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ABSTRACT Fault diagnosis of rolling bearing is of great importance to ensure high reliability and safety in
the industrial machinery system. Entropymeasures are useful non-linear indicators for time series complexity
analysis and have been widely applied in bearing fault diagnosis in the past decade. In this paper, an improved
entropy measure is proposed, named Adaptive Multiscale Weighted Permutation Entropy (AMWPE). Then,
a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM.
For comparison, an experimental bearing dataset is analyzed using the AMWPE and conventional entropy
measures, and then multi-class SVM is adopted for fault type classification. Further, the robustness of
different entropy measures against noise is studied by analyzing noisy signals with various Signal-to-Noise
Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in
bearing fault diagnosis under different fault types, severity degrees, and SNR levels.

INDEX TERMS Fault diagnosis, rolling bearing, entropy measure, support vector machine.

I. INTRODUCTION
Rolling bearings are widely applied in the rotating machin-
ery found in commercial and industrial applications. Despite
the wide application, rolling bearings are prone to a vari-
ety of premature failures caused by many reasons, such as
fatigue, lack of lubrication, or overload. The occurrence of
failures in the bearing will introduce potential damages to
the machinery, resulting in performance degradation in the
system [1]–[3]. Therefore, fault diagnosis of rolling bearing
is of significance to ensure the reliability of the machinery,
enabling detecting and troubleshooting the potential failures
as early as possible [4].

Vibration monitoring is a useful technique to monitor
machine health conditions. However, interacting components
and environmental noise often exist in the operation of indus-
trial machinery systems. Due to instantaneous variations
in bearing loads and clearance as well as other contribu-
tions - such as non-linear stiffness effects in the bearing and
rotor, bearing vibration signals often exhibit non-linear and
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non-stationary characteristics [5]–[7]. These factors bring
difficulty in vibration analysis and feature representation.
Traditional feature extraction methods can characterize rep-
resentations from time- or frequency-domain only; never-
theless, they may not appropriately detect the underlying
failures by directly analyzing the complexity change of the
system [8], [9]. Continuing advances in entropy analysis [10]
have significantly exhibited the prospect in time series com-
plexity analysis by characterizing the complexity change in
the system.

The most widely used entropy measures include Shannon
entropy, approximate entropy, Permutation Entropy (PE), and
their variants. Shannon entropy measures the information
content of a message in the context of information theory,
which can quantify the uncertainty in time series (measure-
ments collected from a system) [11], [12]. Approximate
entropy and its improvements (such as sample entropy and
fuzzy entropy) enable estimating the complexity and irreg-
ularity of measurements [13]. The PE measure quantifies
dynamic changes based on ordinal patterns originated from
the structure of time series. Due to its theoretical simplicity
and fast calculation, PE has been widely applied in time series
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complexity analysis. Many works have applied PE measure
as a non-linear health indicator to monitor machine health
conditions [14]–[16].

There exist some improvements in the PE algorithm,
aiming to enhance its performance in time series com-
plexity analysis. The main shortcoming of the original PE
algorithm is that it neglects the amplitude differences in
the time series, so that different time series may have the
same entropy value. Therefore, some works attempted to
take into account the amplitude differences in neighboring
elements based on a concept of ‘‘weighting factor’’. The
basic idea is that the amplitude differences will yield dif-
ferent weighting factors accordingly, which will then alter
the relative frequency of ordinal patterns, thereby changing
entropy values. Giving an example, Liu andWang [17] added
an extra parameter in the ordinal pattern type so that time
series with different amplitudes will produce different pattern
types. Azami et al. presented a modified PE method by
applying weighted coefficients that are based on average
and absolute amplitude difference values of neighboring ele-
ments [18]. Faldalllah et al. developed a Weighted Permuta-
tion Entropy (WPE) by accounting the variance of neighbor-
ing elements into consideration in the calculation of PE [19].
Amongst these improvements, the WPE measure has better
computational efficiency and has fewer extra parameters in
calculating PE values. It is noted that although the WPE is
a refinement of PE, the WPE values are extracted from the
original time series over a single scale. However, in the fault
diagnosis of rotating machinery, rich information related to
fault symptoms may exist in the spatial-temporal structure of
time series. In this case, a concept of multiple-scale entropy
measure was developed to improve the entropy analysis from
a multiple-scale perspective.

