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ABSTRACT This work focuses on the fixed-time leader-following flocking for multi-agent systems. Differ-
ent from the previous continuous inherent dynamic f (xi, vi, t) for agent i, a new nonlinear discontinuous one
is firstly proposed in this paper. Employing non-smooth techniques, graph theory and fixed-time stability
theory, the fixed-time leader-following flocking is achieved. Moreover, an upper bound of the settling time
is independent of initial states. In addition, two illustrative examples are given to verify the effectiveness of
the theoretical results.

INDEX TERMS Fixed-time flocking, multi-agent system, discontinuous.

I. INTRODUCTION
The study of cooperative control of autonomous agents has
recently attracted significant interest, due to it is a basic
research of multi-agent systems and it has potential appli-
cations, such as formation flying of unmanned aerial vehi-
cles (short for UAVs) [3], distributed sensor networks [17]
and cooperation of multi-robot teams [2]. Particularly, flock-
ing, which means that agents in a group organize into an
ordered motion by interacting with their local neighbors,
is one fundamental research problem of cooperative control.
Recently, some impressive results of flocking have been
obtained for second-order multi-agent systems, such as the
communication function with time delay [36], the straight
line formation [13], flocking with deterministic or stochastic
additional forces [15], [29], flocking with leaders [19] and
references therein. The other newest developments are cap-
tured in [6], [18], [34], [37].

It must be noticed that the settling time is an important
criterion to appraise the designed protocols as studying
the cooperative control problems, because the fast con-
vergence is always pursued to achieve better performance
and robustness [21], [41]. As far as we observe, most of
the reported literatures dealt with the asymptotic behaviors,
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which means that the flocking phenomenon occurs only if
time approaches to infinity. From a practical point of view,
however, it is more practical significance that the consen-
sus behavior can be achieved in a finite-time or fixed-time.
For this reason, the issue of the finite-time cooperative con-
trol for multi-agent systems has attracted much attention
recently [9], [44], [46], [46]. Recently, a significant amount
of works have concentrated on the finite-time or fixed-time
consensus of multi-agent systems. For examples, Khanzadeh
and Pourgholi [2] used non-singular terminal sliding mode
technique to investigate the fixed-time leader-follower con-
sensus tracking of second-order multi-agent systems with
bounded input uncertainties. Ning et al. [4], [5] considered
the finite-time and fixed-time leader-following consensus for
multi-agent systems with discontinuous inherent dynamics.
Defoort et al. [22] dealt with the leader-follower fixed-time
consensus for multi-agent systems with unknown non-linear
inherent dynamics. Although there are a lot of existing papers
dealing with the finite-time or fixed-time consensus issue of
multi-agent systems, there are very few papers considering
the finite-time or fixed-time flocking problems up to now.
As far as we know, there are fewer results on the finite-time
or fixed-time flocking for multi-agent systems. By using
nonsmooth stability analysis and graph theory, the author [16]
proposed a discontinuous protocol and derived a general
condition of the initial configurations to study the finite-time

86262 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7077-5213
https://orcid.org/0000-0001-6498-5580


Z. Xu et al.: Fixed-Time Leader-Following Flocking for Nonlinear Second-Order Multi-Agent Systems

flocking problem for a discontinuous Cucker-Smale type
model under a long-range interaction. Employing a finite
time stability theory and some inequalities, the result in [35]
shows that when the communication weight function for
Cucker-Smale systems has a positive infimum, the flocking
can be formedwithin a finite-time. By combining a fixed time
stability theory and graph theory, the results of [24] illustrate
that the bipartite flocking for nonlinear multi-agent systems
can be arose within a fixed-time. Liu et al. [8] focused on
the problem of the finite-time flocking with uniform minimal
distance for second-order multi-agent systems. Nevertheless,
there are still many challenges remaining in studying the
finite-time or fixed-time flocking issues for the multi-agent
systems. Take the following problems for example:

(I).Can the flocking occur in the leader-following
multi-agent systems with discontinuous inherent dynamics
in a fixed-time?

