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ABSTRACT Monocular depth estimation poses a fundamental problem in many tasks. Although recent
convolutional neural network-based methods can achieve high accuracy with very deep networks and
complex architectures to exploit different cues and features, doing so not only increases the vulnerability of
the model, but also increases the difficulty of convergence. Moreover, recent depth estimation methods for
indoor environments are impractical for outdoor environments. In this work, we aim to develop a simple deep
network structure to improve model effectiveness for depth estimation.We apply a dual attention module that
can be inserted into any type of network to improve the power of representation, and additionally propose a
training strategy which combines transfer learning and ordinal regression to improve training convergence.
Even with a simple end-to-end encoder-decoder type of network architecture, we are able to achieve state-
of-the-art performance on two of the biggest datasets for indoor and outdoor depth estimation: NYU Depth
v2 and KITTI.

INDEX TERMS Computer vision, deep learning, monocular depth estimation, spatial-channel attention
module, transfer learning.

I. INTRODUCTION
Estimating depth from a 2D image is a long-standing chal-
lenge in computer vision and scene understanding. A depth
map can not only provide considerable help for 3D-related
applications such as 3D object detection [1], scene segmen-
tation [2], and simultaneous localization and mapping sys-
tems [3], but also help other research areas, such as image
dehazing [4], image refocusing [5] and augmented reality [6].

Compared to depth estimation that uses multiple
images [7]–[9], monocular depth estimation is more compli-
cated. Depth estimation from a pure 2D image suffers from
scale ambiguity problem because a 2D image can be gen-
erated from infinite combinations of object sizes and camera
movement speeds. Several methods [10]–[12] have attempted
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to resolve this problem by extracting helpful features from a
scene, such as textures, object sizes and occlusions. With the
rise of convolutional neural networks in recent years, many
works have introduced [13]–[20] CNNs into the task of depth
estimation and have significantly improved performance.
These works usually treat the monocular depth estimation
problem as a regression problem and train the network with
mean squared error loss or other point wise losses. Recently,
in order to further improve the estimation accuracy, very deep
and complex network architectures have been designed to
exploit different types of features in a scene. This not only
increases the vulnerability of the model, but also increases
the difficulty of model training.

In this paper, we propose three strategies to improve depth
estimation: 1) dual attention module, 2) transfer learning, and
3) incorporate ordinal regression for outdoor depth estima-
tion. Snapshots from our results are presented in Fig. 1.
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FIGURE 1. Estimated depth using Transfer2Depth. Input image and our
estimated depth map on KITTI dataset.

Motivated by human perceptions, people tend to selec-
tively focus on a specific part of a scene, that is the concept
of attention. We simulate this mechanism by enhancing the
meaningful features in the feature patch with a specially
designed spatial-channel dual attention module. The module
in use is designed to have the same input and output shape.
Thus, it can be inserted not only in our proposed network, but
in any type of model as well to boost the quality of extracted
features. This idea has been proved to be very effective.
We are able to deliver a consistent improvement of around
5% in accuracy simply by applying our proposed module.

To further improve the estimation performance without
increasing convolutions, which would result in greater mem-
ory costs and slower inference speed, we delve into research
on methods to improve model convergence. Though most
researchers train their models from scratch, Zamir et al. [21]
indicated that many tasks are highly related and share
similar features in their investigation. Motivated by [21],
we introduce transfer learning into our training. We pretrain a
high-performance model with the ImageNet [22] dataset, and
then utilize the pre-trained weights to initialize our depth esti-
mation training. By initializing our training with meaningful
weights, we found our model converges significantly faster
and requires less training data compared to previous state-of-
the-art models.

Since the depth range of outdoor data is much wider than
that of indoors, previous depth estimation networks cannot
be directly applied to outdoor environments. In this paper,
we incorporate the concept of ordinal regression from [17]
into our training strategy. The continuous depth values are
discretized into 80 intervals, and the regression training in
depth estimation is cast as a multi-class classification, where
an ordinal loss is introduced to train the network. The pro-
posed network achieves state-of-the-art performance on two
of the biggest benchmarks on indoor and outdoor depth esti-
mation, i.e., NYUDepth v2 [23] and KITTI [24], reaching an
improvement in performance of up to 10%.

