signals from the first module
to smooth the walking gait of the robot. The network is a
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simple feedforward network consisting of two binary thresh-
old neurons and two integrator output units. The network
parameters were manually tuned to obtain continuous and
smooth ascending and descending motor control signals for
smooth robot gait generation (see [26], [28] for more details).

The third module consists of two main neural networks to
provide walking directional control of the robot. The first is
the phase-switching network (PSN), which is a feedforward
network. It has four hierarchical layers with 12 tanh neurons.
The network parameters (such as the synaptic connections
and bias terms) were manually designed (see [29] for more
details). The network can switch the phase of motor control
signals with respect to a given external input. This network
is used for steering the robot to walk sideways. The second
is the velocity regulating network (VRN), which is a feed-
forward network. It is formed by four hidden tanh neurons
that are connected to one output tanh neuron. The network
was trained by the backpropagation algorithm [29] to act as
a multiplication operator. As a result, the network has the
capability to increase or decrease the amplitude of the motor
control signals and even reverse them with respect to external
inputs. It can therefore be used to control different walking
directions, such as forward/backward, turning left/right for
different angles, or curve walking in the forward and back-
ward directions (see [30] for more details).

The last module contains 18 motor neurons for controlling
all leg joints of the robot. The motor control signals from the
third module are transmitted to the motor neurons of the right
hind leg and propagated sequentially forward through delay
lines to the right middle leg, the right front leg, the left hind
leg, the left middle leg and, finally, the left front leg to achieve
different gaits. The final signal at each motor neuron is sent to
the corresponding leg joint for position or joint angle control
(see [28] for more details).

2) ARTIFICIAL HORMONE MECHANISM
To achieve fast, continuous, and online adaptation for main-
taining balance in the robot’s internal state, an AHM has
been developed based on the one proposed by [21], [22]. The
AHM is inspired by the endocrine system (also called the
hormone system) in biology. In nature, the hormone system
controls and regulates processes in the body to maintain
homeostasis (i.e., the dynamic equilibrium of the body’s
internal state). Here, the AHM aims to maintain the dynamic
equilibrium of the robot’s internal state by releasing and
regulating hormones, which influence the robot locomotion
behavior. For our implementation, the AHM has three sig-
nificant components, as indicated in Fig. 5(a): a hormone
gland (HG), a hormone receptor (HR), and a target cell. The
HG is primarily responsible for the secretion of hormones
and regulating or controlling hormone production quantity
(i.e., hormone concentration). The function of the HG is
based on the hypothalamus and pituitary gland in a biological
system. The hormone amount or concentration depends on
stimuli from both internal and external environments and is
subject to feedback control from other hormones. The HR is a

FIGURE 5. (a) Biological hormone mechanism. Hormone glands (HGs) (or
endocrine glands) produce hormones with respect to internal and/or
external stimulation. The hormones are released to hormone
receptors (HRs) through the capillaries. The receptors then pass the
hormones to their target cell. (b) AHM. (c) Artificial HG structure.

mechanism used to determine the target cell where hormones
can express their function and specify the influences on the
target systems. The target cell is a mechanism of the con-
troller, which can adjust the control parameter (in our case,
theMI of theMNLC) to balance the body’s internal state with
the external state of the environment. The functions of the
HR and the target cell are comparable to those of an insulin
receptor in a biological system.

There are twomain inputs connected to the HG: 1) the con-
trol input (CI) and 2) the signal input (SI). An input connected
to the HG via the SI is used directly for the calculation of
the level of hormone stimulation in each gland, while the CI
provides a means to enable interactions among hormones and
create hormone networks as outlined in (1):

release(t) =
CI (t)

1+ e−SIF(SI (t))
(1)
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where release(t) is the hormone release function and CI (t)
is the control input, which can be enabled (i.e., as a function
of time) or disabled (i.e., at a constant value). If we enable
this input, then there are four modes (inhibitory, stimulatory,
negative feedback and positive feedback) to choose from to
bias the hormones; see [22] for more details of these modes.
For simplicity, here, we disable the input by setting it to one
(i.e., CI (t) = 1.0). SI (t) is the signal input for stimulating
the HG. It can be preprocessed through a signal input func-
tion SIF(SI (t)), which is the alternate form of the standard
deviation formula, as shown in (2):

SIF(SI (t)) =

√∑n
i=1 SIi(t)2 −

1
n

(∑n
i=1 SIi(t)

)2
n

(2)

where n is the number of legs (here, n = 6) and SIi(t) is the
correlation between the normalized difference of the actual
foot contact sensor signal and its mean value and the normal-
ized difference of the corresponding predicted foot contact
sensor signal and its mean value for leg i. The normalization is
applied to compare the differences based on a value between
zero and one. The correlation equation is described as (3):

SIi(t) =
1

(k − 1)

·

∑k
T=0

(
SPi(t − T )− SPi(t)

)
σSPi(t)

·

∑k
T=0

(
FMi(t − T )− FMi(t)

)
σFMi(t)

(3)

where SPi(t) is the actual foot contact sensor signal of leg i;
FMi(t) is the predicted foot contact sensor signal of leg i,
as calculated from (4); k is the period of the signals (in
this work, 50 time steps); FMi(t) is the mean value of FMi
over 50 time steps; SPi(t) is the mean value of SPi over
50 time steps; and σSPi(t) and σFMi(t) are the normal standard
deviations of SPi(t) and FMi(t), respectively.

