
Received March 6, 2020, accepted April 16, 2020, date of publication May 6, 2020, date of current version May 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992880

HPCCloud Seer: A Performance Model Based
Predictor for Parallel Applications on the Cloud
ABDALLAH SAAD 1,2 AND AHMED EL-MAHDY 1,3
1Department of Computer Science and Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
2Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt
3(On leave) Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt

Corresponding author: Abdallah Saad (abdallah.saad@ejust.edu.eg)

This work was partially supported by the National Telecommunications Regulatory Authority (NTRA), Egypt, through the Project
‘‘Super-HETs: Empowering 5G Heterogeneous Networks for Better Performance.’’

ABSTRACT With the continual increase in the high performance computing (HPC) market share, the need
for a cheaper and widely available system rather than the expensive typical HPC systems increases.
A promising alternative to HPC typical systems is the cloud computing environment which is characterised
by being cheap, flexible, scalable and available. However, the cloud is based on virtualizationwhich increases
the latency to access the processing and network resources due to resource sharing. This makes the cloud
an unpredictable environment to long run time programs such as HPC applications. Hence, modelling and
understanding performance is essential for exploiting such environment. In this paper we propose a predictor
for the execution time of the message passing interface (MPI) based applications on the cloud, as they are
a major class of HPC applications. The predictor is based on an analytical performance model through
considering the cloud resources as a queueing network, and the parallel applications as jobs contesting for
the shared resources. The prediction based on the proposedmodel is measured on both a cluster of bare-metal
servers and on a group of virtual machines. The overall accuracy of this prediction is 88% for 10 benchmarks,
5 from SPEC-MPI and 5 from NASA parallel benchmarks.

INDEX TERMS Cloud computing, high performance computing, message passing interface, performance
modeling.

I. INTRODUCTION
The interesting features of cloud computing such as avail-
ability, elasticity, usability and the ‘pay-as-you-go’ business
model, make it suitable for a wide spectrum of applications.
These features also encourage high performance computing
(HPC) customers to consider the cloud as a cheaper alter-
native to the expensive supercomputer and HPC clusters.
Furthermore, the cloud can provide better turnaround time
than HPC clusters, considering the waiting time imposed
by cluster management systems [1]. As a consequence,
the market size of the HPC cloud increased from about
one billion US dollars in 2014 to about three billion US
dollars in 2019 and predicted to reach 5.5 billion US dol-
lars in 2022 [2]. A typical example is the current strong
move to utilise cloud computing in network communications
technologies (as in 5G), for intense, real-time, communica-
tion operations; this move essentially allows for reducing

The associate editor coordinating the review of this manuscript and

approving it for publication was Sungroh Yoon .

corresponding computation costs as well as functionality
through consolidation of resources, that were tradition-
ally localised in each communication antenna (base-band
units) [3].

However, migrating HPC applications to the cloud faces
two main obstacles [4]: the higher network latency on
the virtual environment compared to the typical HPC plat-
forms, and the lack of information regarding the underlying
hardware that hosts the virtual machines used. The high
network latency lessens the scalability of tightly coupled par-
allel applications; where the cloud unpredictable environment
makes it harder for both the customer and the cloud service
provider to estimate the cost of running parallel applications
on the cloud. These obstacles influenced Egwutuoha et al. [5]
to recommend using bare-metal servers instead of virtual
machines in case of tightly coupled applications.

Cloud service providers have exerted many efforts to over-
come these obstacles; First, they have provided a new type
of HPC virtual machines (VMs) with higher computational
powers. Although, these cloud HPC VMs offer a comparable

87978 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2805-4196
https://orcid.org/0000-0001-9736-1352
https://orcid.org/0000-0002-2367-197X

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

performance to HPC clusters for loosely coupled applica-
tions, the performance degrades for parallel tightly coupled
applications relative to that of the HPC clusters. This is due
to the unpredictable performance of communication because
of the cloud resource sharing concept, where the communi-
cation medium is shared among running workloads even with
dedicated processing resources [6]–[9]. Then, many cloud
service providers such as Amazon, IBM and Alibaba, started
offering dedicated bare-metal servers for HPC customers to
break into the HPC market. The offered bare-metal machines
have relatively higher network speeds than the ordinary
cloud instances and they are not sharing their resources in
multi-tenancy environment. However, they still suffer from
heterogeneity and relatively lower network speeds than their
comparable servers on the HPC clusters [10]. The hetero-
geneity and low network speeds complicate performance
prediction and hence the cost prediction of running HPC
applications on the cloud. Knowing the exact cost and time of
running an HPC application on the cloud would, thus, attract
more HPC customers to migrate their work to the cloud. Also,
this knowledge allows the cloud service providers to afford
more flexible and profitable business models for their HPC
customers.

This paper1 proposes an analytical performance model
that predicts the running time of HPC applications on the
cloud, either on the cloud VMs or on the cloud bare-metal
multicore servers. The proposed model targets MPI based
applications which are an important class in the HPC domain.
The model is based on queueing networks that represents the
cloud’s underlying shared resources and the contention of the
running applications on it. The model uses two classes of
input parameters to compute the expected execution time of
the HPC application on the cloud. The first class is related
to the workload of the HPC program running on the cloud,
which includes the number of processes running in paral-
lel, the number of communication operations done through
out the program running time, and the average size of the
communicated messages. The second class of parameters
describes the specification and state of the underlying phys-
ical resources that hosts the execution of the HPC program,
which includes CPU speed, number of available processing
units, VMs specs and their current allocation, and network
latency. For the CPU and network parameters, the model
uses a non-linear solver to acquire them to allow for gen-
eral applicability. Despite the largeness of the time needed
for the workload profiling process to acquire the workload
parameters and the time needed for the non-linear solver to
acquire the CPU and network parameters, this parameters
acquisition process is done initially for only one time. After
that, the prediction can be done in a very short time for dif-
ferent configurations of parameters increasing the possibility
to explore more of the design space.

1This paper extends an earlier work in progress version published in
the proceedings of the 2019 ACM 11th Rapid Simulation and Performance
Evaluation: Methods and Tools [11]

The proposed model helps answering several design ques-
tions such as; What is the effect of increasing the number of
running processes on the same processing resources on the
performance of the running program?What is the point where
scaling up the parallelism of the running program is worthless
from the performance/cost view point? How the distribu-
tion of processes over servers affects performance, given the
communication distances between the servers and the hetero-
geneity of servers processing powers? Is it performance/cost
worthy to run a given program on bare-metal servers on the
cloud or to run it on an IaaS VM cheaper service?

The verification of the proposed model is conducted via
two sets of experiments, both used five different benchmarks
of the SPEC MPI-2007 benchmarks suite [12] as the exper-
iment workloads. The first set measures the model accuracy
when running the workloads on three different clusters sizes
of cloud bare-metal servers of two, four and eight servers.
The second set of experiments measure the accuracy of the
model running the sameworkloads but on different clusters of
virtual machines hosted on the same bare-metal servers used
in the first set of experiments. The experiments show that the
model prediction for the SPEC benchmarks has an average
accuracy of 87 % compared to the actual measured execution
times.

This paper has the following contributions:
• An analytical performance model for the tightly cou-
pled HPC applications running on the cloud. The model
predicts the execution time of MPI-based applications,
under various hardware and software configurations.

• The model’s accuracy analysis on an actual cloud vir-
tual environment as well as on the cloud bare-metal
servers, using five different benchmarks from the SPEC
MPI-2007 benchmarks suit [13].

• A fair comparison with a closely well-known [14]
related work [15] is provided, comparing five kernels
from NASA parallel benchmarks suite (NPB) [16] on
both the cloud virtual and physical machines.