The remainder of this paper is organized as follows.
In Section 2, a brief review of related previous works is
provided. We describe our proposed network, spatial-channel
dual attention module and training strategy in Section 3.
Besides quantitative and qualitative comparisons, several
experiments analyzing the performance of different parts of
our proposed network are provided in Section 4. Last but not
least, we conclude the paper in Section 5

II. RELATED WORK
Depth estimation is a crucial problem within 3D com-
puter vision, and how to resolve 3D structural information
from 2D RGB images has been a very popular and impor-
tant research topic. Traditional methods [25]–[27] utilize
feature point movements to resolve geometric information
from multiple images. Corresponding feature points between
images are extracted and triangulation is utilized to esti-
mate depth. Groundbreaking work from Saxena et al. [10]
introduced machine learning to estimate the depth for
2D images with monocular cues. Since then, several
approaches [11], [12], [28]–[31] following this concept with
different representations have been introduced.

In recent years, due to the success convolutional neu-
ral networks have had in image understanding tasks, many
works [1], [8], [9], [13]–[20] have proposed using CNN
for depth estimation. Powerful deep architectures such as
VGG, ResNet, and DenseNet have brought the accuracy of
depth estimation to a new level. Recent works [32], [33]
utilize multilayer deconvolutions to recover fine informa-
tion. Skip connection design has been introduced in some
encoder-decoder research [18], [19], [34] to preserve details
from network inputs. Unsupervised or semi-supervised learn-
ing were recently introduced to the depth estimation prob-
lem [32], [34]–[37]. These methods usually utilize the esti-
mated depth map to reconstruct a reference image from
another image with a different view angle and build up dispar-
ity losses between the reference image and the reconstructed
image to train the network.

Transfer learning has been proven to be very effective in
different cases. Recently, Zamir et al. [21] investigated the
relationship and modeled the transfer learning dependency
of 26 tasks, 16 of which are 3D or geometric related topics.
When Alhashim et al. [19] introduced this concept to the
problem of depth estimation, transferring themodel for object
classification to depth estimation was highly effective.

Plug-in modules for convolutional neural networks are a
newly emerging research topic. Recent research [17], [38],
[39], [41] has typically designed special modules for specific
tasks to improve a model. Some works aim to develop mod-
ules that can be inserted into any network without the need for
any hyper parameter modifications. Wang et al. [38] devel-
oped a non-local module to resolve global feature relation-
ships. Their module has since been ported into many different
tasks for performance improvement. Attention type mod-
ules [39]–[42] focus on improving the quality of extracted
features. Wang et al. [40] proposed an encoder-decoder type
of attention module, which achieved good performance but
is computationally expensive. Hu et al. [41] proposed using
global average pooling to reduce the computational cost and
exploit inter-channel relationships. Other research [42], [43]
suggests that spatial attention is as important as channel
attention for feature enhancement.

Previous state-of-the-art techniques formonocular depth
estimation are described as follows. Eigen et al. [13] pro-
posed a multi-scale network consisting of a coarse scale

86082 VOLUME 8, 2020



C.-H. Yeh et al.: Transfer2Depth: Dual Attention Network

FIGURE 2. Overview of the network architecture. The network consists of an encoder-decoder pair with skip connections (purple), where our specially
designed spatial channel dual attention module (blue) is inserted after each dense block (magenta) and bottle neck layer in the DenseNet architecture.
Transpose convolutions (green) are utilized for spatial up-sampling in the decoder.

and a fine scale network. Even though the design goal of
multi-scale network is to retain details while resolving global
information, the pooling and striding at the beginning of
the fine network causes it to lose a lot of information early
on. In addition, unlike recently developed densely connected
structures, which can preserve information while passing fea-
tures, more details are lost after repeated convolution layers
in the fine network. Fu et al. [17] regarded depth estimation
as a multi-class classification problem. They used a dense
feature extractor followed by a scene understanding module
to extend the field of view to capture global information.
However, the lack of connections between layers leads to
a lack of detail in the output. Alhashim et al. [19] applied
a simple encoder-decoder architecture and trained it using
transfer learning technique. However, their architecture lacks
attention to large scale features. Zhang et al. [20] designed
a pattern affinitive network which concurrently produces
depth, surface normal and semantic segmentation maps. The
main hurdle in their approach is that the complex and massive
architecture needs to be carefully engineered, which makes it
fragile and increases the difficulty of convergence.