Aziz and Arif [20] put forth the notion of Multiscale
Permutation Entropy (MPE), where PE values are calcu-
lated over a range of scales through the coarse-graining
procedure. The MPE earns higher reliability and higher
fault pattern recognition accuracy than PE for bearing diag-
nosis [20]. Although MPE outperforms PE in complexity
analysis, the coarse-graining procedure is essentially a linear
smoothing filter. When the scale factor increases, the MPE
value decreases because the data length is greatly reduced
in the coarse-grained time series. Also, the high-frequency
components in the coarse-grained time series are abandoned,
resulting in the loss of high-frequency information in entropy
analysis. Some works have developed improved MPE algo-
rithms through enhanced multiple-scale extraction mech-
anisms. For instance, Composite Multiscale Permutation
Entropy (CMPE) [21] and refined CMPE [22] were intro-
duced based on an improved coarse-graining procedure. The
CMPE and refined CMPE alleviate the problem of sharply
reduced data length to some extent; however, neither of
them considers high-frequency information in the analysis of
vibration signals. Thus, they may present limited diagnostic
performance in identifying bearing health state.

To take high-frequency information into account, some
improved scale-extraction mechanisms were later developed.
For example, Jiang et al. introduced a hierarchical decom-
position for multiple-scale entropy estimation [23], but they
did not consider the decreased data length in the calculation
of entropy values. Recently, a new entropy measure, termed
Fine-to-Coarse Multiscale Permutation Entropy (F2CMPE),
was put forward by Huo et al. [24] where a Fine-to-Coarse
(F2C) procedure is proposed. The F2CMPEmeasure attempts
to overcome the two limitations in conventional MPE algo-
rithms. It is worth mentioning that in traditional entropy
measures, entropy values are obtained from specified scales,
however, in bearing diagnosis, not all scales are closely
related to the fault information. In contrast, using all scales
may inevitably contain unexpected redundant information
and consume more computational resources, thus reducing
the efficiency of entropy analysis in fault diagnosis.

In this paper, an Adaptive Multiscale Weighted Permu-
tation Entropy (AMWPE) measure is proposed for time
series complexity analysis. The AMWPE approach aims to
yield adaptive multiple-scale time series containing salient
fault information for bearing diagnosis through an improved
scale-extraction procedure. Also, a new rolling bearing fault
diagnosis method is proposed based on the AMWPE and
multi-class Support Vector Machine (SVM) techniques. The
main contributions of this paper are concluded as follows:
• An improved multiple-scale entropy measure is devel-
oped for time series complexity analysis. The efficiency
of the AMWPE in feature extraction and time cost
is investigated and compared with traditional entropy
measures.

• A new rolling bearing fault diagnosis method is pre-
sented based on the AMWPE and SVM. The procedure
is shown in Fig. 1. A comparative study is performed
using different diagnosis methods where the AMWPE
and traditional entropy measures are used, respectively,
to extract entropy features.

• The robustness of the AMWPE and traditional entropy
methods against noise is investigated. Their diagnosis
performances are studied and compared through ana-
lyzing noisy vibration signals with different Signal-to-
Noise Ratios (SNRs).

The rest of this paper is structured as follows: Section II
presents the principles of related entropy measures.
Section III introduces the proposed AMWPE entropy mea-
sure and presents the proposed bearing fault diagnosismethod
based on the AMWPE and SVM. Section IV discusses
the experimental results using the AMWPE and traditional
entropy algorithms for bearing diagnosis. Finally, a conclu-
sion is drawn in Section V.

II. RELATED ENTROPY PRINCIPLES
This section briefly introduces the theoretical background
of traditional PE and MPE measures and their related
improvements.
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FIGURE 1. Flowchart of the proposed bearing diagnosis method using the
AMWPE and SVM.

A. PERMUTATION ENTROPY
Bandit and Pompe [25] introduced the PE approach for mea-
suring the complexity change of time series based on the
ordinal pattern. The PE can be interpreted as a quantifier that
evaluates the rate of generation of new ordinal patterns in
the time series. These ordinal (permutation) patterns naturally
originate from the local sequential structure of time series.
The principle of PE is briefly described as follows:

For a time series x = {x1, x2, · · · , xN }, the m-dimensional
embedding vector is constructed as

Xi = {xi, xi+λ, · · · , xi+(m−1)λ} (1)

wherem is the embedding dimension, λ is the time delay, and
1 ≤ i ≤ N − (m − 1)λ. For any Xi, it can be mapped onto
a specific distinct symbol πn = (j1, j2, · · · , jm) by ranking
m number of real values in an ascending order. πn is one of
m! possible symbol permutations, and each Xi corresponds to
a unique πn. Define P(πn) as the relative frequency of each
symbol sequence respectively

P(πn) =

∑k
i=1 1 | when Xi has type πn

N − (m− 1)λ
(2)

where k is no larger than N − (m− 1)λ, and P(πn) = 0 only
when there are no vectors belonging to the given permutation
type πn. Then, PE measure is defined as the Shannon entropy

of the probability distribution of permutation types:

PE(m, λ,N ) =
m!∑
j=1

P(πj) log2(P(πj)) (3)

The value of PE ranges from [0, log2 m!]. The minimum
value of PE is zero, which means that the time series is
regular. Usually, a larger PE value denotes that the time series
is more irregular and relatively unpredictable.