FMi(t) = µ · ((1− w) · FMi(t − 1)+ w · motori) (4)

Here, FMi(t) is the forward model of leg i (Fig. 6(b)), µ is the
scaling factor used to adjust the signal to the same range of
foot contact signal, w is the low-pass filter scale and motori
is the motor command of the Cx joint (see Fig. 1). In (4),
we set µ and w to 0.3 and 0.5, respectively. In principle,
the model translates a motor command (i.e., an efference
copy, Fig. 6(a)) into a suitable predicted foot sensor signal to
correlate with the actual incoming foot contact signal. Here,
the actual incoming foot contact signal is an analog signal
varying from zero to one, where zero means the foot does not
touch the ground and one means the foot fully touches the
ground.

In the final action of HG, to provide the hormone concen-
tration at each time step (Cg(t)), the hormone concentration
from the previous time step is combined with the level of
hormone stimulation from release(t), as shown in (5):

Cg(t) = α · release(t)+ β · Cg(t − 1) (5)

FIGURE 6. Flow diagram of an example signal to the HG: (a) CL3 joint
motor command (efference copy, motori ), (b) L3 predicted foot contact
signal FML3, (c) L3 foot contact signal, and (d) correlation between the
predicted foot contact signal from FM and the actual incoming foot
contact signal. Note that these parameters are used for all legs. For the
foot contact signal preprocessing that transforms FCi to SPi of each leg,
we apply a simple low-pass filter similar to (4) with µ = 0.9 and w = 0.1.

where Cg(t) is the time-dependent hormone concentration,
t−1 indicates the previous time, α is the stimulation rate, β is
the decay rate, and release(t) is the hormone release function
(see (1)).

In this work, α and β are empirically set to 0.29 and 0.982,
respectively, from (5). We combine the AHM and theMNLC,
resulting in the ALCS, by setting the HR parameter of the
AHM to theMI parameter of theMNLC. The HR is driven by
the hormone concentration (Cg(t)) as described by (6), while
the MI of the MNLC is continuously regulated through (7).

HR(t) = 0.005 · Cg(t)+ 0.995 (6)

MI_H (t) = HR(t) ·MI_H (t − 1) (7)

Here, MI_H represents the MI of the CPG network in the
MNLC regulated by the HR.

Based on the AHM and MNLC mechanisms of the pro-
posed ALCS, we can adapt the walking frequency and
gait of the robot continuously online. The AHM aims to
maintain the balance of the hormone concentration (Cg(t)).
If the concentration increases beyond a defined middle point
(here, 0.5), the MI value increases, resulting in a faster walk-
ing frequency and gait. However, if the concentration of the
hormone decreases below the defined point, the MI value
decreases, resulting in a slower walking frequency and gait.

C. EXPERIMENTAL DESIGN
We aim to demonstrate the performance of the ALCS
with online adaptation for robot walking. Therefore, the
experiment is designed to support investigations from three
perspectives. First, the ability of the ALCS to assist the robot
in reaching an equilibrium condition is evaluated. Second,
the robot performance as controlled by the MNLC (i.e.,
without online adaptation) and the ALCS (i.e., with online
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adaptation from the AHM) is compared. Third, real-time
online adaptations in the real world through real robot walk-
ing on different unknown terrains are evaluated. The three
main experiments were performed as detailed below.

1) EXPERIMENT 1: ADAPTABILITY OF THE ALCS-DRIVEN
ROBOT ON CHALLENGING TERRAINS
In this experiment, the MI was initially set to different val-
ues of 0.02, 0.04, 0.06, 0.09, 0.12 and 0.19. The ability of
the ALCS-driven robot to walk on six types of terrain was
tested: (a) flat terrain, (b) mesa terrain, (c) ramp-up terrain,
(d) ramp-down terrain, (e) rough terrain, and (f) terraced
terrain. The profile of each type of terrain is shown in Fig. 7.

FIGURE 7. Terrain types tested: (a) flat terrain, (b) mesa terrain,
(c) ramp-up terrain, (d) ramp-down terrain, (e) rough terrain, and
(f) terraced terrain.

2) EXPERIMENT 2: COMPARISON OF THE WALKING
PERFORMANCE BETWEEN THE ALCS AND
THE MNLC ON DIFFERENT TERRAIN TYPES
In this experiment, the ALCS- andMNLC-driven robots were
tested in a task involvingwalking from the starting point to the
endpoint on each type of terrain indicated in Fig. 7. The exper-
iment was repeated 16 times for each terrain. The MI value
was initially set to 0.19 for the ALCS- and MNLC-driven
robots because this setting leads to a typical fast tripod gait
(Fig. 4). The walking performance was measured with the
performance index, which is described in the next section.