• A comparison between the execution times of the bench-
marks on physical and virtual machines, accompanied
by a thorough analysis to the causes of this difference.

• The effect of the virtualisation on the proposed model’s
CPU and NW parameters is investigated.

The rest of this paper is organised as follows: related work
is presented in Section II. Section III describes the proposed
performance model and its corresponding parameters acqui-
sition. The methodology used in the modelling process is
depicted in Section IV. Section V presents and discusses the
model validation experiments. Finally, Section VI concludes
the paper and discusses future work.

II. RELATED WORK
The prospects of using the cloud as a more affordable
option in place of traditional HPC clusters have been studied
many times recently. For instance, Ramakrishnan et al. [6],
Li et al. [7] and Zhai et al. [8] studied the possibility of
using cloud computing for HPC and e-Sience applications.

VOLUME 8, 2020 87979

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

Wang and Ng [9] studied the virtualization effect on the
performance of the Amazon EC2 data centre’s network.
Gupta et al. [17] studied how HPC applications perform
differently on different underlying systems such a cluster,
a grid or a private cloud. These studies show that even when
the underlying system consists of dedicated high perfor-
mance machines packed with a 10 Gigabit Ethernet network,
the communication is still a bottleneck. Also, they show
how the unstable and unpredictable performance increases
the cost of long running applications in a dynamic envi-
ronment; e.g. HPC applications running on a virtualization
environment. Marathe et al. [1] performed a comparison
between the performance of the cloud and HPC clusters,
based on a number of metrics, including turnaround time and
cost, instead of execution time. They use different scales of
workloads to evaluate performance, turnaround time and cost
metrics among 5 different clusters and a group of Amazon
EC2 cluster compute instances. The results show that com-
munication intensive applications perform poorly on Amazon
EC2. On the other hand, the cloud queue waiting time to start
the service could be several times faster than the queue wait
time in an oversubscribed cluster, which can badly affect the
turnaround time for some applications.

Another line of research is concerned with predicting the
performance of HPC applications running on a cloud system.
Shi et al. [15] propose a methodology to analyse program
scalability using complexity analysis assisted by instrumen-
tation. Amdahl’s and Gustafson’s laws are the basis for this
methodology. They used their methodology to predict the
execution time of running parallel programs on both HPC
cluster and cloud system. A detailed comparison between our
proposed work and this work is provided in Section. V-C.2.
Egwutuoha et al. [5] recommend running tightly coupled

parallel applications on a cluster of bare-metal servers on
the cloud. This arrangement allows getting the advantage of
the small queue waiting time before starting the requested
service (higher cloud availability), while avoiding the slower
network of the cloud (compared to HPC cluster) caused by
cloud virtualization.

Barnes et al. [18] propose a modified regression model to
predict parallel programs’ scalability. They run a number of
programs on different number of processing nodes. These
runs are then fed as a training set to deduce the perfor-
mance of running the parallel program on processing nodes’
count with untrained configuration. While they achieve rel-
atively accurate best-fit predictions, their model lacks the
flexibility needed to test and explain how changing the main
parameters affects the results. Examples of such parameters
include cores per server, allocation of servers within the
underlying network, the current state of the network and the
amount of processing power available per server currently.
Bridges et al. [19] introduce a work-in-progress that use a
simple closed queuing network model to model the essential
characteristics of communication operations of MPI appli-
cations. They experiment their proposed model by simple
communication benchmarks on a two multicore machines

cluster. Their main focus is to model the communication
operations, neglecting the computation operations as well as
the characteristics of the hardware.

Cunha et al. [20] used a statistical model and a memory
based learning algorithm to predict the turnaround time of
HPC applications on both cloud and on-premise systems.
Accounting for the uncertainty of their predictions, they intro-
duce a tool tomake the job placement decision based on either
local resources or on the cloud environment. This work uses
a machine learning technique to predict the turnaround time,
where our proposed solution uses a queueing network model
that reflects both the cloud system’s computing and network-
ing resources inmathematical equations, with parameters that
explain the system and the running workload. Also, this work
focuses on the turnaround time prediction for computation
intensive workloads, where our proposed model is tackling
the problem for the communication intensive applications.

Recently, queuing networkmodels for performance predic-
tion of virtual environments were proposed [21], [22]. Other
studies also provided performance evaluation of some appli-
cations running on Xen [23], [24]. Bennani andMenasce [25]
proposed application-aware multi-class open queuing net-
works to predict the response time and throughput for
online and batch workloads. Hu et al. [26] investigated
auto-regressive models that map CPU allocation to the mean
response time with a fixed workload. Fuzzy logic has also
been proposed to model the nonlinear relationship between a
virtualized Web-server’s workload and its CPU usage [27].
However, the above mentioned work did not specifically
target, or propose performance models for HPC workloads
on the cloud.

III. PERFORMANCE MODEL OVERVIEW
The sharing of the underlying hardware and the underlying
relatively slow network would potentially result in contention
on both the CPUs and network. Therefore, the model con-
siders queueing networks for modelling such contentions.
Moreover, to generalise the applicability of our model,
we decompose the model into two main components: one for
modelling the running workload (software), and the other for
modelling the underlying system (hardware). This provides
for model portability.

The rest of this section is structured as follows: We discuss
the workload model in Section III-A; we then describe the
underlying hardware and how it interacts with the workload
model in Section III-B; and we explain how we determine
model parameters in Sections III-C, III-D and III-E.

A. WORKLOAD MODELLING
We consider an application (MPI based) as a collection of n
process. The process repeatedly enter the system, each time
executing one cycle. During the execution cycle, the process
performs computations and send/receive pair of operations.
More specifically, given an application as the workload,
we can express it using the following parameters:

87980 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

• w: the number of (dynamic) instructions in the
application,

• n: the number of processes that the application runs on,
taking into consideration that each process is invoked
iteratively to perform a job2; which is a number of
instructions followed by a pair of send and receive
operations,

• φ: the number of instructions that each process executes
in each system invocation (average number of instruc-
tions executed during a single job life cycle),

• s: the number of sends per process which is equal to the
number of jobs invoked to finish this process. This is
according to the proposed model assumption that each
jobmust perform a single pair of send/receive operations
during one life cycle.

Given all theses parameters, the following equation models
the given workload:

w = φns(n) (1)

Note that s and w are functions of n and they depend on the
current benchmark.

Given that a sequence of computation instructions φ fol-
lowed by a communication instruction is called a cycle, then
we can consider eachMPI program to be consisting of a fixed
number of cycles. These cycles have a uniform distribution
over the processes. Also, according to our assumption that
each job has to perform a send/receive operation during its
life cycle, the number of jobs per process is equivalent to the
number of sends per process s(n). Therefore, the total number
of jobs invoked during the execution time of the workload is
equivalent to ns(n).
In the next subsection (§III-B), the life cycle of a job inside

the processing nodes hosting the execution of the workload is
presented.

B. QUEUEING NETWORK AND PROCESS LIFE CYCLE
To model the execution of an MPI program on a cluster of k
processing nodes, we use a closed-queuing network system,
as shown in Fig. 1. In the figure, we show the queuing network
for nodes i and j (two arbitrary nodes in the cluster). They
are representative of the rest of cluster nodes, as all the
nodes have the same structure, sharing a centralised job pool.
As mentioned before, we define a job as a single process
invocation, and an MPI job pool as collection of ready jobs,
where jobs initially exist.

The system has an ‘IN’ port and ‘OUT’ port through which
jobs enter and exit the system, respectively; each entrance and
exit for the same job forms an execution cycle. Immediately
after exiting, the job is scheduled for another cycle. This
process is iterative.