(II). If it is a case, under what conditions?
(III). How to estimate the upper bound of the settling time?
Actually, these issues are inspired partially by the con-

sensus problem of the multi-agent systems and partially by
the self-organizing behavior of the animals, such as flocks
of sheep, schools of wolves and herds of geese. The results
of the existing works show that the flocking is essentially
related to the consensus, which aims at designing distributed
control protocols to drive a group of agents to reach an
agreement on system states [4]. Roughly speaking, we say
that a system has a consensus meaning that the positions of
agents will converge as time approaches to a finite/fixed-time
T or ∞. However, a system has a flocking requesting that
the velocities of agents converge as time approaches to a
finite/fixed-time T or ∞ and the positions have a bound-
edness for all t ≥ 0. These requirements satisfy the three
heuristic rules: separation, alignment and cohesion, which
was first introduced by Reynolds [7]. In this respect, it is more
difficult to study flocking problem than to study consensus
problem.

Motivated by the above analysis, the main purpose
of this work is to resolve the aforementioned prob-
lems (I), (II) and (III). The main contributions in the present
work are summarized as follows:

1) An inherent dynamics which is the first time we pro-
posed here is discontinuous and it is quite different
from a Lipschitz-type function [22], [39], [40]. It is
well known that, for systems with the discontinuous
inherent dynamics, the right-hand side for the dynamics
is no longer continuous. This leads the problem more
difficulty than continuous one and implies the necessity
to invent new analytical methods. Motivated by [4], [5]
in which the authors studied the finite-time consensus
problem, we apply the non-smooth techniques to over-
come this drawback. Consequently, our exploration is
more general and it can broaden the scope of practical
applications of the multi-agent systems by employing
this more generalized form.

2) Unlike the results in [16], [35], where the flock-
ing is achieved in a finite-time depending on initial
states of the systems, we investigate the fixed-time
leader-following flocking and estimate the upper bound
of the settling time which is independence of initial
states by the new protocol. To the best of authors’
knowledge, the results of this paper are novel in
the aspect of the finite-time and fixed-time leader-
following flocking without collision.

The rest of this paper is organized as follows. In Section II,
the preliminaries and problem formulation are given. Also,
some necessary lemmas are presented in this section. The
detail proof of the fixed-time flocking results are presented in
Section III. In Section IV, the numerical examples are carried
out to validate the effectiveness of theoretical results. Finally,
the brief summary of our main results is given in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. SOME NOTATIONS
Notations R, R+, Rd , Rn×n mean the one-dimensional real
space, one-dimensional positive real space, d-dimensional
real vector space and n × n real matrix space, respectively.
Let 1d be a d × 1 column vector with all entries are 1,
and Id be a identity matrix of dimension d . Note x =
[xT1 , x

T
2 , . . . , x

T
n ]

T , where xi ∈ Rd , and the power of the
vector xi is defined as xri = [(x(1)i )r , (x(2)i )r , . . . , (x(d)i )r ]T ∈
Rd , where r ∈ R. For simplicity, we denote sign(xi) =
[sgn(x(1)i ), sgn(x(2)i ), . . . , sgn(x(d)i )]T , where sgn(·) is the
signum function

sgn(s) =


1, s > 0,
0, s = 0,
−1, s < 0.

As usual, p−norm is defined as

‖xi‖pp = (|x(1)i |
p
+ |x(2)i |

p
+ · · · |x(d)i |

p), p > 0.

B. GRAPH THEORY
Let G = (V, E) be a weighted graph, where V =

{v1, v2, . . . , vN } means a set of nodes, E = {(vi, vj)|vi, vj ∈
V} denotes a set of edges. Aweighted directed graphG(A) is a
graph G with a nonnegative adjacency matrix A = [aij]N×N
with weights aij > 0 if (vj, vi) ∈ E and aij = 0 otherwise.
If aij = aji, it means that G is an undirected graph. In this
paper, we concentrate on the undirected G(A) and assume
that no self-loops exist, i.e., (vj, vi) 6∈ E, thus aii = 0.
The Laplacian matrix L = [lij]N×N of G(A) is defined by
lij = −aij for i 6= j, and lii =