III. METHOD
In this section, we introduce the architecture and details of
our proposed network.

A. NETWORK ARCHITECTURE
The overall network architecture is shown in Fig. 2. Previous
depth estimation networks [13], [15] usually apply multiple
layers of convolutional operations on different spatial sizes.
However, as the architecture becomes deeper and deeper,
the representation power of convolutional neural networks
does not increase proportionally. Therefore, we incorporate
a different aspect of network architecture called ‘‘attention.’’
Previous works have shown that attention not only tells the
network where to focus, but also improves the representation
of interest.

Encoder-decoder architecture [18], [19], [32]–[34] has
been shown to be powerful in addressing the depth estimation
problem. To preserve details, most works also introduce skip

connections [18], [19], [33], [34] between the encoder and
decoder. Our proposed network follows this trend as well.
We incorporate high performance DenseNet [44] architecture
and our proposed spatial-channel attention module as the
encoder. The proposed spatial-channel attention module is
inserted after each dense block and transition layer. For the
decoder, we utilize transpose convolution for feature up sam-
pling. Cross connections between the encoder and decoder
are applied to preserve high level features for better output
detail and quality.

FIGURE 3. Spatial-channel dual attention module architecture. The
module consists of two modules that work on different dimensions,
where attention maps generated by each module is multiplied with input
features to improve the representation power.

B. SPATIAL-CHANNEL DUAL ATTENTION MODULE
The spatial-channel dual attention module consists of two
main components, a channel attention module and a spa-
tial attention module. The overall architecture of the
spatial-channel dual attention module is shown in Fig. 3.

The channel attention module is a combination of average
pooling, max pooling andmulti-layer perceptron, which is the
same as in [43].

Because each channel of a feature map is seen as a distinct
feature detector, channel attention focuses on finding out
what is meaningful in the input feature pack. To preserve
computational efficiency, average pooling and max pooling
are applied to squeeze the spatial dimensions of the input
feature map. Average pooling has been commonly adopted
in previous works [41], [45]. However, in [43], with average
pooling and max pooling both applied, the attention module
is able to gather more important clues about distinctive object
features. Thus, we simultaneously apply average pooling and
max pooling.
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FIGURE 4. Channel attention module architecture. Same as in [43], the
channel attention module is a combination of average pooling, max
pooling and multi-layer perceptron.

FIGURE 5. Spatial attention module architecture. Our proposed spatial
attention module consists of an atrous spatial pooling pyramid followed
by 1 × 1 convolutions.

As shown in Fig. 4, both the squeezed feature sequences
from average pooling andmax pooling are forwarded through
a set of shared multi-layer perceptron. After the shared multi-
layer perceptron is applied to each descriptor, the output fea-
tures are merged using element-wise summation. A sigmoid
activation is then applied to generate the channel attention
sequence. The generated attention sequence multiplies with
the input feature maps to emphasize the meaningful features.

In contrast to channel attention, which focuses on where
the meaningful channels are, spatial attention focuses on the
meaningful area in each given feature map. Unlike the spatial
attention design in [43], our proposed spatial attention mod-
ule consists of an atrous spatial pooling pyramid (ASPP) [46]
followed by 1 × 1 convolutions. The ASPP extracts features
from multiple receptive fields with dilated convolution oper-
ations. This avoids the loss of detail resulting from the spatial
size reduction of features. After that, 1 × 1 convolutions
learn the cross-channel interactions between the extracted
features. We merge features from different receptive fields
via concatenation, and a convolution with sigmoid activation
is applied to further integrate and transform the features into
a spatial attention map.