3) EXPERIMENT 3: VALIDATION OF THE WALKING
PERFORMANCE OF THE ROBOT IN THE REAL WORLD
This experiment was intended to demonstrate the online
self-adaptation ability of a hexapod robot driven by the
ALCS. We let the robot walk on four different unknown
terrains, namely, 1) ramp-up terrain, 2) ramp-down terrain,
3) terraced terrain with two different steps and 4) natural
uneven terrain, as shown in Fig. 8. We also compared the
performance of the ALCS with the MNLC and the MNLC
with searching and elevator reflexes [26].

FIGURE 8. The orange line indicates the path that the robot walked. The
four different terrains for real robot walking included the (a) ramp-up
terrain, (b) ramp-down terrain, (c) terraced terrain, and (d) natural uneven
terrain.

D. PERFORMANCE INDEX
To evaluate the walking performance, three performance
indexes were chosen to measure the stability, harmony and
displacement. The stability indicates the possibility that the
robot will fall and decelerate. The harmony indicates con-
formation of the robot body position with the change in the
terrain level [31]. The displacement is a measure of three
perspectives: 1) excessive traveled distance, 2) lateral dis-
placement, and 3) the ratio between the actual distance on
the X-axis and the calculated distance with the maximum
velocity.

According to Ferreira and Santos [32], the determined
values of these three indicators should generally be between
zero and one. We assume here that a value of one corresponds
to the best performance for these indicators.

1) STABILITY
For the stability, we use the acceleration (Acc) and the angular
velocity (Ang) of all three axes from the simulation to deter-
mine the Acc minimum peak value (Accmin) and the Ang
peak-to-peak value (AngPP) of each axis using (8) and (9),
respectively, as shown in Fig. 9. Ferreira and Santos [32]
defined the minimum value of Accmin as Amin and the max-
imum value of AngPP as PPmax for all three axes. The maxi-
mum values of both Amin and PPmax are used to determine
robot stability. The robot stability criterion was calculated
using (10), which is an average of the exponential decays
of Amin and PPmax. In this study, λ is the decay constant,
e.g., 0.1. Thus, the maximum stability value is 1.0, meaning
that the robot walks without any body oscillations. The lower
the stability value is, the greater the robot body oscillations,
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FIGURE 9. Example of a signal showing the parameters for the
calculation of stability and harmony.

which can lead to inefficient walking.

Accmin = |min(Acc)| (8)

AngPP = max(Ang)−min(Ang) (9)

Stability =
e−λ·Amin + e−λ·PPmax

2
(10)

2) HARMONY
The harmony is derived using (8) and (9), where RIAmin and
RIPPmin are calculated using (11) and (12) shown below and
RIA and RIPP represent the highest values selected from the
three axes. The harmony was calculated from RIA and RIPP,
as shown in (13).

RIAmin =
min(Accmin)
max(Accmin)

(11)

RIPPmin =
min(AngPP)
max(AngPP)

(12)

Harmony =
RIA + RIPP

2
(13)

Fig. 10 shows the behavior of a signal to explain the values
of the stability and harmony. In the worst case, the signal has
a high magnitude and diverges (see Fig. 10(a)). In the best
case, the signal has a low magnitude and very low divergence
(see Fig. 10(d)).

FIGURE 10. Comparison of the signals to determine the values of the
stability and harmony.

3) DISPLACEMENT
The displacement was calculated using (14), as indicated
below:

Displacement =
|4x|
4s
·
|4x|
‖ 4r ‖

·
4x

Texp · Vmax
(14)

where4x is the distance on the X-axis from the starting point
to the finishing point, 4s is the distance traveled from the
starting point to the finishing point, 4r is the total displace-
ment calculated, Texp is the experiment time, and Vmax is
the robot’s maximum velocity. |4x|

4s is the excessive traveled
distance. If the excessive traveled distance equals one, then
the robot walks forward in a straight trajectory with no devia-
tion. |4x|

‖4r‖ is the lateral displacement. If there is no deviation
from the X-axis when the robot reaches the destination, then
the lateral displacement is one. The last part is the ratio
between the actual distance on the X-axis and the calculated
distance with the maximum velocity. For example, the orange
line represents the best-case scenario in which the robot
walks straight towards the trajectory; as a result, the traveled
distance and lateral displacement value are one. The blue
line indicates the second scenario, when the robot does not
walk toward the trajectory right away, although it eventually
reaches the target point. In this case, the distanc traveled is
less than one, while the lateral displacement remains at one,
as shown in Fig. 11.

FIGURE 11. Comparison of different calculation trajectories for different
displacement indexes. The blue line corresponds to a value of 0.53. The
green line corresponds to a value of 0.48. The orange line corresponds to
a value of 1.0.