Each job is assigned to a processing node (e.g. node i).
Executing a computation sequence (of length φ), the job
uses the node’s processing power via CPU i queue. Then a

2This is not to be confused with an MPI job; a job here refers to a queuing
network job, which models a process execution cycle

FIGURE 1. A cluster of k-machines modeled in a queueing network.

communication operation takes place between the job and
another one, either located locally on the same node (node i)
or remotely on another processing node, (e.g. node j). Fig. 1
shows also the job flow into our model; we used the colour
codes green and blue for node i and node j jobs’ paths,
respectively, and black for mixed paths.

In case of local communication, the job will re-enter the
CPU queue running for specific number of quanta/visits
(modelling the communication overhead3) then exits the sys-
tem back into the pool. On the other hand, in case of a remote
communication operation, the operation is performed via the
network queues of the two communicating processing nodes,
Net i and Net j. During this remote communication, the job
uses Net i to move from its locally assigned node (node i)
to the remote node (node j). Net i here models the intercon-
nection link to the remote processing node (Node j). Upon
reaching the remote node (Node j), the job will enter the host
CPU for a corresponding number of visits, accounting for the
communication overhead needed to receive the response for
its message. The job will then visit Net j queue to return back
to its original node (node i), and then exits the system back to
the pool, completing a job execution cycle.

In the upcoming subsections (§§III-C and III-D) we cal-
culate the parameters needed to solve the queueing network
(service time and visit ratio respectively) to get the system
response time in §III-E.

C. SERVICE TIME CALCULATION
In general, the service time is the time spent by a server to
serve a job from its waiting job queue. For the CPU, the ser-
vice time is defined as the time taken to process (execute) the
job’s φ instructions. Hence, we can calculate the service time
of the CPU as:

scpu = kφ (2)

where the constant k represents a single instruction execution
time.

Given c cores in a CPU, we can deduce that increasing the
number of jobs in the CPU queue enhances the service time.

3The communication overhead represents the time spent by a job waiting
for a response from another job.

VOLUME 8, 2020 87981

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

However, when the server’s capacity is reached, the enhance-
ment stops. Hence:

scpu =
kφ

min(n, c)
(3)

where the term min(n, c) represents the maximum scalabil-
ity gained using the available cores for running n parallel
processes on the underlying computation resources. If we
have a fixed workload w, and we substitute for φ = w/ns(n)
from (1), the equation becomes:

scpu =
kw

s(n)nmin(n, c)
(4)

Now we consider the network part; we define the Net
queue’s service time as the time that two nodes need to
communicate a message of an average size between them
(fixed size for each configuration). The average message size
changes as the number of running processes change; thus we
have to model the average message size relative to the change
in the number of processes executing the workload. For this
purpose, we define the following parameters:
• m(n): the average message size as a function of n,
• s(n): the number of send operations per process as a
function of n,

• s(n)n: the total number of messages sent during work-
load execution.

Through monitoring and profiling various different work-
loads (10 parallel benchmarks, as mentioned later in §V-B),
it was clearly obvious that the average message size of a
workload’s communication operations is inversely propor-
tional to the number of running processes executing this
workload. The equation m(n) = ma/n + mb is the best
model fitting this relationship; where ma and mb are two
constants that can be calculated by fitting the profiling data of
the workload which includes its communication behaviour,
relative to n. Also s(n) can be modelled by a logarithmic
function as C ln(n) + D; where C and D are two constants
that can be fitted from the profiling data of the workload’s
communication behaviours.

Now, to calculate the the communication time of sending
m(n), we use a simplified cost model [28], as follows:

snet = Ts + m(n)Tw (5)

where:
• Ts: start-up time needed by the two communicating
nodes to handle the message,

• Tw: transfer time per word.
To make the model simpler, we assume that Ts = 0. Hence,

snet = (ma/n+ mb)Tw (6)

where Tw can be calculated as described by our Saad and
El-Mahdy [29].

The model may suffer from two flaws: firstly, the model
approximation be increasing the simplicity; secondly,
the possible inaccuracy in the workload profiling and the
hardware’s resources probing. We account for these possible

flaws by multiplying the right hand side of Equation 6 by a
constant (Net_Constant), as follows;

snet = Net_Constant× (ma/n+ mb)Tw (7)

where, Net_Constant is a constant factor accounts for any
inaccuracy in the measurement of the network characteristics
due to the possible flaws previouslymentioned in this section.
However, adding this constant doesn’t change the model
equations so much, as (ma×Net_Constant) can be substituted
by m′a and (mb × Net_Constant) can be substituted by m′b.
We use a non-linear problem solver (Gauss-Newton Algo-

rithm [30]) to compute the constants in the CPU service
time equation (k and w) given a fixed size workload and the
constant in the Net service time equation (Net_Constant) as
described in Section. §IV. To do that, we give initial values
to these constants. The outcome service time represents an
initial guess to the solver, to obtain the best fit for these
constants. Hence, we can define sCPUguess and sNetguess
as follows:

sCPUguess =
CPU_Constant
s(n)nmin(n, c)

(8)

sNetguess = Net_Constant× (ma/n+ mb)Tw (9)

where CPU_Constant = kw.

D. VISIT RATIO CALCULATIONS
We define a queue’s visit ratio as the average number of visits
made by the workload’s jobs to this queue (within their life
cycles) to the total visits they do for all the queues in the
queueing network.

We need to take into consideration the average CPU quanta
of the job spent during its overhead processing for commu-
nication, to compute the visit ratio. First, the communication
overhead is calculated; this is done by profiling the parallel
application running on a physical machine with all jobs com-
municating locally, hence no network communication time.

Thus the time a job needs to finish its life cycle
(Job_Cycle_time) consists of three parts:
• Tcomp: computation time spent executing the φ instruc-
tions of the job,

• Tnw: network time spent by the job communicating
remotely,

• Toh: communication overhead time.
Thus,

Job_Cycle_time = Tcomp + Tnw + Toh (10)

Hence, for each process, its cycle time is defined as:
Process_time = Job_Cycle_time× s.

To get the running application’s execution time (Texe) and
the waiting time for all MPI communications made by each
processes (MPI_Wait), we profile the parallel application by
running it with a number of processes that is fewer than
the available number of processing units; hence no CPU
contention.We assume that all processes start and finish at the
same time, so that the application’s execution time is simply

87982 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

equal to the execution time of a single process. Hence, we can
define the cycle time of a process as Process_time = Texe
and the Job_Cycle_time as Job_Cycle_time = Texe/s.

The Tnw is neglected because the application is profiled on
a single machine. Also Toh from profiling can be defined as:
Toh = MPI_Wait/s. Hence, Tcomp is defined as Tcomp =
Texe/s− Toh.
Now that we have Job_Cycle_time, Tcomp and Toh,

we can compute the ratio of the computation time to the
total cycle time of a job (Vcomp), as well as the ratio of
communication overhead time to the total cycle time of a
job (Vcomm), where Vcomp = Tcomp/Job_Cycle_time
and Vcomm = Toh/Job_Cycle_time. After we compute
these two ratios, the visit ratio of a job to each processing
node’s CPU queue can be calculated as follows: Given a
computing node i whose CPU queue is visited by all the jobs
located originally on this node to make their computations.
In addition, these jobs will re-enter the CPU queue to make
their communication overheads if these communications are
local. Finally, the same CPU queue may be visited by jobs
residing in other computing nodes if they are making remote
communications with adjacent jobs on node i. Hence, we can
define the visit ratio of the CPU queue of node i as:

VCPUi
=
ni
n
Vcomp +

ni
n
ni−1
n

Vcomm +
n− ni
n

ni
n
Vcomm

(11)

where:
•

ni
n : the ratio of jobs on node i to the total number of jobs
in the system,

•
ni
n
ni−1
n : the ratio of jobs of node i that may communicate

locally,
•

n−ni
n

ni
n : the ratio of jobs outside node i that may commu-

nicate remotely with jobs of node i.
In a similar way, we can compute the network device

queue’s visit ratio (Vneti). The remotely communicating jobs
of node i visit its network queue (neti). Likewise, jobs that
are not located on node i and communicating with its jobs
remotely will visit neti during their return. Hence, Vneti can
be defined as follows:

Vneti =
ni
n
n− ni
n
+
n− ni
n

ni
n

(12)

where:
•

ni
n
n−ni
n : the ratio of node i jobs that communicate

remotely with jobs located outside the node,
•

n−ni
n

ni
n : the ratio of located outside node i jobs that are

communicating remotely with its jobs.