B. WEIGHTED PERMUTATION ENTROPY
Fadlallah et al. [19] developed the WPE approach by incor-
porating amplitude differences in the calculation of the prob-
ability distribution of permutation patterns. In contrast to the
PE, the WPE takes weighting factors, wi, into account using
the variance of neighboring elements. The weighted relative
frequency of each permutation πn is calculated as

Q(πn) =

∑k
i=1 1 ∗ wi | whenXi has typeπn∑m!

n=1
∑k

i=1 1 ∗ wi | whenXi has typeπn
(4)

where k is no greater than N − (m − 1)λ, and Q(πn) = 0
only when there are no vectors Xi belonging to the given
permutation type πn. The weight wi is obtained from the
corresponding vector Xi by

wi =
1
m

m∑
k=1

[
xi+(k−1)λ − x̄i

]2
(5)

where x̄i is the arithmetic mean of the Xi. Then, the WPE is
obtained as

WPE(m, λ,N ) =
m!∑
j=1

Q(πj) log2(Q(πj)) (6)

The value of WPE is also in the interval of [0, log2 m!].
The definition ofWPEmaintainsmost of PE’s properties. The
most significant difference consists in the definition of the
relative frequency of symbol sequences. TheWPE can distin-
guish vectors that have the same ordinal patterns but different
amplitude elements based on the weighting factors, thereby
altering the probability distribution of ordinal patterns.
Therefore, the WPE is more applicable for measuring the
irregularity of time series and has better performance than PE
in entropy analysis for bearing diagnosis [26].

C. ORIGINAL AND COMPOSITE MULTISCALE
PERMUTATION ENTROPY
Aziz and Arif [20] developed an extension of PE method
by calculating PE values over a range of scales based
on the coarse-graining procedure. The coarse-grained time
series y(τ ) are obtained by averaging a successively increasing
number of data points in non-overlapping windows at a given
scale factor [27]. When the scale factor τ = 1, the original
time series is obtained.

y(τ )j =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤
N
τ
, τ ≤ N (7)
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MPE values are obtained by computing the PE values from
a set of coarse-grained time series as

MPE(x, τ,m, λ) = PE(y(τ ),m, λ) (8)

Although the MPE is a refinement of PE, it still lacks rela-
tive consistency in estimating entropy values with an increas-
ing scale because of the sharply decreased data length in the
coarse-grained time series. For example, the entropy values
on adjacent scales will have a large variance. To alleviate
this problem, Azami [21] proposed the CMPE, an enhance-
ment of MPE, where a modified procedure is used to gen-
erate composite coarse-grained time series. In the CMPE,
the kth coarse-grained time series for a given scale factor τ ,
y(τ )k = {y

(τ )
k,1, y

(τ )
k,2, y

(τ )
k,3, · · · } is defined as

y(τ )k,j =
1
τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N
τ
, 1 ≤ k ≤ τ (9)

For a specific scale τ , its CMPE value corresponds to the
average of PE values obtained from τ number of composite
coarse-grained time series accordingly

CMPE(x, τ,m, λ) =
1
τ

τ∑
k=1

PE(y(τ )k ,m, λ) (10)

Under the coarse-graining framework, the MPE and
CMPE usually present better performance and extract more
potential information on the time series, compared with
the single-scale PE method. Therefore, many works have
employed MPE and CMPE to the application of feature
extraction and health condition recognition to bearing diag-
nosis [28]–[30]. Moreover, under the multiple-scale frame-
work, WPE applies for analyzing complex signals in entropy
analysis compared to PE. For comparison, when applying
WPE for entropy analysis under the original and modified
coarse-graining framework, we refer to these two corre-
sponding methods as the Multiscale Weighted Permutation
Entropy (MWPE) and Composite Multiscale Weighted Per-
mutation Entropy (CMWPE), respectively.