III. RESULTS OF THE ONLINE ADAPTABILITY OF THE
ALCS-DRIVEN ROBOT ON CHALLENGING TERRAINS
The initial values of MI_H are set to 0.02, 0.04, 0.06, 0.09,
0.12 and 0.19 (i.e., different gaits) for all terrain types.
The MI_H values converge to a specific value between
0.047 and 0.053 while walking on flat terrain, as shown
in Fig. 12(a) (i.e., tetrapod gait). The MI_H of the mesa ter-
rain, the ramp-up terrain, and the ramp-down terrain converge
to 0.048–0.059, as indicated in Fig. 12(b)–(d), meaning one
definite robot gait was achieved (in this case, the tetrapod
gait). In the last period of walking on the mesa terrain,
MI_H increased to approximately 0.065 because the robot is
approaching the transition section between the down slope
and the level ground of the mesa terrain, becoming slightly
stuck. Therefore, the controller adapts the locomotion to
attempt to prevent the robot from becoming stuck.

For the rough and terraced terrains, MI_H varies between
0.048 − 0.15, as shown in Fig. 12(e)–(f). This MI_H range
for the rough and terraced terrains covers four gaits: the
tetrapod gait, the caterpillar gait, the intermixed gait, and the
tripod gait. For the rough terrain, MI_H shows unpredictable
patterns, and there is no correlation with changes in the

91594 VOLUME 8, 2020



P. Ngamkajornwiwat et al.: Bio-Inspired Adaptive Locomotion Control System for Online Adaptation

FIGURE 12. Adaptability of the ALCS-driven robot by adjusting its MI_H
on six terrain types: (a) flat terrain, (b) mesa terrain, (c) ramp-up terrain,
(d) ramp-down terrain, (e) rough terrain, and (f) terraced terrain. The
initial MI_H values are 0.02, 0.04, 0.06, 0.09, 0.12 and 0.19.

terrain level because the terrain had a nonuniform pattern.
In contrast, for the terraced terrain, MI_H shows predictable
repetitive patterns (resulting in tetrapod, intermixed, caterpil-
lar and tripod gaits) that changed with changes in the terrain
level. In Fig. 12, MI_H exhibits a pattern that is indirectly
characteristic of the terrain upon which the ALCS-driven
robot walked.

IV. RESULTS OF THE COMPARISON OF THE WALKING
CAPABILITY ON THE SIX TERRAIN TYPES
From the 16 repeated experiments, the successful runs were
counted and considered in the analysis. The robots were
considered successful when they reached their target or des-
tination within a certain time period, e.g., 20 minutes. With
the time limit, for the flat terrain, the robots must reach a
certain distance. For the mesa terrain, the robots must walk
up and down the slopes. For the ramp-up/ramp-down terrain,
the robots must walk up/down to the end of the ramp. For the
rough terrain, the robots must walk across the terrain from
one end to the other end. For the terraced terrain, the robots
must walk up and down stairs.

Fig. 13 shows a comparison of successful runs between the
ALCS- and MNLC-driven robots for each terrain type. The
ALCS-driven robot can manage to locomote on every terrain,
while the MNLC-driven robot fails to deal with all terrains.
For the random rough terrain (T5), which is the most difficult
type, the ALCS-driven robot succeeded 10 out of 16 times,
while theMNLC-driven robot succeeded three out of 16 times
and only by chance.

FIGURE 13. Successful runs for each robot type on each terrain type. The
blue bars represent the ALCS’s successful runs, and the orange bars
represent the MNLC’s successful runs. T1–T6 represent each terrain type
as follows: T1: flat terrain, T2: mesa terrain, T3: ramp-up terrain,
T4: ramp-down terrain, T5: rough terrain, and T6: terraced terrain
(see Fig. 7).

A. STABILITY AND HARMONY ANALYSIS
The stability is a measure of the possibility that the robot will
fall and decelerate. Fig. 14(a) reveals that the stability of the
ALCS is higher than that of the MNLC based on the ability of
the ALCS-driven robot to adjust its foot placement according
to changes in MI_H.

The harmony measures the robot’s body swing when it
walks on different types of terrain. Fig. 14(b) reveals that the
ALCS exhibits better harmony than theMNLC.When a robot
elevates its foot and begins walking, it automatically loses
its body balance. The ability of the ALCS-driven robot to
adjust MI_H assists in varying the foot placement to maintain
the robot’s body balance. As a result, the body swing rate is
reduced.

When we evaluate the stability and harmony results of the
ALCS-driven robot from all six terrains, the results indicate a
better walking performance for the ALCS-driven robot than
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FIGURE 14. Charts of the stability (a), harmony (b) and displacement
(c) results of the ALCS-driven and MNLC-driven robots. T1–T6 represent
each type of terrain as follows: T1: flat terrain, T2: mesa terrain,
T3: ramp-up terrain, T4: ramp-down terrain, T5: rough terrain, and
T6: terraced terrain.

for theMNLC-driven robot. The stability and harmony results
were correlated, showing the same trends for all terrain types
except for the terraced terrain.