E. JOB RESPONSE TIME CALCULATIONS
We define the system response time, R, as the execution
time of a φ long sequence of instructions. As there are s(n)
sequences of φ instructions for each process to execute,
the response time of each process can be defined as s(n)φ.
Moreover, as we assume that all n parallel sequences start and

finish execution simultaneously, the total execution time of
the system, T , givenw instructions, can be defined as follows:

T = Rs(n) (13)

We can compute the average response time needed to
finish a single life cycle (R), given the service times and visit
ratios. In our proposed model, a numerical solution is used
to obtain R when the workload is run in parallel using n pro-
cesses. Given the values of service time and visit ratio for all
queues, we use Mean Value Analysis (MVA) algorithm [31]
to compute R.

IV. MODEL PARAMETERS ACQUISITION
Fig. 2 illustrates the model parameters acquisition process;
our main aim is to predict the execution time of a workload
running on the cloud, using a given configuration. By config-
uration we mean which underlying resources to be used (how
many cores/processing nodes and which network), the num-
ber of running processes in parallel to carry on the execution
of the workload and the distribution of these processes over
the used processing resources.

FIGURE 2. Proposed model parameters acquisition flowchart.

The first step is to profile the workload more than two
times with different number of running processes for each
run, using a parallel profiler, such as Vampirtrace [32] which

VOLUME 8, 2020 87983

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

is an open-source library from TU Dresden, to obtain the
communication pattern of the workload. At the same time,
the hardware resources used (processing and networking)
are probed to gather needed information about the avail-
able processing resources (processor’s speed and number of
available cores) and the current state of the network via a
network tomographer [29]. The parallel profiler can supply us
with the following information about the workload for each
configuration (number of running processes) it profiled:

• number of running processes in parallel (n),
• the waiting time of each process for performing commu-
nication (MPI_Wait),

• number of send/receive operations per process (s(n)),
• the average message size of the communication opera-
tions performed between the running processes (m(n)),

• the execution time of the parallel workload (Texe).

Whereas hardware probing extracts the following
information:

• number of available cores for each processing node (c),
• the speed of each processing node,
• per word network transfer time (Tw),

Initially, for training purpose, we use the same configuration
as one of the configurations used in the profiling. Then,
through the analytical model equations, the visit ratios and
the guessed service times are calculated using the workload
profiling data and the hardware specifications. During these
calculations, the CPU_Constant and Net_Constant initially
get default values, e.g. they are both assumed to be 1. After
that, the mean value analysis technique uses the initial visit
ratios and service times for each queue in the queueing net-
work to numerically calculate the system response time for
the given configuration.

The predicted execution time then can be calculated using
Equation 13. At this moment, we have to decide if this
prediction is close enough to the ground truth measured
execution time during the profiling process (difference has
to be less than some constant error ε). If yes, then the values
of CPU_Constant and Net_Constant are correct and we can
consider their current values for any further not profiled
configurations. If no, this means that there is imperfection in
the hardware probing and workload profiling processes due
to the two flaws in these processes we previously mentioned
in §III-C. To handle this imperfection, the Gauss-Newton
algorithm is used as a non-linear problem solver to adjust
the values of both CPU_Constant and Net_Constant. Then,
to test the new values of CPU_Constant and Net_Constant,
we repeat the steps starting with applying these new values
on the analytical model until the error between the prediction
and the actual execution time becomes less than ε.

V. EXPERIMENTS, RESULTS AND ANALYSIS
In this section, the experiments setup, the workload used
and the experiments description, results and analysis are
illustrated.

A. EXPERIMENTS SETUP
To examine the accuracy of the prediction based on the pro-
posed model and to illustrate the model capabilities, a cluster
of virtual machines hosted on a private cloud and a heteroge-
neous HPC-cluster have been built sharing the same hardware
resources. The configurations of both the cluster of virtual
machines and the HPC-cluster are shown in Table 1 and
Table 2, respectively. The HPC-cluster’s servers have three
different models of processors with different number of cores
per model and different speeds. In addition, the cluster has
two servers with 48 GB of memory and the rest of servers
have 24 GB of memory.

TABLE 1. The Specifications of the virtual machines cluster.

TABLE 2. HPC-clusters specifications.

Ten benchmarks of two different benchmark suites have
been used as the parallel workload during the experiments.
The first benchmark suite is the SPEC-MPI. Five benchmarks
of this benchmark suite are used for assessing accuracy of
the proposed model, which are: Lammps, Lu, Pop2, Socorro
and Zeusmp2. The second benchmark suite is the NASA
Parallel Benchmark. Also, five benchmark kernels are used
to compare the accuracy of the proposed model with the
prediction accuracy of one of the state of the art models.
A description of the used benchmarks is given in Section V-B.
Both the cloud and the cluster run MPICH 3.1 and gcc
toolchain.

B. BENCHMARKS DESCRIPTION
1) SPEC-MPI
SPEC, the Standard Performance Evaluation Corporation,
is a non-profit corporation established to make and maintain
benchmarks to evaluate performance and energy efficiency
of the modern computing systems. SPEC released many
benchmark suites such as SPEC CPU, SPEC Cloud, SPEC
OMP and SPEC MPI. SPEC-MPI is a benchmark suite
released in 2007 and is considered a member of the high

87984 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

performance group of benchmarks. This suite is designed
to evaluate the performance of MPI-parallel, floating point,
compute intensive native programs derived fromMPI parallel
end-user applications. The main performance metrics empha-
sised using this benchmark suite are:
• processing nodes’ type and number,
• inter and intra communication interface between pro-
cessing nodes, and

• the memory architecture of the processing nodes.
In our experiments, we use the following five benchmarks of
SPEC-MPI benchmark suite:

1) lammps: is a parallel open source C++ molecular
dynamics simulation program. It was developed at
Sandia National Laboratories, a US Department of
Energy facility, with funding from the DOE. The main
communication functions between the running pro-
cesses are the blocking send and the non-blocking
receive. Lammps allows for up to 140 parallel running
processes.

2) lu: is a parallel FORTRAN 90 program developed in
NASA Ames Research Center for the use in computa-
tional fluid dynamics and computational physics fields.
The program uses the blocking send and receive as
the main MPI communication functions between its
running processes. For the medium reference workload
used in this work, lu can use at most 512 parallel
processes.

3) pop2: is a parallel ocean program (pop) developed in
Los Alamos National Laboratory using FORTRAN 90.
The program uses the collective communication func-
tions allreduce and waitall to communicate between the
running processes.

4) socorro: is a FORTRAN 90 and C code performing
self-consistent electronic-structure calculations. This
code was developed as a collaboration between Sandia
National Labs, Vanderbilt University, and Wake Forest
University. Socorro is like lammps that uses blocking
send and the non-blocking receiveMPI communication
functions.

5) zeusmp2: is a FORTRAN 90 computational fluid
dynamics code developed at the Laboratory for Com-
putational Astrophysics (University of Illinois at
Urbana-Champaign). The code can run using maxi-
mum 512 processes for themedium reference workload
used in this work. The main communication opera-
tions performed are the non-blocking send and receive
MPI functions beside the MPI-allreduce collective
operation.