∑N
j=1 aij. As shown in [4], [5],

each agent interacts with its neighbouring set Ni = {vj ∈
V|(vi, vj) ∈ V}, i ∈ N . Similar to [18], in the present paper,
if two agents interact with each other, the weight between
them is set to be 1, and be 0 otherwise. Besides G, another
graphG consists of the graphG, the node 0 and edges between
the leader and its neighbours. In particular, only when
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the ith agent has the access to the information of the leader 0,
a notation, di is set to be 1, and be 0 otherwise. Then a new
matrix H is defined as H = L + diag(d1, d2, . . . , dN ).

C. NON-SMOOTH PRELIMINARIES
Definition 1: [1] Consider an equation or a system in

vector notation

ẋ = z(x(t), t), (1)

with a piecewise continuous function z in a (n+ 1)−
dimensional domain G ⊆ Rn+1, ẋ = dx/dt, M is a set (of
measure zero) of points of discontinuity of the function z,
then x(·) is called a Filippov solution of (1) on [t0, t1] ⊂ R
if it is absolutely continuous and for almost all t ∈ [t0, t1] it
satisfies the differential inclusion ẋ ∈ K[z](x(t), t), where
K[z](x(t), t) is a set-valued map given by

K[z](x(t), t) = co{limz(x∗(t), t)|x∗(t)→ x(t),

(x∗(t), t) 6∈ M , t = const}, (2)

where co denotes the convex closure and M denotes the set
of measure zero. For simplicity,K[z](x(t), t) is occasionally
denoted as K[z(x(t), t)] in this paper.
Definition 2: [17] Let f : Rn+1

→ Rn be a locally
Lipschitz function, then the set-valued Lie derivative of f with
respect to z at x is

L̃zf (x(t), t) = {z ∈ R | ∃w ∈ K[z](x(t), t)

such that ξTw = z, ∀ξ ∈ ∂f }, (3)

where ∂f is the Clarke’s generalized gradient of f .

D. PROBLEM FORMULATION
Consider a system consisting of one leader (indexed as
agent 0) and a group of N followers (indexed as agents
1, 2, . . . ,N ). As described in [4], [5], the status ith agent can
be described by{

ẋi(t) = vi(t),
v̇i(t) = f (xi(t), vi(t), t)+ ui(t),

(4)

subject to the initial data

(xi, vi)(0) =: (xi0, vi0), i = 1, . . . ,N , (5)

where t ≥ 0, xi = (x(1)i , x(2)i , · · · , x(d)i ) ∈ Rd and vi =
(v(1)i , v

(2)
i , · · · , v

(d)
i ) ∈ Rd denote the position and velocity

of ith agent at time t , respectively. The function f : Rd
×

Rd
× [0,+∞) → Rd is the inherent nonlinear dynam-

ics for agent i, and ui(t) is the control acceleration of ith
agent, called protocol, to be designed. Let f (xi(t), vi(t), t) =
(f1(xi(t), vi(t), t), . . . , fn(xi(t), vi(t), t)T , i = {1, 2, . . . ,N }.
The leader can be described by{

ẋ0(t) = v0(t),
v̇0(t) = f (x0(t), v0(t), t)+ u0(t),

(6)

where t ≥ 0, x0 = (x(1)0 , x(2)0 , · · · , x(d)0 ∈ Rd and v0 =
(v(1)0 , v

(2)
0 , · · · , v

(d)
0 ) ∈ Rd denote the position and velocity of

the leader, f0 has the same definition as that of the followers,
and u0(t) ∈ Rd is the control input for the leader.