In the terraced terrain, the stability is low, while the har-
mony is high. This contradiction can be explained as follows.
When the ALCS-driven robot climbs the steps, it must learn
to climb. Additionally, when it hits the step, its deceleration
increases, resulting in lower stability. In contrast, the harmony
result is high because the robot adjusts its swing with changes
in the terrain level. As shown in Fig. 12(f), MI_H varies
between 0.048 and 0.15, which falls into the range of the
caterpillar gait (0.07–0.1). With this gait, the ALCS-driven
robot can use its two front legs to climb the first step with
support from the other two pairs of legs. When it reaches
one step, MI_H is maintained because all six legs have not
touched the ground. As a result, it walks up the following step
more quickly, resulting in a lower swing value.

B. DISPLACEMENT
In this section, we compare the displacement results between
the ALCS- and MNLC-driven robots for each type of
terrain.

1) WALKING ON FLAT TERRAIN
Fig. 14(c) shows that the ALCS displacement is greater than
that of the MNLC because the ALCS-driven robot can walk
in a more straightforward manner along the trajectory. For
the MNLC-driven robot, because of its tripod gait, all three
legs are elevated at the same time, resulting in less friction
and the ability to achieve a higher speed. When this occurs,
however, the robot may slip and deviate from the target
destination. Notably, in the beginning of the test, neither
system walks straight to the target destination because they
were initialized with a specific fast gait (i.e., the tripod gait).
Nevertheless, the ALCS better develops a balanced position
due to the AHM, which reduces the walking frequency by
lowering MI_H; thus, the deviation from the trajectory is
reduced. As a result, the traveled distance and the lateral
displacement are closer to one than they would be otherwise,
as shown in Fig. 15, meaning that the robot walked nearly in
a straight line. Notwithstanding, the estimate of the traveled
distance from the calculation of the maximum velocity and
the travel time of the ALCS-driven robot is less than that
of the MNLC-driven robot simply because the ALCS-driven
robot walks more slowly (but stably).

FIGURE 15. Walking trajectories of the MNLC-driven and ALCS-driven
robots on flat terrain. Since the AHM of the ALCS can adapt the robot
gait online during walking, the robot can use an appropriate gait that
balances its body posture, which results in straight walking.

2) WALKING ON MESA TERRAIN
The profile of the ramp used in these experiments is split into
three parts, as depicted in Fig. 7(b). The first part is a ramp
up with an inclination of 7.5 degrees. The second part is a flat
terrain. The final part is a ramp down at a similar angle to the
first part. Under this testing scenario, theMNLC-driven robot
fails to achieve excellent walking performance. It climbs up
the slope with a tripod gait, which yields minimal contact
surface and results in a deviation in its trajectory path.

In contrast, the ALCS utilizes the AHM to automatically
adjust its gait to a tetrapod gait through MI_H, resulting in
more contact with the ground surface. A comparison of the
velocities when climbing up and climbing down is shown
in Fig. 16(b); the latter velocity is higher despite the simi-
lar MI_H values, although obvious effects of gravity were
observed. Fig. 16(c) shows various MI_H values when the
ALCS-driven robot walks on changing terrains, indicating
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the effort needed to adjust the walking gaits to cope with the
different types of walking environments.

An experiment conducted on the ramp-up terrain
in Fig. 7(c) yields a result similar to that of the mesa terrain
in state 2. Similarly, the result of the ramp-down terrain
in Fig. 7(d) is approximately the same as that of the mesa
result in state 4, as shown in Fig. 16.

FIGURE 16. Walking performance when the ALCS-driven robot walks on
the mesa terrain: (a) ALCS-driven robot’s Z position, (b) ALCS-driven
robot’s velocity, (c) change in MI_H according to the changes in the
terrain, and (d) snapshots of the ALCS-driven robot at different states
while walking on the terrain. State 1 indicates initial walking on level
ground. State 2 indicates walking up a slope. State 3 indicates walking
on level ground. State 4 indicates walking down a slope.

3) WALKING ON ROUGH TERRAIN
The rough terrain involved many curves with random nonuni-
form distributions, as shown in Fig. 17. Compared with the
other terrains, this terrain was likely the most challenging due
to the continuous disturbances and lack of predictability. The
MNLC-driven robot fails to reach the target destination due
to its constant MI (fixed gait) when it becomes stuck on the
surface. In contrast, the ALCS-driven robot shows a better
displacement result than the MNLC-driven robot because its
ability to adjust MI_H helped it address the changing terrain
curve. Therefore, the ALCS-driven robot does not become
stuck on the rough surface, although the robot still deviated
from the trajectory. More specifically, its MI_H adjustment
continuously supported the change in relative phases between
the legs, resulting in gait changes when dealing with terrain
curve changes.