All the previously mentioned benchmarks used the medium
reference workload during the experiments.

2) NASA PARALLEL BENCHMARK (NPB)
NPB is a computational fluid dynamics based set of appli-
cations used to evaluate the performance of parallel systems.
The basic benchmark suite consists of five kernels and three
pseudo applications. In this work we used the five kernels in

a comparison with one of the state of the art work [15]. The
five kernels are described as follows:

1) CG: use the Conjugate Gradient method to solve an
unstructured sparse linear system, the blocking send
and non-blocking receive are the main MPI commu-
nication operations performed during the benchmark
runtime,

2) EP: Embarrassingly Parallel; a benchmark that mea-
sures the performance of parallelismwith a tiny amount
of communication operations,

3) FT: a numerical solver for certain partial differential
equations using Fast Fourier Transform (FFT). The
benchmark uses a considerable amount of communi-
cation operations to perform the FFT steps. All-to-all
operation is the main MPI communication operation
performed by this benchmark,

4) IS: large Integer Sort; the running processes of this
benchmark communicate use the all-to-all communi-
cation operation as the mainMPI communication func-
tion between them,

5) MG: A simplified 3d Multi-Grid; a memory intensive
benchmark that uses the followingMPI communication
operations during its running time: blocking send, non
blocking receive, and all-to-all communication opera-
tions.

Only IS benchmark is written in C while the other bench-
marks are FORTRAN programs. Moreover, the workload
used with these benchmarks are all of class-C except for FT
and MG that both use class-B. Where a class designates the
size of the test program; there are three classes: A, B and C; of
increasing size order. Each class is approximately four times
larger than the predecessor.

C. PROPOSED MODEL EXPERIMENTS
1) MODEL PREDICTION ACCURACY
Initially, the workloads used in these experiments are profiled
by running 3 different configurations for each workload. For
example, we profile each workload where n is 2, 4 and 8. The
profiling is performed for at least 3 different configurations
because it is the minimum number of data points needed
to accurately model the workload communication behaviour.
It is worth mentioning that once the workload has been
profiled, its profiling data remains constant for any coming
execution over any underlying hardware. Similarly, once the
hardware has been probed, the hardware information remains
constant for any future execution using the same hardware to
execute any workload. In other words, the workload profiling
and the hardware probing processes are performed once for
any given workload or hardware used. Then, the information
results from these processes is considered constant for any
possible variation of their configurations.

Each profiling run is hosted on a single server that has
available cores equals to the number of running processes
to avoid contention on the CPU queue. From these runs we
get the execution time for each and profile the performed
communication operations to help modelling them for any

VOLUME 8, 2020 87985

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

given number of running processes. In this communication
model, for different values of n the average message size and
the average number of send operations per process s(n) are
modelled. We use the information from the profiling process
as input to the GNA nonlinear problem solver to calculate
both the CPU_Constant and Net_Constant. After that, the ser-
vice time and the visit ratio for each queue in our closed
queuing network model are calculated. Then, the service
times and visit ratios for the queues in the queuing network
are inputted to the MVA algorithm to numerically calculate
the response time R. Finally, the model prediction to the
execution time of the parallel application for a given number
of running processes n is worked out using Equation 13.

Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show the predicted
execution time of the parallel SPEC-MPI benchmarks based
on the proposed model for different number of processes (in
dashed line) versus the actual measurements of the execution
time of these benchmarks (in solid line). Each figure con-
tains the data for running a benchmark on both bare-metal
servers (in blue line) and virtual machines (in red line). The
X-axis represents the number of running processes while the
Y-axis shows the execution time in seconds for the given
number of running processes. Further, the secondary Y-axis
(if any) shows the execution time also in seconds for the
benchmark running on the virtual machines. If the secondary
Y-axis exists, the primary Y-axis shows only the execution
time in seconds for the benchmark running on the bare-metal
servers. The target execution time represents the ground-truth
measurements for running a specific benchmark using differ-
ent values of n.

FIGURE 3. Prediction vs real measurements of Lammpas benchmark
running on different number of processes.

The ground truth curves for all figures show a common
behaviour related to the response of the benchmarks to
increasing the number of running processes that the bench-
mark’s workload runs on. This common behaviour can be
stated as: a benchmark’s execution time decreases as the
number of running processes increases by a factor inversely

FIGURE 4. Prediction vs real measurements of Lu benchmark running on
different number of processes.

FIGURE 5. Prediction vs real measurements of Pop2 benchmark running
on different number of processes.

FIGURE 6. Prediction vs real measurements of Socorro benchmark
running on different number of processes.

proportional to this increment. For example, doubling the
number of processes for Zuesmp benchmark running on bare-
metal servers from 8 to 16 processes, halves the execution

87986 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

FIGURE 7. Prediction vs real measurements of Zeusmp benchmark
running on different number of processes.

time from around 3400 to 1700 seconds. However, this factor
decreases as the number of processes continue increasing. For
example, doubling the number of processes for also Zuesmp
running on bare-metal servers from 32 to 64 processes, only
decreases the execution time from around 1300 to 900 sec-
onds. The reason for this behaviour is the correlation between
processing demands and communication demands. As the
number of processes increases, the communication between
these processes increase in a non-linear form, prohibiting
the total execution time from gaining the full expected time
decrements caused by the distribution of the workload among
more processes.

In these experiments the evaluated metric is the
model-based prediction for the parallel benchmarks execu-
tion time for a given number of running processes. In order
to measure the model accuracy, two statistics are used:
coefficient of variation (CV) and mean absolute percentage
error (MAPE). We consider the accuracy as 100% - MAPE.
The accuracy of the SPEC-MPI benchmarks are as follows;
Lammps is 86% accurate while running on the bare-metal
servers and 84% while running on the virtual machines,
Lu is 82% on bare-metal servers and 86.5% on VM, Pop2 is
90.5% on bare-metal and 88% on VM, Socorro is 87% on
bare-metal and 96.4% on VM, and finally, Zeusmp is 84.4%
accurate on bare-metal servers and 86% on VM. For further
details, Table 3 shows the coefficient of variation and the
mean absolute percentage error for each benchmark on both
bare-metal servers and VM.

The results show that the accuracy of the predictions based
on the proposed model is not less than 80% for any of the five
benchmarks used, either when running on bare-metal servers
or on a group of virtual machines. In addition to that, from the
figures we can determine the point where it is not cost worthy
to increase the number of running processes/processing cores
from the performance perspective. For instance, increasing
the number of running processes for the benchmark Lammps
running on a cluster of bare-metal servers from 8 processes

TABLE 3. Model based prediction accuracy details.

to 36 processes, reduces the running time from 2635 seconds
to 815 seconds (3.23 × speedup with baseline = 8 and effi-
ciency = 0.09). Whereas increasing the number of running
processes from 8 to 64 reduces the benchmark running time
to 669 seconds (3.94 × speedup with baseline = 8 and effi-
ciency= 0.06). From the previous calculations of the speedup
and efficiency, we can conclude that increasing the number of
running processes above a certain point is not cost efficient.
The proposed model prediction helps in determining this
point and recommends not adding more processing resources
as it is not cost worthy.

2) MODEL COMPARISON WITH THE STATE-OF-THE ART
The closest research from the literature [14] to the proposed
work is the work done by Shi et al. [15]. In their work,
they propose a performance prediction methodology using
Amdahl’s law and Gustafson's scaled speedup formulation.
Their work is measured on both an HPC-cluster and on a
private cloud. The workload used is five kernels of the NASA
Parallel benchmark suite. Shi et al.’s work and our proposed
model consider the cloud infrastructure and the parallel work-
loads running on it, then uses a model to predict the running
time of these workloads on the cloud. In this subsection a
comparison between their work and our proposed model’s
prediction is introduced. For the sake of fairness, their model
has been re-implemented on our experiments test-bed. Also,
the comparison uses the same benchmark suite they used.

Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12
show the results of the comparison between the running time
prediction based on the proposed model (blue line) versus
the prediction based on Shi et al. model (scalability analysis
model; red line) versus the measured execution time (ground
truth; black line) while running the benchmarks: CG, EP, FT,
IS and MG, respectively, on a cluster of bare-metal servers.
Further Figure 13, Figure 14, Figure 15, Figure 16, and
Figure 17 show the results of the same comparison but with
the benchmarks running on a group of virtual machines.

Overall, the results show a prediction accuracy of 74%
for the scalability analysis model-based prediction (80% for
bare-metal servers and 68% for virtual machines), and 88.8%
for the prediction based on our proposed model (87.4%
for bare-metal servers and 90.2% for virtual machines).
The details of these results are presented in Table 4. Also
Figure 18 visualizes the accuracy of predicting the run-
ning time of each benchmark of NPB on both bare-metal

VOLUME 8, 2020 87987

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

FIGURE 8. Proposed model prediction vs scalability analysis model vs
real measurements of CG class-C benchmark running on a cluster of
bare-metal servers.

FIGURE 9. Proposed model prediction vs scalability analysis model vs
real measurements of EP class-C benchmark running on a cluster of
bare-metal servers.

FIGURE 10. Proposed model prediction vs scalability analysis model vs
real measurements of FT class-B benchmark running on a cluster of
bare-metal servers.

servers (solid bars) and virtual machines (dashed bars). The
figure shows the prediction based on our proposed model
in blue colour as well as scalability analysis model but in
red colour. As can be seen from the results, the accuracy

FIGURE 11. Proposed model prediction vs scalability analysis model vs
real measurements of IS class-C benchmark running on a cluster of
bare-metal servers.

FIGURE 12. Proposed model prediction vs scalability analysis model vs
real measurements of MG class-B benchmark running on a cluster of
bare-metal servers.

TABLE 4. Comparison between prediction accuracy based on the
proposed model and scalability analysis model.

of the prediction based on both our proposed model and
the scalability analysis model is very close for running the
benchmarks on a maximum of 8 processes, which is the
number of available bare-metal servers we used during these
experiments. Using more than 8 processes to run the work-
load causes the accuracy of the prediction based on the

87988 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

FIGURE 13. Proposed model prediction vs scalability analysis model vs
real measurements of CG class-C benchmark running on a group of
virtual machines.

FIGURE 14. Proposed model prediction vs scalability analysis model vs
real measurements of EP class-C benchmark running on a group of virtual
machines.

FIGURE 15. Proposed model prediction vs scalability analysis model vs
real measurements of FT class-B benchmark running on a group of virtual
machines.

scalability analysis model to degrade while the prediction
based on our proposed model keeps the same accuracy level.
This is because the scalability analysis model counts only for

FIGURE 16. Proposed model prediction vs scalability analysis model vs
real measurements of IS class-C benchmark running on a group of virtual
machines.

FIGURE 17. Proposed model prediction vs scalability analysis model vs
real measurements of MG class-B benchmark running on a group of
virtual machines.

FIGURE 18. Prediction accuracy for the running time of NASA Parallel
Benchmarks on both bare-metal servers and virtual machines based on
the proposed model and the scalability analysis model.

the inter-communication between servers and do not consider
the intra-communication within the processes located on the
same server (processes are assigned to cores on the same

VOLUME 8, 2020 87989

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

server). In their work, they assume that each server is assigned
a single process to run on, and this is not the typical scenario.
Usually, the parallel application seeks to make use of all
the available computing resources, i.e. the available cores
on the server’s processor. In contrast, our proposed model
counts for both the inter and intra communication between
the running processes. Another notice is that the accuracy of
the predictions based on the scalability analysis model for the
workloads running on the cluster of bare-metal severs is better
than the same predictions of theworkloads running on a group
of virtual machines, for most of the benchmarks. Contrarily,
our proposed model copes with the effect of virtualization on
the infrastructure hosting the parallel programs, and keeps the
same accuracy level.

3) ASSESSING THE VIRTUALIZATION OVERHEAD
In this subsection, the effect of the virtualization overhead
on the running time of the parallel benchmarks of SPEC
and NPB benchmarks suites is shown through examining
the performance difference between running these bench-
marks on bare-metal servers and running them on virtual
machines. Also, we analyse the causes of this difference.
Then, we examine the effect of the virtualization overhead
on the CPU and network parameters of our proposed model.

For the SPEC benchmarks, Figure 19 shows the difference
between the running time of Lammps (in red colour), Socorro
(in green colour), Zeusmp (in blue colour), while running
on a cluster of bare-metal servers (in solid lines) and while
running on a group of virtual machines (in dashed lines).
The X-axis represents the number of running processes; the
primary Y-axis represents the running time in seconds for
both Lammps and Zeusmp benchmarks and the secondary
Y-axis represents the running time in seconds for Socorro
benchmark. Further, Figure 20 shows the same comparison
but for Lu and Pop2 benchmarks. Lu is represented in green
colour and Pop2 in blue colour. The running time for both of

FIGURE 19. Comparison between running Lammps, Socorro and Zeusmp
benchmarks on bare-metal machines and running them on virtual
machines.

FIGURE 20. Comparison between running Lu and Pop2 benchmarks on
bare-metal machines and running them on virtual machines.

them is represented on the primary Y-axis. Also, the running
time on the bare-metal servers is represented in solid line
while the running time on the virtual machines is represented
in dashed line.

Regarding the NASA parallel benchmarks, Figure 21
shows the difference between the running time of the fol-
lowing benchmarks: FT (in red colour), IS (in black colour)
and MG (in blue colour), on both the bare-metal servers (in
solid lines) and the virtual machines (in dashed lines). Also,
Figure 22 shows the same comparison for the benchmarks;
EP (in blue colour) and CG (in green colour).

FIGURE 21. Comparison between running FT, IS and MG benchmarks on
bare-metal machines and running them on virtual machines.

The outcomes of the comparison between the running
times of the benchmarks on both environments, physical
(bare-metal) and virtual environments, show a higher run-
ning time for the benchmarks while running on the virtual
machines than while running on the bare-metal servers.
Moreover, the gap between the running times on bare-metal
servers and the running times on virtual machines decreases

87990 VOLUME 8, 2020

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

FIGURE 22. Comparison between running CG and EP benchmarks on
bare-metal machines and running them on virtual machines.

as the number of the running processes increases. A simple
explanation to that is the effect of the virtualization layer
on the communication between processes. This is due to
the extra time spent by processes queueing for the virtual-
iztion hypervisor in each communication operation. Besides,
as the number of running processes increases, the number of
communication operations between them (to transfer data,
exchange results or perform synchronization) increases as
well.With this increase in the number of processes and conse-
quently the number of communication operations executing
the same workload, the communication overhead increases
and the network becomes the bottleneck. Thus due to this
increase in the number of communication operations and
the networking time, both the running times on bare-metal
servers and on virtual machines get close to each other as
these communication overheads cover the queueing time
on the hypervisor for the benchmarks running on virtual
machines.

To conclude, the factors that affect the gap between the
running time curves of the parallel benchmarks on bare-metal
servers and on virtual machines are: the number of running
processes executing the benchmarks, the rate of commu-
nication between these processes, and whether there is a
bottleneck on the network or not. For example, for EP (embar-
rassingly parallel, NPB benchmark), as it has the least amount
of communication data and rate, the curve of executing it
on a cluster of bare-metal servers is almost the same as its
curve of execution on a group of virtual machines as shown
in Figure 22.