C. TRAINING STRATEGY
1) TRANSFER LEARNING
Alhashim et al. [19] show that with simple yet effective trans-
fer learning technique, it is possible to significantly boost
performance on the depth estimation problem. To further
improve the performance of our proposed network, we there-
fore incorporate transfer learning to give our training a mean-
ingful initialization. We pretrain a DenseNet169 dataset with
ImageNet dataset. The pretrainedweights are then transferred

into our proposed network to initialize weight-setting, and the
spatial-channel dual attention module and decoder are also
inserted for depth estimation training.

2) ORDINAL REGRESSION
In most research, the depth estimation problem tends to be
seen as a regression problem. However, the depth range of
outdoor scenes is much wider than that of indoor scenes, so it
is much more complex. Casting the depth estimation problem
as a multiclass classification problem [17] can substantially
simplify the problem, which leads to better estimation perfor-
mance. Therefore, in this research we propose a split training
strategy, where we switch our estimation method between
regression and multiclass classification depending on the
input data.

In order to perform ordinal regression for the outdoor
environment, a ground truth depth map is first discretized into
labels. We follow Hu et al. [17] in using a spacing-increasing
discretization strategy, which avoids an over-strengthened
loss for large depth values, letting our proposed network focus
more on closer regions where 3D structural information is
much richer than in the farther regions. Spacing-increasing
strategy uniformly discretizes depthmaps in log space, result-
ing in bigger intervals with larger depth values. The depth
values are discretized into 80 classes, which are represented
by 80 label maps. For each pixel, the labeling formula can be
represented as:

ti = ex ,

x = log (α)+
log

(
β
α

)
K

. (1)

where ti ∈ {t1, t2, . . . , tK } are discretization thresholds.
K is the number of intervals, which is set to 80 in this
research. α and β are the shifted minimum and maximum
depth values of the whole dataset, where we apply a shift
ξ to both minimum and maximum depth values so that
α = minimum+ ξ = 1.0.
Once the label of each pixel is decided, the label map is

then filled in correspondingly. In label map representation,
each label has its own map, which means there are 80 maps
Li ∈ {L1,L2, . . . ,L80} in this work. If a pixel P(w,h) is
determined to be class 10, the corresponding pixel in label
maps 1 through 10, L1(w,h),L2(w,h), . . . ,L10(w,h) is set to one
while other areas and other maps remain zeros.

D. TRAINING AND INFERENCE
For indoor regression training, we use the loss function design
from Alhashim et al.’s [19] work. The proposed loss function
consists of three parts: point wise L1 loss, gradient loss and
SSIM loss. The proposed loss function is outlined below:

L
(
d, d̂

)
= σ × Lpointwise

(
d, d̂

)
+ Lgrad

(
d, d̂

)
+ λ× LSSIM

(
d, d̂

)
. (2)

The point wise L1 loss is the average of the absolute error
of each pixel to represent the overall disparity between the
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estimated depth map and ground truth:

Lpointwise
(
d, d̂

)
=

1
n

n∑
p=1

∣∣∣dp − d̂p∣∣∣ . (3)

The gradient loss is a L1 loss defined over the image
gradient of the x and y axis:

Lgrad
(
d, d̂

)
=

1
n

n∑
p=1

∣∣∣gx (d, d̂)∣∣∣+ ∣∣∣gy (d, d̂)∣∣∣, (4)

where gx represents the gradient of the depth map on the
x axis and gy represents the gradient of the depth map on the
y axis. Since SSIM has an upper bound of 1 and a lower bound
of 0, we define the SSIM loss as:

LSSIM
(
d, d̂

)
= 1− SSIM

(
d, d̂

)
. (5)

The weighting in the overall loss function is defined by
σ = 0.1 and λ = 0.5, which is the same setting as in [19].

As for the outdoor dataset, we use Hu et al.’s [17] loss
function design, which is an ordinal loss that takes the ordinal
correlation between discrete labels into account. The ordinal
loss function is formulated as the average of the pixelwise
ordinal loss 9 (w, h) over the entire image:

L = −
1
n

W−1∑
w=0

H−1∑
h=0

9 (w, h),

9 (w, h) =
l(w,h)∑
k=1

logPk(w,h) +
K∑

k=l(w,h)+1

log
(
1− Pk(w,h)

)
.