4) WALKING ON TERRACED TERRAIN
The terraced terrain consists of four steps (each 3.5 cm in
height), as shown in Fig. 7(f). In this test, the MNLC-driven
robot fails to reach the target destination for two main rea-
sons: 1) while the MNLC-driven robot can navigate the first
step, it sometimes hits the corners of the following steps

FIGURE 17. (a) and (b) Relation between MI_H and the robot’s Z position.
(c) Physical appearance of the ALCS-driven robot while walking.
(d) Approximate visualization of the surface (where the white/black areas
indicate high/low surface levels and the orange line indicates the path of
the ALCS-driven robot).

and becomes stuck there, and 2) when the MNLC-driven
robot hits a corner, it can no longer climb up the following
steps. In contrast, the ALCS-driven robot exhibits an MI_H
adjustment when there is a change in the terrain level, similar
to the adjustment observed for the rough terrain. This analysis
is divided into two sections to consider climbing up and
climbing down.

The first part analyzes the climbing-up behavior, as shown
in Fig. 18. S1-S4 are the periods when the ALCS-driven
robot climbs up for each step, illustrating that the Cg value
converges to oscillate around the middle point (i.e., 0.5).
This action allows the robot to perform slightly different
gaits to deal with the terrain. The second part refers to the
climbing-down behavior (S5-S8) and indicates an enormous
swing in the Cg value from the middle point, which results
in a rapid change in the MI_H value (Fig. 18(c)). With this
change, the ALCS-driven robot switched its gait between a
fast gait (caterpillar gait) and a slow gait (wave gait). This
behavior occurs when the ALCS-driven robot is climbing
down, and the indirect influence of gravity accelerates the
motion of the robot. Therefore, the Cg value increases, and if
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FIGURE 18. Walking performance when the ALCS-driven robot walked on
the terraced terrain: (a) ALCS-driven robot’s Z position, (b) ALCS-driven
robot’s velocity, (c) change in MI_H according to the terrain change,
where S1-S4 indicate the steps during climb-up behavior and
S5-S8 indicate the steps during climb-down behavior (dashed line
represents the average value of MI_H), and (d) response of the
hormone concentration for each period.

the motion of the robot moves too fast, the Cg value starts to
decrease to slow down the walking speed and keep the robot
stable. Notably, this rapid gait switching behavior was not
predefined and emerged from the correlation of the predicted
foot contact signal and the actual incoming signal that adjusts
the hormone concentration of the AHM (adaptation process).
This represents an affinity for living creature behavior [33].
From the analysis of the climb-up and climb-down behavior,
the ALCS-driven robot has better climbing ability than the
MNLC-driven robot because the Cg of the AHM helps to
adapt the walking performance to changes in the terrain.

V. RESULTS OF A REAL ROBOT WALKING ON DIFFERENT
UNKNOWN TERRAINS
We test three different controllers on the real robot: theALCS,
the MNLC, and the MNLC with conventional searching and
elevator reflexes.1 The three indexes (i.e., stability, harmony
and displacement) are used for our evaluation. A typical
tripod gait is used as the initial gait for all controllers.

1Note that the reflexes are a state-of-the-art approach that has been widely
used as part of adaptive locomotion in legged robots [9], [26]. Therefore,
we combined it with CPG-based control to compare with our proposed
control.

The results show that the ALCS allows the robot to adapt
its gait online to successfully and stably walk on different
terrains, including 1) ramp-up terrain, 2) ramp-down terrain,
3) terraced terrain with two different steps and 4) natural
uneven terrain (Fig. 8).

Fig. 19(a) indicates that the ALCS-driven robot shows the
highest stability in all terrains. This is because the ALCS
adapts MI_H online to obtain slower and more stable gaits
to deal with the change in terrain, while the MNLC and the
MNLC with the reflexes do not have a mechanism for gait
adaptation. In those cases, the robot maintained the tripod
gait. In general, walking with the tripod gait on uneven
terrain can easily lead to instability. However, reflexes can
help extend or elevate the legs when missing the ground
contact during a stance phase or stepping on or hitting an
obstacle during a swing phase. Therefore, the MNLC with
reflexes shows better results than the pure MNLC. For the
harmony (Fig. 19(b)), theMNLCwith the reflexes showed the
worst result in all terrains. This is because the searching and
elevator reflexes made the robot bodymove up and down a lot
(i.e., body swing at a high magnitude). For example, when
the robot greatly extends the leg to obtain ground contact
(searching reflex), the body height is increased (moving up),

FIGURE 19. Charts of the stability (a), harmony (b) and displacement
(c) results of the ALCS-driven robot, the MNLC-driven robot, and the
MNLC-driven robot with reflexes during walking on the ramp-up,
ramp-down, terraced, and natural uneven terrains (see Fig. 8).