D. FINE-TO-COARSE MULTISCALE PERMUTATION
ENTROPY
The F2CMPE measure is a multiple-scale entropy measure
for complexity analysis, in which an improved scale-
extraction mechanism is proposed [24]. It not only alle-
viates the shortcoming of data length reduction in tradi-
tional multiple-scale time series but also takes into account
high-frequency information in entropy estimation. Therefore,
the F2CMPE earns higher consistency in entropy analysis and
is more to robust to noise compared with traditional multiple-
scale entropy methods [24].

The calculation of F2CMPE relies on a two-step proce-
dure. First, the F2C scale-extraction procedure is applied to
generate time series with multiple scales based on Wavelet
Packet Decomposition (WPD) analysis. A set of decom-
posed wavelet coefficients are generated from the original

signal. Later, these wavelet coefficients are reconstructed to
sub-signals that have the same data length as the original
signal. Then, the F2C signals are constructed based on these
sub-signals. Specifically, given a k-th decomposition level,
the F2C procedure will only generate 2k−1 set of wavelet
coefficients which are produced from the approximate coef-
ficients in the first decomposition level. Then, reconstructed
sub-signals, {Rk,i, (0 ≤ i ≤ 2k−1 − 1)}, can be generated
from each branch of wavelet coefficients correspondingly.
The scale factor τ thus equals to 2k−1, and the F2C signals can
be constructed by consecutively removing one reconstructed
sub-signal from previously obtained F2C signals, commenc-
ing from the accumulation of all τ reconstructed sub-signals.

F2C(τ )
=

2k−1−τ∑
i=0

Rk,i, 0 ≤ i ≤ 2k−1 − 1, 1 ≤ τ ≤ 2k−1

(11)

where k is the decomposition level and τ is the scale factor.
Finally, the F2CMPE value can be computed by calculating
the PE values over a range of F2C signals.

F2CMPE(x, τ,m, λ) = PE(F2C(τ ),m, λ) (12)

Though the F2CMPE measure has improved from the
traditional MPE approaches, the efficiency of the scale-
extraction scheme can be enhanced further. First, in the course
of generating F2C signals, there may exist reconstructed
signals that are not closely related to the characteristic fault
symptoms; thus, the use of all reconstructed signals inevitably
produce redundant information. Moreover, the WPE algo-
rithm can improve the entropy analysis compared to the orig-
inal PE method. Therefore, this study proposes an AMWPE
measure, aiming to offer better feature representation and
computational efficiency, thus improving entropy analysis for
bearing diagnosis.

III. THE PROPOSED BEARING DIAGNOSIS METHOD
BASED ON THE AMWPE MEASURE AND SVM
This section first introduces the proposed AMWPE algo-
rithm. Then, a new bearing fault diagnosis method is devel-
oped based on the AMWPE and SVM techniques.

A. ADAPTIVE MULTISCALE WEIGHTED PERMUTATION
ENTROPY
In the AMWPE algorithm, an improved F2C procedure is
developed to construct adaptive F2C signals. The advent of
failures in the bearing will introduce coupling frequencies
and change amplitude magnitudes in bearing vibration sig-
nals. Crucial components extracted from raw signals should
maintain characteristic symptoms in the waveforms and thus
have a high similarity to raw signals in the time domain.
Considering this, the adaptive F2C procedure in the AMWPE
algorithm selects salient reconstructed sub-signals based on
correlation coefficient analysis. These selected sub-signals
are closely related to the raw signals and have a high cor-
relation in the time domain. Then, adaptive F2C signals are
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constructed based on these selected sub-signals, and entropy
values are calculated from obtained F2C signals. The
improved F2C procedure has two merits. On the one hand,
these adaptive F2C signals could incorporate more crucial
fault information and less redundancy. On the other hand,
the improved F2C procedure can achieve higher computa-
tional efficiency compared to the F2CMPE in time series
complexity analysis.

In this study, correlation coefficients are used to evaluate
the similarity between reconstructed signals Rk,i and the raw
signal x in the time domain. Fig. 2 presents the diagram of
the AMWPE algorithm, and its detailed calculation steps are
described below:
1) Decompose a vibration signal x into the k-th decompo-

sition level using WPD. Select the wavelet coefficients
{Ck,i, (0 ≤ i ≤ 2k−1−1)} that are decomposed from the
approximate coefficients at the first decomposition level
in the wavelet tree. Reconstruct these selected wavelet
coefficients to sub-signals that have the same data length
to x. Thus, totally 2k−1 number of reconstructed signals
{Rk,i, (0 ≤ i ≤ 2k−1−1)} are obtained correspondingly.