Another example to illustrate the effect of the commu-
nication rate is the difference between the gaps in case of
Socorro and Zeusmp benchmarks. As Socorro demands a
higher communication rate between its running processes,
the gap between its running time on bare-metal servers and
on virtual machines is muchwider than the corresponding gap
of Zeusmp. Figure 23 and Figure 24 show the communication
rate among 32 processes of Zeusmo and Socorro benchmarks,

respectively. Each figure shows a grid of coloured cells that
visualize the data communicated between the running pro-
cesses, where each cell’s colour represents the amount of data
transferred between the processes intersecting at this cell. The
colour code at the bottom of the figure shows the relationship
between each colour and the amount of data transferred,
starting from light grey (least amount of transferred data)
to red (most amount of transferred data). It is obvious from
Figure 23 that only a small portion of the processes running
Zeusmp benchmark communicate with each other. And, even
when they communicate, the communication rate is small in
most of the cases. On the other hand, Figure 24 shows appar-
ently that the communication rate between the processes
running Socorro benchmark is intensively high between each
process and the other processes.

FIGURE 23. Communication rate among 32 processes running Zeusmp
benchmark.

FIGURE 24. Communication rate among 32 processes running Socorro
benchmark.

VOLUME 8, 2020 87991

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

We also study of the effect of the virtualization layer
on the model parameters. The main effect is more clear
on the CPU_Constant and Net_Constant. These parameters
acquired via the non linear problem solver; Gauss-Newton
algorithm, represent the inaccuracy in probing the hardware
resources’ characteristics. We measure the variation that hap-
pened on both parameters while running the SPEC-MPI
benchmarks on bare-metal servers and on virtual machines.
On average, the CPU_Constant is slightly higher (1.25×)
while running on virtual machines than while running on the
bare-metal servers. On the other hand, the difference is much
more larger for the Net_Constant (43.6×). This means that
according to the proposed model, the network was the most
affected resource by the virtualization on the cloud, which is
consistent with the previously mentioned analysis.

VI. CONCLUSION AND FUTURE WORK
In this paper we propose a predictor of the execution
time of the tightly coupled HPC applications on the cloud.
This predictor is based on an analytical performance model
for the MPI-based applications on both cloud bare-metal
servers and cloud virtual machines. The model considers
the cloud processing and communication resources as a
closed queueing network and the HPC-applications running
on them as a closed group of tiny jobs competing for these
resources/queues. The accuracy of the prediction based on
the proposed model is measured on a dedicated cluster of
bare-metal servers and also on a group of virtual machines on
a private cloud. During the experiments conducted tomeasure
the accuracy of the prediction, 10 different benchmarks are
used; 5 from SPEC-MPI benchmark suite and 5 from NPB
benchmark suite. The average accuracy of the model’s pre-
diction for all benchmarks achieved is 88%. The experiments
also show a steady level of accuracy either while running on
bare-metal servers or running on virtual machines. In addition
to that, the model copes with the effect of the increase in
the degree of parallelism of the running workload. Further,
we studied the difference between the execution of the par-
allel programs on the bare-metal servers and on the virtual
environment. Through this study, we analyzed the difference
gap between the execution on both environments and the
effect of virtualization on the proposed model, and reconfirm
that communication is severely degraded, in comparison with
bare-metal, as identified elsewhere. Future workwill consider
developing a scheduler for this application domain based on
the proposed model’s prediction to enhance its performance
while running on the cloud. This could be through choosing
the best configuration of resources that achieves the best
predicted performance with lowest possible cost.

REFERENCES

[1] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski, B. Rountree,
M. Schulz, and X. Yuan, ‘‘A comparative study of high-performance
computing on the cloud,’’ in Proc. 22nd Int. Symp. High-Perform. Parallel
Distrib. Comput. (HPDC), New York, NY, USA, Jun. 2013, pp. 239–250.
[Online]. Available: http://doi.acm.org/10.1145/2462902.2462919

[2] S. Kayum and M. Rogowski, ‘‘High-performance computing applications
transition to the cloud in upstream,’’ in Proc. 4th EAGE Workshop High
Perform. Comput. Upstream, vol. 2019, no. 1. Bogota, Colombia: Euro-
pean Association of Geoscientists and Engineers, 2019, pp. 1–5. [Online].
Available: https://www.earthdoc.org/content/papers/10.3997/2214-
4609.201903299

[3] U. Karneyenka, K. Mohta, and M. Moh, ‘‘Location and mobility
aware resource management for 5G cloud radio access networks,’’ in
Proc. Int. Conf. High Perform. Comput. Simulation (HPCS), Jul. 2017,
pp. 168–175.

[4] M. A. S. Netto, R. L. F. Cunha, and N. Sultanum, ‘‘Deciding when
and how to move HPC jobs to the cloud,’’ Computer, vol. 48, no. 11,
pp. 86–89, Nov. 2015. [Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/MC.2015.351

[5] I. P. Egwutuoha, S. Chen, D. Levy, and R. Calvo, ‘‘Cost-effective cloud
services for HPC in the cloud: The IaaS or the HaaS?’’ in Proc. Int. Conf.
Parallel Distrib. Process. Techn. Appl. (PDPTA), 2013, p. 217.

[6] L. Ramakrishnan, K. R. Jackson, S. Canon, S. Cholia, and J. Shalf,
‘‘Defining future platform requirements for e-Science clouds,’’ in Proc.
1st ACM Symp. Cloud Comput. (SoCC), New York, NY, USA, 2010,
pp. 101–106. [Online]. Available: http://doi.acm.org/10.1145/1807128.
1807145

[7] J. Li, M. Humphrey, C. van Ingen, D. Agarwal, K. Jackson, and Y. Ryu,
‘‘EScience in the cloud: AMODIS satellite data reprojection and reduction
pipeline in the windows azure platform,’’ in Proc. IEEE Int. Symp. Parallel
Distrib. Process. (IPDPS), 2010, pp. 1–10.

[8] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, ‘‘Cloud versus in-house
cluster: Evaluating Amazon cluster compute instances for running MPI
applications,’’ in Proc. SC, Nov. 2011, pp. 1–10.

[9] G. Wang and T. S. E. Ng, ‘‘The impact of virtualization on network
performance of amazon EC2 data center,’’ in Proc. 29th Conf. Inf. Com-
mun. (INFOCOM), Piscataway, NJ, USA, 2010, pp. 1163–1171. [Online].
Available: http://dl.acm.org/citation.cfm?id=1833515.1833691

[10] P. Rad, A. T. Chronopoulos, P. Lama, P. Madduri, and C. Loader,
‘‘Benchmarking bare metal cloud servers for HPC applications,’’ in Proc.
IEEE Int. Conf. Cloud Comput. Emerg. Markets (CCEM), Nov. 2015,
pp. 153–159.

[11] A. Saad, A. El-Mahdy, and H. El-Shishiny, ‘‘Performance model-
ing of MPI-based applications on cloud multicore servers,’’ in Proc.
Rapid Simulation Perform. Eval., Methods Tools (RAPIDO). New York,
NY, USA: Association for Computing Machinery, 2019, pp. 1–6, doi:
10.1145/3300189.3300194.

[12] Standard Performance Evaluation Corporation. SPEC MPI 2007
Benchmark Suite. Accessed: May 2020. [Online]. Available: https://
www.spec.org/mpi2007

[13] Standard Performance Evaluation Corporation. SPEC MPI 2007 Bench-
mark Suite Documentation. Accessed: May 2020. [Online]. Available:
https://www.spec.org/auto/mpi2007/Docs

[14] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya, ‘‘HPC cloud for scientific and business applications: Taxonomy,
vision, and research challenges,’’ ACM Comput. Surveys, vol. 51, no. 1,
pp. 1–29, Apr. 2018, doi: 10.1145/3150224.