91598 VOLUME 8, 2020



P. Ngamkajornwiwat et al.: Bio-Inspired Adaptive Locomotion Control System for Online Adaptation

FIGURE 20. Walking performance when the ALCS-driven robot walked on
the ramp-up terrain: (a) change in MI_H according to the terrain changes
and (b) snapshots of the ALCS-driven robot at the i) transition to walking
up the ramp, ii) ramp, and iii) transition to level ground.

and when it greatly elevates the leg to avoid hitting the
terrain (elevator reflex), the body height is decreased (moving
down). For the displacement (Fig. 19(c)), the ALCS shows
the best results in all cases except walking on the ramp-down
terrain, where its displacement is less than that of the MNLC
with reflexes. However, the MNLC with reflexes showed
the least displacement for the natural terrain (i.e., uneven
terrain) because, from extending and elevating individual legs
independently, the left and right legs might not have an equal
distribution of ground contact points on average; therefore,
the robot could easily deviate from a straight path.

Fig. 20 reveals that walking on the ramp-up terrain consists
of five states. The first, third, and final states are on level
ground. As a result, MI_H converges to values between
0.027 and 0.037 (Fig. 20(a)), which leads to a wave gait.
The second and fourth states are the transitions from the
level ground to the ramp and the ramp to the level ground,
respectively. As a result, MI_H converges to values between
0.025 and 0.045 (Fig. 20(a)), which leads to a mixture
of wave and tetrapod gaits. The strong variation in MI_H
(states 2 and 4) is because the expected foot contact sen-
sor feedback derived from the motor commands and the
actual foot contact feedback are not highly correlated. The
supplementary video 1 of this experiment can be found at
http://www.manoonpong.com/IEEEACCESS/Supplevideo1.
mov.

Fig. 21 reveals that walking on the ramp-down terrain con-
sists of five states. All states are the same as for the ramp-up
terrain. Therefore, the ALCS-driven robot exhibited similar
walking behavior as that observed in the ramp-up terrain. The
supplementary video 2 of this experiment can be found at
http://www.manoonpong.com/IEEEACCESS/Supplevideo2.
mov.

Fig. 22 reveals that walking on the terraced terrain consists
of five states. The first, third, and final states correspond to
level ground. As a result, MI_H converges to values between
0.0283 and 0.042 (Fig. 22(a)), which leads to a wave gait.

FIGURE 21. Walking performance when the ALCS-driven robot walked on
the ramp-down terrain: (a) change in MI_H according to terrain changes
and (b) snapshots of the ALCS-driven robot at the i) transition to walking
down the ramp, ii) ramp, and iii) transition to level ground.

FIGURE 22. Walking performance when the ALCS-driven robot walked on
the terraced terrain: (a) change in MI_H according to terrain changes and
(b) snapshots of the ALCS-driven robot during the experiment. The robot
walked from the level floor to the ii) first step, iii) tiled floor, and
iv) second step. Colored areas indicate crossing steps.

The second and fourth states are the transitions at the edge.
As a result, MI_H swings to values between 0.026 and 0.164
(Fig. 22(a)), which leads to a mixture of wave, tetrapod,
caterpillar, and tripod gaits. The strong variation in MI_H
(states 2 and 4) is because the expected foot contact sen-
sor feedback derived from the motor commands and the
actual foot contact feedback are not highly correlated. The
supplementary video 3 of this experiment can be found at
http://www.manoonpong.com/IEEEACCESS/Supplevideo3.
mov.

Fig. 23 reveals that walking on the terraced terrain consists
of five states. The first state corresponds to the cement road.
As a result, MI_H converges to values between 0.026 and
0.038 (Fig. 23(a)), which leads to a wave gait. The second
state is the transition to grass. As a result, MI_H swings to
values between 0.026 and 0.066 (Fig. 23(a)), which leads
to a mixture of wave and tetrapod gaits. The third and fifth
states corresponded to grass. As a result, MI_H swings to
values between 0.03 and 0.055 (Fig. 23(a)), which leads to
a tetrapod gait. The fourth state represents the ALCS-driven
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FIGURE 23. Walking performance when the ALCS-driven robot walked on
the natural uneven terrain: (a) change in MI_H according to terrain
changes and (b) snapshots of the ALCS-driven robot on the i) cement
road, ii) transition to grass, and iii) grass.

robot becoming stuck on the grass. As a result, MI_H swings
to values between 0.03 and 0.084 (Fig. 23(a)), which leads
to a mixture of wave, tetrapod, and caterpillar gaits. The
strong variation in MI_H (state 4) is because the expected
foot contact sensor feedback derived from motor commands
and the actual foot contact feedback are not highly correlated.
The supplementary video 4 of this experiment can be found at
http://www.manoonpong.com/IEEEACCESS/Supplevideo4.
mov.

Altogether, the results of these experiments indicate that
the behaviors of the ALCS-driven robot are consistent with
the simulation, thus confirming the continuous real-time
adaptation of the ALCS.