It is worth pointing out that for studying the consensus
problem in some existing papers, the nonlinear dynamics f (·)
is either assumed to satisfy the Lipschitz continuous condi-
tion (see e.g. [12], [20], [33]), i.e., for all xi(t), x2(t) ∈ Rd

and c is a non-egative constant such that

‖f (x1(t), t)− f (x2(t), t)‖2 ≤ c‖x1(t)− x2(t)‖2, (7)

or satisfy that (see e.g. [31]), for ∀x, y ∈ Rd , there exists a
positive constant ρ such that

(x − y)(f (t, x)− f (t, y)) ≤ ρ(x − y)T (x − y), (8)

which implies that f is a nonlinear continuous function. How-
ever, in the real life, the continuity of f is not always guaran-
teed due to unexpected disturbances or noises. Based on this
fact, we consider the discontinuous case in this paper, that is,
f (·) is a discontinuous function and satisfies the following
hypothesis:
Assumption 1: For all i = 1, 2, . . . , d, fi(·) is continuously

differentiable, except on a countable set of isolated points
{ρik} = {(x

i
k , v

i
k )}, where there exist finite right and left limits

f +i (ρik ) and f
−

i (ρik ), respectively, k = 1, 2, . . . ;
Assumption 2: There exist ε1 > 0, ε2 ≥ 0, ν > 0 and

µ > 0 such that the following condition holds

‖g(t)‖2 ≤ −
1

µ+ ε1‖vi(t)− vj(t)‖2
− ε2‖xi(t)− xj(t)‖2 + ν,

for all g(t) ∈ K[f (xi(t), vi(t), t)− f (xj(t), vj(t), t)].
Remark 1: Assumption 1 is usually assumed to study

the consensus problem of discontinuous multi-agent system
(e.g. [4], [5], [38]). If Assumptions 1 and 2 hold, the solu-
tion of system (4)-(6) is understood in the Filippov sense
due to Definition 1. Comparing to the continuous inher-
ent dynamics (e.g. (7) and (8)), the discontinuous f (·) have
wider practical applications by considering a more gener-
alize form. The Assumption 2 is a sufficient condition we
first propose to study the fixed-time flocking of multi-agent
systems.
Assumption 3: The control input of the leader to its follow-

ers is bounded, i.e., ∃ l > 0, such that

‖u0(t)‖2 ≤ l <∞.

Assumption 4: The undirected graph G is connected, and
there exists at least one di > 0.
Remark 2: If Assumption 4 holds, then it follows

from [38] that H is positive definite. So, we can denote
λmin(H ) and λmax(H ) to be the smallest and the largest
eigenvalue of H , respectively. Moreover, although Assump-
tions 3 and 4 are frequently used to investigate the leader-
following consensus issue (see e.g. [4], [5], [38]), there are
very few results on the flocking by employing them.

For better legibility, we use the following handy notations:

dX (t) := max
0≤i,j≤N

‖xi(t)− xj(t)‖ for all t ≥ 0
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and
dV (t) := max

0≤i,j≤N
‖vi(t)− vj(t)‖ for all t ≥ 0,

where ‖ · ‖ denotes the 2-norm in Rd . Note that the functions
dX (t), dV (t) and dXmin (t) are not C1 smooth in general.
Definition 3: We say that the system (4)-(6) has a finite-

time (fixed-time) leader-following flocking if the solutions
of the system (4)-(6) satisfy the following conditions

lim
t→T

dV (t) = 0, dV (t) = 0,∀t ≥ T , and

sup
0≤t<∞

dX (t) < C,
(9)

where C is a constant and T called the settling time which is
depending (non-depending) on initial states.

Now, we provide some lemmas that will be used in the
following paragraphs.
Lemma 3: [10] For any vector x ∈ Rn, and if p > r > 0,

where p and r are scalar constants, then

‖x‖p ≤ ‖x‖r ≤ n
1
r −

1
p ‖x‖p.

Consider the following systems
ẋ(t) = g(x(t), t), x(0) = x0, (10)

where x ∈ Rd , g(x) : Rd
×R→ Rd is Lebesgue measurable

and locally essential bounded (but may be discontinuous with
respect to x).
Lemma 4: [11] For system (10), if there exists a regular,

positive definite and radially unbounded function V (x(t)) :
Rd
→ R satisfying the following inequality
d
dt
V (x(t)) ≤ −r − εV k (x(t)), x(t) ∈ Rd

\ {0},

where r > 0, ε > 0, k ≥ 0. Then, the following statements
hold:
(i) If k > 1, then the origin of system (10) is fixed-time stable
and the settling time T is estimated by

T ≤ T ∗ :=
1
r

( r
ε

) 1
k
(
1+

1
k − 1

)
.