(6)

where k is the index of class labels, Pk(w,h) is the confidence
of the predicted label of a pixel at position (w, h) and n is the
total number of pixels in an image.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the efficacy of our proposed
method on two challenging datasets: NYU Depth v2 [23] and
KITTI [24]. After introducing the implementation details,
we compare our performance with state-of-the-art meth-
ods [17], [19], [20]. We follow previous work [13] on eval-
uation metrics and additionally perform ablation studies to
further analyze the impact of different parts of our proposed
method.

A. BENCHMARK PERFORMANCE
NYU Depth v2 The NYU Depth v2 is an indoor dataset with
464 indoor scenes of 640 × 480 resolution captured by a
Microsoft Kinect depth camera. The dataset contains around
120K training samples and 654 testing samples pre-defined
by previous work [13]. Just as in [19], a 50K image subset
was selected as the training set. Since depth maps captured
by Kinect usually contain a lot of invalid values, those invalid
values are inpainted using the method in [47]. Depth maps in
the NYUDepth v2 dataset have an upper bound of 10 meters.

KITTI The KITTI dataset is an outdoor dataset with about
1241× 375 resolution captured by cameras and lidar sensors
mounted on a moving vehicle. We train our network using
22.6K images as training images and 697 as testing images,
following the settings in [13]. Ground truth resolution is
reduced via max pooling for output measurements. We train
our model with 640 × 480 resolution as the input, and
320× 240 resolution as the output. Where we crop the input
image to 640 × 375 and fill in zeros on the top to match the
set input resolution.

B. IMPLEMENTATION DETAILS
We implement our proposed network with TensorFlow, and
train on a Nvidia TITAN Xp GPU with 12 GB of mem-
ory. We pretrain a DenseNet 169 with ImageNet dataset for
encoder weight initialization while the decoder weights are
randomly initialized. We chose ADAM optimizer for our net-
work with 20 epochs. The learning rate is set to 0.0001 with
parameter β1 = 0.9 and β2 = 0.999, and the batch size is set
to 2.

C. EVALUATION METRICS
We evaluate the proposed method’s performance on six met-
rics with indoor data and seven metrics with outdoor data in
line with previous work [13]. The error metrics for indoor
data are defined as:

rel =
1
n

n∑
p=1

∣∣∣dp − d̂p∣∣∣
dp

, (7)

RMSE =

√√√√1
n

n∑
p=1

(dp − d̂p)
2
, (8)

log10 =
1
n

n∑
p=1

∣∣∣log10 dp − log10 d̂p
∣∣∣ , (9)

δi = %ofdp satisfy max

(
dp
d̂p
,
d̂p
dp

)
< thr i. (10)

where dp is a pixel in the ground truth depth map d and d̂pd̂p is
the corresponding depth value in the estimated depth map d̂ .
n is the total number of pixels in each depth map. The seven
metrics adopted for outdoor evaluation include rel, RMSE,
and three threshold accuracies, as those adopted for indoor
evaluation. The other two metrics are RMSElog and Squared
Rel as follows:

logRMSE =

√√√√1
n

n∑
p=1

(log dp − log d̂p)
2
, (11)

sqr− rel =
1
n

n∑
p=1

∥∥∥dp − d̂p∥∥∥2
dp

. (12)

D. PERFORMANCE
Table 1 shows the quantitative evaluation results on the
NYU Depth v2 dataset. Our proposed method is able to
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TABLE 1. Performance comparison on NYU Depth v2 dataset.