2) Compute correlation coefficients between the recon-
structed sub-signal and raw signal in the time domain
ρ(Rk,i, x) as

ρ(Rk,i, x) =
E
[
(Rk,i − µ(Rk,i))(x − µ(x))

]
σ (Rk,i)σ (x)

(13)

where µ(Rk,i), µ(x), σ (Rk,i), σ (x) denote the mean and
standard deviation of the reconstructed sub-signal and
the original signal, respectively.

FIGURE 2. Procedure of the AMWPE algorithm.

3) Contribution rates are calculated based on the correla-
tion coefficients by

Si =
ρ(Rk,i, x)∑2k−1−1

i=0 ρ(Rk,i, x)
∗ 100% (14)

where 0 ≤ i ≤ 2k−1 − 1, and a larger Si indicates that
the corresponding sub-signal has higher correlation with
the original signal in the time domain.

4) Rank the contribution rates in descending order. For
each signal, refer to n as the maximum number of its
reconstructed sub-signals, which satisfies that the sum of
the first n largest contribution rates is no less than 90%,
namely

∑n
i=1 Si ≥ 90%, (n ≤ 2k−1). Record the index

of the selected n number of sub-signals and denote them
as {Ui, (1 ≤ i ≤ n)}.

5) Apply obtained sub-signalsUi to construct adaptive F2C
signals accordingly, commencing from the accumula-
tion of all n number of selected sub-signals

F2C(τ )
=

n−τ∑
i=1

Ui (15)

where 1 ≤ i ≤ n, and 1 ≤ τ ≤ n.
6) Calculate the WPE value over each F2C signal,

the AMWPE values are finally obtained by

AMWPE(x, τ,m, λ) =WPE(F2C(τ ),m, λ) (16)

The AMWPE analysis consists in wavelet analysis
and WPE estimation. In wavelet analysis, appropriate
parameters - mother wavelet and resolution of decomposition
scale - can produce time-frequency components containing
crucial fault information. In this study, we select a six-level
(k = 6) wavelet decomposition tree, and therefore 32 wavelet
coefficients are totally obtained according to the Step 1) in
the AMWPE algorithm. Also, a ‘‘db4’’ wavelet is applied as
the Daubechies family of wavelets is well-known for their
orthogonality and efficiency in filter implementation [24].
Besides, regarding entropy parameter configuration in the
WPE measure, many studies have examined the performance
of embedding dimensionm and time delay λ in the calculation
of PE values [31]. Researchers recommended that parame-
ters,m = 4-7 and λ = 1-3, are suitable for analyzing vibration
signals in bearing diagnosis [32].

B. FAULT PATTEN RECOGNITION USING SUPPORT
VECTOR MACHINE
In machine health monitoring, the SVM classifier is a use-
ful technique to distinguish between various bearing health
states [33]. It maps the original pattern space into a high
dimensional feature space and maximizes the margin of sep-
aration between boundaries of data points called support
vectors in the multi-dimensional space. The decision function
is made using f (x) to generate a separating hyperplane. For
the nonlinear function, the SVM constrained optimization
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problem can be summarized as [33]:min
w,b

1
2
||w||2

subject to yi(wT x + b) ≥ 1
(17)

where w is a weight vector, and b is a bias.
For multi-class classification, the LIBSVM Matlab

Toolbox [34] is used for bearing fault pattern recognition
in this study. A detailed discussion on multi-class SVM
approaches can be found in Ref [35], [36].

C. PROPOSED ROLLING BEARING FAULT DIAGNOSIS
METHOD
Based on the AMWPE and SVM, the proposed fault diagno-
sis method for rolling bearing is presented as follows:

1) Collect vibration signals from rolling bearings with var-
ious health conditions. For each condition, split raw data
sets into training and testing data sets, respectively;

2) Calculate the AMWPE values from the training data
samples. In this study, a 6-level decomposition tree
(k = 6) is used and thus τ = 32. For each training
sample, calculate the value of n; thus, a vector of n values
can be obtained from all training samples. Then, specify
the maximum n (herein denoted as nmax) as the num-
ber of features for constructing training feature vectors
as F trainnmax ;

3) Calculate the AMWPE values from the testing data sam-
ples and construct testing feature vectors F testnmax where
nmax is acquired from the training data samples;

4) Apply training feature vectors F trainnmax to train the
SVM-based multi-class model for classifying bearing
fault types;

5) Input testing feature vectors F testnmax into the obtained
model to predict the health label. Thus, the fault pattern
of the testing sample can be recognized. The flowchart
of the proposed bearing diagnosis method is described
in Fig. 3.