(ii) If k = 1, then the origin of system (10) is finite-time
stable and the settling time T is estimated by

T ≤ T ∗ :=
1
ε
ln
r + εV (x0)

r
.

III. FIXED-TIME FLOCKING
As put it before, the aim of this paper is to study the fixed-time
flocking for system (4)-(6). To this end, motivated by [4], [5],
we design the control protocol ui(t) for each follower as
ui(t)

= − α

 N∑
j=1

aij(vi(t)− vj(t))+ di(vi(t)− v0(t))

1+ b
a

−βsign

 N∑
j=1

aij(vi(t)− vj(t))+ di(vi(t)− v0(t))

 ,
(11)

where α > 0, β > 0, a > 0 and b ≥ 0.

Now, we state our main results as follows:
Theorem 5: Under the Assumption 1, 2, 3, 4 and employ-

ing (11) with b > 0, if β ≥ νN
√
d
+ l, then systems (4)-(6) has

a fixed-time leader-following flocking. Moreover, an upper
bound of the settling time can be estimated by

T ∗=
(1+ε1)(b+ 2a)

bλmin(H )

(
λmin(H )

[α(dN )−
b
2a (2λmin(H ))

2a+b
2a ]

) 2a
2a+b

.

(12)

proof:
Step 1: We try to find out T ∗ > 0 such that vi(t) = v0(t)

for all t ≥ T ∗. Let ei(t) = vi(t) − v0(t), i ∈ {1, 2, . . . ,N }.
Then combining (11), (4) with (6) implies that

ėi = v̇i − v̇0

= −α

 N∑
j=0

aij(ei − ej)

1+ b
a

− βsign
N∑
j=0

aij(ei − ej)

+ f (xi, vi, t)− f (x0, v0, t)− u0(t).

Now, we denote

e = [eT1 , e
T
2 , . . . , e

T
N ]

T ,

F(x, v) = [f T (x1(t), v1(t), t), . . . , f T (xN (t), vN (t), t)]T ,

F(x0, v0) = [f T (x0(t), v0(t), t), . . . , f T (x0(t), v0(t), t)]T ,

then

ė = −α((H ⊗ Id )e)1+
b
a − βsign((H ⊗ Id )e)

+F(x, v)− F(x0, v0)− 1d ⊗ u0, (13)

where ⊗ be the Kronecker product. In addition, let ė = z(e)
and choose the following Lyapunov functions

V (e) =
1
2
eT (H ⊗ Id )e. (14)

Since the right hand side of (13) is discontinuous, it deduces
from Definition 2 that the set-valued Lie derivative of V (e) is
given by

L̃zV (e) = eT (H ⊗ Id )K[z](e)

= K[−αeT (H ⊗ Id )((H ⊗ Id )e)1+
b
a

−βeT (H ⊗ Id )sign((H ⊗ Id )e)

+ eT (H ⊗ Id )F(x, v)− eT (H ⊗ Id )F(x0, v0)

− eT (H ⊗ Id )(1d ⊗ u0)]

= −α‖(H ⊗ Id )e‖
2+ b

a

2+ b
a
− β‖(H ⊗ Id )e‖1

+ eT (H ⊗ Id )g− eT (H ⊗ Id )(1d ⊗ u0),

where g = [gT1 , g
T
2 , . . . , g

T
N ]

T , gi ∈ K[f (xi(t),
vi(t), t) − f (x0(t), v0(t), t)] are measurable selections,
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i = {1, 2, . . . ,N }. Thus, from Assumption 3, one can easily
has

L̃zV (e) ≤ −α‖(H ⊗ Id )e‖
2+ b

a

2+ b
a
− β‖(H ⊗ Id )e‖1

+eT (H ⊗ Id )g+ l‖(H ⊗ Id )e‖1. (15)