FIGURE 6. Depth prediction on NYU Depth v2 dataset. Input RGB image, ground truth depth map, our estimated depth map and depth map estimated by
previous state-of-the-art [17], [19].

out-perform state-of-the-art methods and achieve up to a
6.2% improvement in performance while requiring only 50k
training images and a 20 epoch training duration. The visual-
ized qualitative comparison is shown in Fig. 6. As for outdoor
data KITTI, although our quantitative comparison is slightly
behind the previous best score [17] on squared relative error
and RMSE, our proposed method achieves a 10% improve-
ment on logRMSE as shown in Table 2. This indicates that
our proposed method obtains better estimation at the closer

range, which is much more important than the long range
accuracy in most applications. This phenomenon may be
derived from the pretraining process of our proposed network
on ImageNet, which leads to better feature extraction on
close range objects. On the other hand, our proposed method
delivers significantly better qualitative results. As can be seen
in Fig 7, our proposed method generates much sharper edges
with smoother surfaces. These differences can be clearly
observed on columnar objects such as road trees and traffic
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TABLE 2. Performance comparison on KITTI dataset.

FIGURE 7. Depth prediction on KITTI. Input RGB image, ground truth depth map, our estimated depth map and depth map estimated by previous
state-of-the-art [17]. Our method shows significant sharper edges and smoother surfaces.

TABLE 3. Spatial channel dual attention module.

sign poles. The results suggest that our proposed method
provides state-of-the-art accuracy on both indoor and outdoor
data.

E. ABLATION STUDIES
We performed several experiments to analyze the perfor-
mance of different parts of our proposed network. All abla-
tion study experiments were conducted on the NYU Depth
v2 dataset.

1) SPATIAL ATTENTION MODULE DESIGN
Since the attention module plays a critical role in perfor-
mance improvement, we run several experiments to prove
its effectiveness and optimize the parameters. Table 3 shows

the comparison of how different types of spatial attention
module designs performed. With the application of our pro-
posed attention module, we are able to gain around 5%
improvement in accuracy compared to the same network
architecture without the attention module. We also made the
comparison among the performance of our proposed atrous
convolution-only spatial design, the pooling only design
of [43], and our spatial design when it is equipped with both
atrous convolution and pooling. The evaluation results indi-
cate that our proposed atrous convolution-based spatial atten-
tion module is able to extract features with better representa-
tion, which leads to better accuracy in depth estimation. The
pooling operation in spatial attention is not practical because
the max and average pooling lose significant amounts of
spatial information.
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TABLE 4. Transferred weights and network size.

2) TRANSFERRED WEIGHTS AND NETWORK SIZE
In this experiment we test the influence of the transfer learn-
ing technique; also, we substitute the DenseNet-169 archi-
tecture for DenseNet-121 to test the performance of different
encoder depth. Table 4 shows the comparison of performance
with different weight initialization methods and encoder
depths. The best performance at each depth is bolded and
the second best is underlined. It can be seen that the impact
of transfer learning technique is significant. As shown on the
last row of Table 4, training without transfer learning leads
to undesired performance due to the lack of training data and
training epochs. By initializing our network with meaningful
weights, we are able to gain a significant amount of improve-
ment. In addition, even with a much smaller encoder, we are
able to outperform the previous state-of-the-art techniques
in most metrics. Though DenseNet offers a denser archi-
tecture with 201 layers, the previous work [19] argued that
the performance improvement does not justify the trade-off
with the much slower convergence and higher memory usage.
Therefore, we conclude that utilizing DenseNet-169’s archi-
tecture for our encoder achieves the best balance between
performance and speed.

V. CONCLUSION
This paper proposes a convolutional neural network for
monocular depth estimation from a single image. We lever-
age the effectiveness of high performing pre-trained models
and a specially designed attention module. Unlike that most
researches focus mainly on the network architecture design,
our research aims to point out the importance of other aspects
in model learning: training strategy and model effectiveness
improvement. We propose a spatial-channel dual attention
module which improves the representation power of the
encoder, and a training strategy which combines transfer
learning and ordinal regression to improve model conver-
gence. Our proposed method can achieve a rate of 18 frames
per second. Moreover, our results prove that our simple
encoder-decoder module with attention function and ordinal
regression is quite suitable for depth estimation in both indoor
and outdoor environments using NYU Depth v2 and KITTI,
two of the biggest datasets for indoor and outdoor images,
respectively.
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