IV. EXPERIMENTAL ROLLING BEARING DATA ANALYSIS
In this section, the performance of the proposed method
for bearing fault diagnosis is investigated. For comparison,
the AMWPE and traditional entropy-based methods are used
to analyze bearing data, after which entropy feature vectors
are then inputted into the multi-class SVM for fault type
identification. We start with the analysis of raw vibration
signals. Afterwards, noisy signals with various SNRs are
analyzed to investigate the robustness of different entropy
measures against noise in bearing diagnosis.

A. TEST RIG AND DATA ACQUISITION
The experimental rolling bearing dataset is provided by
Case Western Reserve University (CWRU) [37]. The
schematic of test rig is shown in Fig. 4. Tested bearings
are 6205-2RS JEM SKF deep groove ball bearings with
single-point failures. In this study, bearing signals with ten

FIGURE 3. Flowchart of the proposed fault diagnosis method for rolling
bearing based on the AMWPE and SVM.

FIGURE 4. CWRU bearing test rig [37].

conditions are considered and collected from the drive-end
channel, including bearings with normal condition (Norm)
and damages on the inner race (IR), the outer race (OR) at
6 o’clock, and the ball element (BE), respectively. Bearings
with various defect sizes are considered (i.e., 0.1778 mm,
0.3556 mm, and 0.5334 mm) under a speed of 1730 r.p.m
with Load 3 HP and a sampling frequency of 12 kHz.

For classification purpose, raw vibration signals are split
into training and testing data sets, respectively. In this study,
there are 29 samples with a data length of 4, 096 for each
bearing condition, and they are categorized into 14 training
samples and 15 testing samples. Therefore, for ten bearing
conditions, there are 140 training samples and 150 testing
samples. Table 1 describes the detail specification of each
bearing condition. Fig. 5 shows the time-domain waveforms
of bearing signals under ten health states.

B. FAULT DIAGNOSIS ANALYSIS BASED ON ORIGINAL
VIBRATION SIGNALS
In this study, raw bearing vibration signals are ana-
lyzed using the proposed bearing fault diagnosis method.
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TABLE 1. Description of each bearing condition and its class label.

FIGURE 5. Time domain waveforms of bearing vibration signals with ten
conditions of rolling bearing.

The AMWPE is compared with traditional measures to study
their performance on bearing fault diagnosis, such as the
MPE, MWPE, CMPE, and CMWPE algorithms. Their com-
putational efficiency in extracting entropy features from time
series is also investigated.

We first evaluate various entropy measures’ computation
time for extracting entropy features from the vibration signal.
A PC is used with the configuration (Intel Core i7-3770 Quad
3.40 GHz with 8G of RAM on aWindows 7 operating system
platform). Table 2 shows the average time cost results of
computing various entropy features under parameters m = 5,
λ = 1, and τ = 32.
The time cost is determined by two main steps in the

calculation of the multiple-scale entropy value. First, the the-
oretical differences between the principles of various entropy
measures will consume different computing resources as well
as time. From the Table 2, it can be seen that the traditional
MPE and MWPE algorithms consume the least time. This

TABLE 2. Time cost (s) of different entropy measures for feature
extraction with m = 5, λ = 1, and τ = 32 under different data length.

FIGURE 6. Diagnosis performance on the testing data using SVM and
(a) MPE (b) MWPE (c) CMPE (d) CMWPE (e) F2CMPE (f) AMWPE,
respectively.

can be interpreted as the coarse-graining procedure is a linear
smoothing operation and thus saves time in signal transfor-
mation and generation. For improved MPEmeasures, such as
CMPE, CMWPE, and F2CMPE measures, they can achieve
better performance on fault diagnosis; nevertheless, they con-
sume more time than that of MPE. Second, as the data length
of the time series increases, the calculation time for each
measure also increases. This is because sorting elements and
matching templates consume most of the time in the calcula-
tion of PE values. Also, an increasing scale factor produces
more multiple-scale time series and thus consumes more time
to yield PE values. With respect to the proposed measure,
the results verify that the AMWPE measure earns higher
computational efficiency in entropy analysis compared with
traditional modoified MPE measures.