VI. CONCLUSIONS AND FUTURE WORK
The experimental results indicate that the ALCS-driven robot
exhibited the greatest adaptability of the robots tested under
different challenging terrains. The displacement, stability,
and harmony results were used to determine the robot’s walk-
ing efficiency. The frequency and gait of the robot were auto-
matically adapted according to the changes in terrain. This
adaptability results from the correlation of the predicted foot
contact signal (obtained from a forward model) and the actual
incoming foot contact signal of each leg. The correlation is
used as a signal input for stimulating the HG to release the
hormone. The hormone then binds with its receptor (HR)
on the target cell so that the MI of the MNLC is modulated
online, and the gait pattern of the robot is also adjusted in real
time.

Many efforts have been dedicated to achievie online gait
adaptation of legged robots. In previous studies, a robot’s
stable position was analyzed to apply the kinematics of
its step to calculate optimized joint angles for appropriate
foot placement [34], [35] and path planning [36]. A similar
study was conducted by Focchi et al. [14], who applied a
torque-controlled technique to determine foot placement and
maintain a robot’s balance on a high-slope terrain.

In addition to this approach, some studies utilized exte-
roceptive sensing for terrain prediction and gait adaptation.
Murata et al. [9] used a depth camera to recognize the terrain.
The terrain information was then applied to a foot placement
method to automatically adjust the body posture of a hexapod
robot and the swing and stance movement of each leg of the
robot. However, in the method, the foot placement position
in each step was assigned by the operator (i.e., human in the
loop) in order to select the next appropriate contact point for
stable walking. Bjelonic et al. [2], [3] used stereo vision and
IMU sensors to predict properties of the terrain (e.g., rough-
ness and step height). This information was served to adapt
several locomotion control parameters (e.g., step frequency
and step height) of each leg of a hexapod robot. Another
widely used approach is to utilize the learning capability of a
robot to cope with different types of terrain [15].

Compared to these state-of-the-art techniques, one of the
advantages of the ALCS is that an ALCS-driven robot can
adjust its frequency online to maintain its stability without
any foot placement calculation, exteroceptive sensors, or even
prelearning of the changing environment. This continuous
online frequency adaptation helps determine terrain char-
acteristics indirectly, which is shown by the results of the
adaptability of the ALCS-driven robot on challenging terrains
(Fig. 12).
Another advantage of the ALCS-driven robot is that the

combination of the AHM and the MNLC represents a simple
but effective method for achieving adaptive locomotion with-
out the need for complex sensory systems (such as vision or
an exteroceptive sensor as often used by others [2]–[13]). This
feature aids the development of a lightweight robot with min-
imal data and less time required for complex sensory signal
processing and complex decision-making mechanisms.

Compared with our previous study on artificial hormone-
based adaptive control for leg damage compensation [37],
in this study, we show gait adaptation in response to different
complex terrains. Furthermore, we demonstrate that the type
of HR required to stimulate the target cell is different; thus,
we introduce a previous value of MI_H (as shown in (7)),
which results in more stable gait adaptation under different
terrains. Themechanism of the hormone in our previous study
without the previous MI_H value caused excessively rapid
gait changes, leading to unstable adaptation.

This research indicates that the involvement of the AHM
helps improve the ability of the robot to handle complex
unknown situations. These findings support the assumption
that the AHM allows the robot to achieve better walking
performance without having to prelearn the unknown envi-
ronment. Such a scenario is similar to the process in living
organisms, where hormones influence neuromodulators to
regulate motor control (i.e., CPG). Kravitz and his team
[38], [39] injected serotonin (monoamine neurotransmit-
ter) into lobster, which affected motor control (posture and
escape) because serotonin induces the neuromodulator at the
stomatogastric ganglion (STG). The STG seems to act as
a mechanism involving neuromodulation and hormones that

91600 VOLUME 8, 2020



P. Ngamkajornwiwat et al.: Bio-Inspired Adaptive Locomotion Control System for Online Adaptation

assists in controlling motor control for movement generation.
In arthropods, Knebel et al. [40], [41] have demonstrated
that the subesophageal ganglion (SEG), which connects the
brain and thoracic ganglion, affects motor control for move-
ment generation [42]. Neurobiologists have hypothesized that
neuromodulation and hormones seem to be integrated in the
SEG (personal communication). Additionally, many reports
have discussed neuromodulation in relation to a set of motor
patterns that are very carefully orchestrated and controlled
by different peptides acting as neurohormones or neuromod-
ulators [43]–[45]. Our study also supports these findings and
proposes an option for how hormones interact with motor
control though neuromodulation (i.e., MI_H) in an artificial
walking system, as illustrated in Fig. 2.

Future work will aim to extend this study by developing
an AHM mechanism that enables the robot to control its
walking direction for autonomous goal-directed navigation.
Slip compensation was not considered in the ALCS proposed
herein. In future work, we plan to extend our hormone system
to a hormone network with other proprioceptive feedbacks to
address this problem.
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