It follows from Remark 2 that H is a positive definite matrix.
So there exists an unique upper triangular matrix A ∈ Rd×d

satisfyingH = ATA (see [26] for example). Thus, employing
Assumption 2 and Lemma 3 shows that

eT (H ⊗ Id )g = 〈(H ⊗ Id )e, g〉 ≤ ‖(H ⊗ Id )e‖2‖g‖2

≤ −
‖(H ⊗ Id )e‖2

µ+ ε1‖vi − vj‖2

+‖(H ⊗ Id )e‖2
(
−ε2‖xi − xj‖2 + ν

)
≤
νN
√
d
‖(H ⊗ Id )e‖1,

which substituting into (15) yields that

L̃zV (e) ≤ −α‖(H ⊗ Id )e‖
2+ b

a

2+ b
a

−(β −
νN
√
d
− l)‖(H ⊗ Id )e‖1.

Noting that β ≥ νN
√
d
+ l. Then L̃zV (e) ≤ 0. Therefore,

V (e) is a decreasing function, which combining with the fact
1
2λmin(H )‖e‖22 ≤ V (e) implies that ‖e‖2 is bounded for all
t ≥ 0. So, without loss of generality, there exists η > 1 such
that

‖e‖2 ≤ ηµ, for all t ≥ 0. (16)

From the properties of algebraic connectivity of digraphs (see
Theorem 3 in [25]), we have

‖(H ⊗ Id )e‖22 = eT [(H ⊗ Id )e]T (H ⊗ Id )e

= eT (ATA⊗ Id )(ATA⊗ Id )e

= eT (ATAATA⊗ Id )e

= eT (AT ⊗ Id )(AAT ⊗ Id )(A⊗ Id )e

≥ λmin(H )eT (AT ⊗ Id )(A⊗ Id )e

= λmin(H )eT (H ⊗ Id )e

= 2λmin(H )V (e). (17)

By Lemma 3, one can easily get that

‖(H ⊗ Id )e‖2 ≤
(
(dN )

1
2−

1
2+ ba

)
‖(H ⊗ Id )e‖2+ b

a
.

Then

‖(H ⊗ Id )e‖2+ b
a
≥

(
(dN )

1
2−

1
2+ ba

)−1
‖(H ⊗ Id )e‖2,

which combining with (17) implies that

‖(H ⊗ Id )e‖
2+ b

a

2+ b
a
≥ (dN )−

b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a .

Therefore,

−α‖(H⊗Id )e‖
2+ b

a

2+ b
a

≤−α(dN )−
b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a .(18)

Employing Assumption 2, Lemma 3 and (16) again,
we obtain that

eT (H ⊗ Id )g

≤ ‖(H ⊗ Id )e‖2

(
−

1
µ+ ε1‖vi − vj‖2

− ε2‖xi − xj‖2 + ν
)

≤ ‖(H ⊗ Id )e‖2

×

(
−

1
ηµ+ ε1‖vi − vj‖2

− ε2‖xi − xj‖2 + ν
)

≤ ‖(H ⊗ Id )e‖2

×

(
−

1

ηµ+ ε1
∑N

i=1 ‖ei‖2
− ε2‖xi − xj‖2 + νN

)

= ‖(H ⊗ Id )e‖2

(
−

1
ηµ+ ε1‖e‖2

− ε2‖xi − xj‖2 + νN
)

≤ −
λmin(H )‖e‖2
ηµ+ ε1‖e‖2

− ε2‖(H ⊗ Id )e‖2‖xi − xj‖2

+ νN‖(H ⊗ Id )e‖2

≤ −
λmin(H )
1+ ε1

+
νN
√
d
‖(H ⊗ Id )e‖1. (19)

Thus, substituting (18) and (19) into (15) yields that

L̃zV (e)

≤ −α(dN )−
b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a

−β‖(H ⊗ In)e‖1 −
λmin(H )
1+ ε1

+
νN
√
d
‖(H ⊗ In)e‖1 + l‖(H ⊗ In)e‖1

= −
λmin(H )
1+ ε1

− α(dN )−
b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a

− (β −
νN
√
d
− l)‖(H ⊗ In)e‖1

≤ −
λmin(H )
1+ ε1

− α(dN )−
b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a .