Experimental data sets are then analyzed using
different entropy measures under various parameters
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(m = 4-5, λ = 1-3, and τ = 32). Fig. 6 shows the
fault diagnosis performance on testing data sets based on
entropy extraction, where a multi-class SVM [34] is adopted
for recognizing health conditions. The radial basis kernel
function is an effective option for kernel function and is
applied in this study. Also, two parameters - the optimum
cost c and the width parameter g - have to be appropri-
ately specified. In this study, these two hyper-parameters
in the SVM model are fine-tuned using the Particle Swarm
Optimization (PSO) method based on the training data
sets [38]. The PSO is a population-based heuristic method
that optimizes a problem using swarm intelligence. The
PSO searches optimized solutions by using a population
of individuals that are updated recursively until the opti-
mized c and g solutions are located. The specified opti-
mal hyper-parameters can derive high bearing diagnosis
accuracy. The classification accuracy rate is defined as
Acc = ( Nf

Nt+Nf
)× 100% where Nt and Nf denote the number

of true and false classification samples, respectively.
From Fig. 6, it can be noticed that the diagnosis perfor-

mance of MPE and MWPE measures are around 98%, and
their performances are not relatively stable when m and λ
changes. Comparatively, from Fig. 6 (c) and (d), the CMPE
and CMWPE approaches have better performance and can
obtain over 98% accuracy rate in contrast to traditional MPE
methods. Although they could achieve reasonable results
under specified parameters, their performance lacks relative
flexibility in selecting parameters (i.e.,m and λ). For instance,
given m = 4, the performance of the diagnosis method
using the CMPE decreases when λ increases. Fig. 6 (e) shows
that the F2CMPE-based method presents a high performance
and gives an accuracy rate of 100% when λ = 1 under all
m values. In contrast, the AMWPE-based method exhibits the
best performance on testing data analysis compared with tra-
ditional entropy measures. More specifically, from Fig. 6 (f),
it is noted that the proposed method can obtain 100% results
whenm = 5 for all λ values. Also, the AMWPE shows higher
flexibility in parameter selection. To sum up, experimental
results have demonstrated that the AMWPE algorithm not
only owns high computational efficiency in entropy feature
extraction but also exhibits better accuracy in bearing fault
diagnosis and flexibility in parameter selection.

C. ROBUSTNESS ANALYSIS BASED ON NOISY SIGNALS
WITH DIFFERENT SNRs
In practical applications, rotating machinery often works in
complex environments with strong noises. Therefore, it has
a necessity to study the robustness of entropy-based analytic
models to external disturbances and noises. For this purpose,
we add additive Gaussian white noise with different Signal-
to-Noise Ratios (SNRs). SNR is defined as the ratio of signal
power to background noise power in decibels (dB):

SNR = 10 log10(
Psignal
Pnoise

) (18)

A comparative study was first performed to evaluate var-
ious entropy measures for feature extraction. Noise signals
are generated with different SNRs ranging from−4 to 14 dB,
respectively. Fig. 7 shows waveforms of the original bearing
signal with IR state and signals under SNR = 6/2/ − 2 dB,
respectively. As is shown, raw signals are contaminated with
stronger noise as the SNR level decreases, and the waveforms
of signals will be more complicated. For comparison, we con-
sider noisy bearing vibration signals with SNR = 2 dB.
Entropy values are calculated under m = 5, λ = 1, and
τ = 32 for all entropy methods.

FIGURE 7. Waveforms of the original bearing signal with IR state and its
noisy signals with SNR = 6/2/-2, respectively.

FIGURE 8. Feature visualization of testing noisy signals with SNR = 2
using entropy measures based on t-SNE.
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Fig. 8 presents a reduced 2-D feature space of extracted
features using different entropy measures using the t-SNE
method. The t-SNE technique visualizes high-dimensional
data by mapping it to a two-dimensional feature space while
still preserving the high dimensional clustering relation-
ship [39]. From Fig. 8, the MPE and MWPE feature values
that represent ten bearing conditions are completely mixed
up, and thus bearing conditions cannot be differentiated.
Although the CMPE and CWMPE feature points spread in
a relatively dispersed space, most of the points are blended
and are difficult to identify. The F2CMPE feature values
are relatively scattered; nonetheless, some data points at the
bottom left in the feature space are difficult to distinguish.
Comparatively, it is noted that the AMWPE features display
a clear degree of separation and are easy to differentiate
between bearing conditions by observing the feature space.
Moreover, the data points in the AMWPE feature space in
each cluster are more compact, compared with traditional
approaches. The results verify that the AMWPE algorithm is
more robust to the analysis of noisy signals with small SNRs
compared with traditional measures.

Besides, we compared the diagnosis performance using
different entropy measures for the analysis of bearing signals
with SNR = 2 dB. Fig. 9 shows the confusion matrix
results, which are used to indicate the number of correct
and incorrect predictions in identifying bearing health state.