[15] J. Y. Shi, M. Taifi, A. Pradeep, A. Khreishah, and V. Antony, ‘‘Program
scalability analysis for HPC cloud: Applying Amdahl’s law to NAS bench-
marks,’’ in Proc. SC, Nov. 2012, pp. 1215–1225.

[16] NASA Advanced Supercomputing Division. NASA Parallel
Benchmark Suite. Accessed: May 2020. [Online]. Available: https://
www.nas.nasa.gov/publications/npb.html

[17] A. Gupta, L. V. Kalé, D. S. Milojicic, P. Faraboschi, R. Kaufmann,
V. March, F. Gioachin, C. H. Suen, and B.-S. Lee, ‘‘Exploring the
performance and mapping of HPC applications to platforms in the
cloud,’’ in Proc. 21st Int. Symp. High-Perform. Parallel Distrib. Comput.
(HPDC), New York, NY, USA, 2012, pp. 121–122. [Online]. Available:
http://doi.acm.org/10.1145/2287076.2287093

[18] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, ‘‘A regression-based approach to scalability prediction,’’
in Proc. 22nd Annu. Int. Conf. Supercomput. (ICS), New York, NY,
USA, 2008, pp. 368–377. [Online]. Available: http://doi.acm.org/10.1145/
1375527.1375580

[19] P. G. Bridges, M. G. F. Dosanjh, R. Grant, A. Skjellum, S. Farmer, and
R. Brightwell, ‘‘Preparing for exascale: Modeling MPI for many-core
systems using fine-grain queues,’’ in Proc. 3rd Workshop Exascale MPI
(ExaMPI), New York, NY, USA, 2015, pp. 5:1–5:8. [Online]. Available:
http://doi.acm.org/10.1145/2831129.2831134

87992 VOLUME 8, 2020

http://dx.doi.org/10.1145/3300189.3300194
http://dx.doi.org/10.1145/3150224

A. Saad, A. El-Mahdy: HPCCloud Seer: Performance Model Based Predictor

[20] R. L. F. Cunha, E. R. Rodrigues, L. P. Tizzei, and M. A. S. Netto,
‘‘Job placement advisor based on turnaround predictions for HPC
hybrid clouds,’’ Future Gener. Comput. Syst., vol. 67, pp. 35–46,
Feb. 2017.

[21] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida, Performance by
Design: Computer Capacity Planning by Example. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[22] D. A. Menascé, ‘‘Virtualization: Concepts, applications, and performance
modeling,’’ in Proc. Int. CMG Conf., 2005, pp. 407–414.

[23] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel,
‘‘Diagnosing performance overheads in the Xen virtual machine envi-
ronment,’’ in Proc. 1st ACM/USENIX Int. Conf. Virtual Execution Envi-
ron. (VEE), New York, NY, USA, 2005, pp. 13–23. [Online]. Available:
http://doi.acm.org/10.1145/1064979.1064984

[24] D. Gupta, R. Gardner, and L. Cherkasova, ‘‘XenMon: QoS monitoring and
performance profiling tool,’’ Hewlett-Packard Labs, Palo Alto, CA, USA,
Tech. Rep. HPL-2005-187, 2005, pp. 1–13.

[25] M. N. Bennani and D. A. Menasce, ‘‘Resource allocation for autonomic
data centers using analytic performance models,’’ in Proc. 2nd Int. Conf.
Automat. Comput. (ICAC),Washington, DC,USA, 2005, pp. 229–240, doi:
10.1109/ICAC.2005.50.

[26] R. Hu, J. Jiang, G. Liu, and L. Wang, ‘‘Efficient resources provisioning
based on load forecasting in cloud,’’ Sci. World J., vol. 2014, pp. 1–12,
Feb. 2014.

[27] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, ‘‘Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,’’ Cluster Comput., vol. 11, no. 3, pp. 213–227, Sep. 2008, doi:
10.1007/s10586-008-0060-0.

[28] A. Grama, A. Gupta, G. Karypis, and V. Kumar, ‘‘Parallel programming
platforms,’’ in Introduction to Parallel Computing. London, U.K.: Pearson,
2003, pp. 58–60.

[29] A. Saad and A. El-Mahdy, ‘‘Network topology identification for cloud
instances,’’ in Proc. Int. Conf. Cloud Green Comput., Sep. 2013,
pp. 92–98.

[30] Y. Wang, ‘‘Gauss-Newton method,’’ Wiley Interdiscipl. Rev., Comput.
Statist., vol. 4, no. 4, pp. 415–420, Jul. 2012, doi: 10.1002/wics.1202.

[31] M. Reiser and S. S. Lavenberg, ‘‘Mean-value analysis of closed
multichain queuing networks,’’ J. ACM, vol. 27, no. 2, pp. 313–322,
Apr. 1980. [Online]. Available: http://doi.acm.org/10.1145/322186.
322195

[32] R. Schöne, R. Tschüter, T. Ilsche, and D. Hackenberg, ‘‘The vam-
pirtrace plugin counter interface: Introduction and examples,’’ in
Proc. Eur. Conf. Parallel Process. Berlin, Germany: Springer, 2010,
pp. 501–511.

ABDALLAH SAAD received the B.S. degree in
computer systems engineering from the Faculty
of Engineering at Shoubra, Benha University,
in 2007, and the M.S. degree in computer science
and engineering from the Egypt–Japan University
of Science and Technology, Alexandria, Egypt,
in 2014, where he is currently pursuing the Ph.D.
degree in computer science and engineering. From
2007 to 2010, he was a Research and Teaching
Assistant with the Computer Systems Engineer-

ing Branch, Electrical Engineering Department, Faculty of Engineering at
Shoubra, Benha University. His research interest includes the performance
modeling of computer systems, distributed systems, parallel programming,
high performance computing, and algorithm analysis and design. He is a For-
mer Contestant and a Coach in the National and Regional ACM Collegiate
Programming Contests from 2008 to 2010. In 2015, he was invited to give a
talk in the ISM HPCCON, Tachikawa, Tokyo, Japan.

AHMED EL-MAHDY received the B.Sc. and
M.Sc. degrees from Alexandria University and the
Ph.D. degree from the School of Computer Sci-
ence, The University of Manchester, U.K., where
he contributed to one of the early multicore pro-
cessors (JAMAICA). He is on leave from the
Computer and Systems Engineering Department,
Alexandria University. He has visited the Group
of Advanced Processor Technologies contributing
to porting the IBM Jikes Dynamic Compiler for

JAMAICA. He has also been the Visiting Scientist with IBM Centre for
Advanced Studies, Cairo, where he was the First Inventor for eight US issued
patents in the area of high-performance computing. He is currently a Full
Professor and the Chair of the Computer Science and Engineering Depart-
ment, Egypt–Japan University of Science and Technology (E-JUST). He is
also the Founding Director of Parallel Computing Laboratory, E-JUST with
many funded research grants/support from IBM, Amazon, ITIDA, STDF,
Academy of Science and Technology in the areas of embedded compilers,
high performance GPU acceleration, and high performance computation on
the cloud. His research work resulted in around 60 publications including,
journals, conference paper, patents, and book chapters, as well as a Startup
company. Dr. El-Mahdy is a member of ACM. He is also a TPC Member of
ICCD and ARCS Conferences.

VOLUME 8, 2020 87993

http://dx.doi.org/10.1109/ICAC.2005.50
http://dx.doi.org/10.1007/s10586-008-0060-0
http://dx.doi.org/10.1002/wics.1202