FIGURE 9. Confusion matrix showing diagnosis accuracy results with
different entropy measures.

FIGURE 10. Diagnosis performance using different entropy feature values
for analyzing noisy signals with various SNRs.

From the figure, it reveals that diagnosis accuracy results
are in line with the performance of differentiating between
bearing health conditions using the feature space. That is,
the entropy measure that can present a better separation in
feature clusters will obtain a higher classification accuracy.
For example, the accuracy results of diagnosis methods based
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on the MPE, CMPE, and MWPE are no greater than 90%.
The methods using the CWMPE and F2CMPE could obtain
higher accuracy rates of 90% and 92.7%, respectively. In con-
trast, the AMWPE-based diagnosis method could obtain the
highest accuracy rate of 99.3%; therefore, it verifies the supe-
riority of the AMWPEmeasure in analyzing noisy signals for
bearing fault diagnosis.

Further, more experiments were carried out to study the
robustness of entropy analysis to noise for bearing diagnosis
where entropy values are calculated using different param-
eters (i.e., m and λ). In this study, the SNR value of tested
signals increases from−4 to 14. Three groups of experiments
are considered, and entropy values are calculated under
λ = 1-3 and m = 5, respectively. Fig. 10 compares the diag-
nosis accuracy rates resulted from six entropymeasures under
different λ values. It can be seen that the traditional MPE and
CMPE give relatively low accuracy rate in three cases. As the
noise level decreases, their diagnosis performance increases
very slowly. In comparison, the MWPE and CMWPE present
a better performance in three cases, but their accuracy results
are no larger than 80% when SNR ≤ 4. It indicates that they
are not suitable for the cases when signals have high noise
levels.

Comparatively, from Fig. 10, it is observed that even when
the SNR is low, the diagnosismethods using the F2CMPE and
AMWPE measures are superior to the traditional methods.
Also, the proposed AMWPE method improves the diagnosis
performance compared to F2CMPE. For example, when SNR
is−4dB, the AMWPE-based diagnosis method can still reach
a high accuracy of 70%. Further, in this study, the accu-
racy rate of the proposed method achieves over 95% when
SNR = 0 dB (the power of the noisy signal is equal to the
original vibration signal) and continues increasing as SNR
increases. To sum up, the experimental results demonstrate
the high effectiveness of the proposed bearing diagnosis
method in bearing fault detection and identification. The
developed AMWPE can offer reliable entropy analysis with
high flexibility in parameter selection. Also, the proposed
method is robust to noisy vibration signals and can give sat-
isfactory diagnostic accuracy rates compared with traditional
methods.

V. CONCLUSIONS
In this paper, an improved entropy measure named AMWPE
is proposed for time series complexity analysis. A new
method is then developed based on the AMWPE and SVM for
bearing fault diagnosis. Diagnosis performances are studied
and compared between different entropy measures for feature
extraction in terms of feature representation, computational
efficiency, and diagnosis accuracy. Experimental results have
verified that the proposed diagnosis method can present
reliable and satisfactory diagnostic results. Also, through
analyzing noisy signals with different SNRs, the AMWPE
method exhibits more robustness in analyzing noisy signals
with low SNRs compared to traditional entropy measures for
bearing diagnosis. For future work, the proposed method will

be applied to diagnose compound faults in industrial-scale
machinery in an attempt to study and improve its diagno-
sis performance. Furthermore, the development of further
improved permutation entropy measures for fault diagnosis
of rotating machinery can be explored.

ABBREVIATIONS
λ Time delay
ρ Correlation coefficient
τ Scale factor
Ck,i Wavelet decomposition coefficient
k Decomposition level
m Embedding dimension
N Data length of time series
Rk,i Reconstructed sub-signal based on wavelet

coefficient
Ui Selected reconstructed sub-signal
AMWPE Adaptive Multiscale Weighted Permutation

Entropy
CMPE Composite Multiscale Permutation Entropy
CMWPE Composite Multiscale Weighted Permutation

Entropy
F2C Fine-to-Coarse
F2CMPE Fine-to-Coarse Multiscale Permutation

Entropy
MPE Multiscale Permutation Entropy
MSE Multiscale Entropy
MWPE Multiscale Weighted Permutation Entropy
PE Permutation Entropy
PSO Particle Swarm Optimization
SNRs Signal-to-Noise Ratios
SVM Support Vector Machine
WPD Wavelet Packet Decomposition
WPE Weighted Permutation Entropy
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