Therefore, by Lemma 4 (1), the equilibrium of (13) is
fixed-time stable, and

T ∗ = Tmax

=
(1+ ε1)(b+ 2a)

bλmin(H )

(
λmin(H )

[α(dN )−
b
2a (2λmin(H ))

2a+b
2a ]

) 2a
2a+b

.

Then, for

V̇ (e) ≤ −
λmin(H )
1+ ε1

− α(dN )−
b
2a (2λmin(H ))1+

b
2a (V (e))1+

b
2a ,

by applying the comparison principle [23], the equilibrium is
still fixed-time stable and an upper bound of the settling time
is estimated as T ∗. So, vi(t) = v0(t), i = {1, 2, . . . ,N } for
t ≥ T ∗.
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Step 2: Since vi(t) = v0(t), i = {1, 2, . . . ,N } for t ≥ T ∗,
then for all i, j ∈ {1, 2, . . . ,N }, applying the definition of
norm and triangle inequality to yield that

0 ≤ ‖vi(t)− vj(t)‖2 ≤ ‖vi(t)− v0(t)‖2
+‖vj(t)− v0(t)‖2 ≤ 0,

for t ≥ T ∗, which means that

dV (t) = 0 for t ≥ T ∗. (20)

Furthermore, there exists at most countable number of
increasing time tk such that we can choose indices i and
j satisfying dV (t) = ‖vi(t) − vj(t)‖2 on any time interval
(tk , tk+1) with tk+1 ≤ T ∗ because the number of particles
is finite and the continuity of the velocity trajectories. This
combines with (20) to imply that dV (t) is a bounded function
for all t ≥ 0, i.e., there exists a constant λ > 0 such that

|dV (t)| ≤ λdV (0). (21)

Then for any i, j ∈ {1, 2, . . . ,N }, it is easy to get from the
definition of dV (t) and (21) that

‖vi(t)− vj(t)‖2 =

[
d∑

m=1

(v(m)i − v
(m)
j )2

] 1
2

≤

[
d∑

m=1

|dV (t)|2
] 1

2

≤

[
d∑

m=1

|λdV (0)|2
] 1

2

≤
√
dλdV (0),

which implies that

dV (t) ≤
√
dλdV (0) for t ≥ 0. (22)

To verify dX (t) <∞ for all t > 0, we first claim

D+[dX (t)] ≤ dV (t) for all t > 0, (23)

where D+ is the upper Dini derivative. In fact, for all i, j ∈
{1, 2, . . . ,N }, a direct calculation gives that

d
dt
‖xi(t)− xj(t)‖22 = 2〈xi(t)− xj(t), vi(t)− vj(t)〉

≤ 2‖xi(t)− xj(t)‖2dV (t).

On the other hand, we have

d
dt
‖xi(t)− xj(t)‖22 = 2‖xi(t)− xj(t)‖2

d
dt
‖xi(t)− xj(t)‖2,

from which it follows that

d
dt
‖xi(t)− xj(t)‖2 ≤ dV (t).

Thus, the claim follows since we can select i and j such that
dX (t) = ‖xi(t)− xj(t)‖2 on any time interval (tk , tk+1). Now,
integrating both sides of (23) from 0 to t yields that

dX (t) =
∫ t

0
dV (s)ds+ dX (0). (24)

In what follows, there are two possible cases to consider. One
case is 0 < t ≤ T ∗. Employing (22) and (24) to yield that

dX (t) ≤
∫ t

0

√
dλdV (0)ds+ dX (0)

≤
√
dλdV (0)T ∗ + dX (0).

The other case is t > T ∗. It follows from (20),(22) and (24)
that

dX (t) ≤
∫ T ∗

0

√
dλdV (0)ds+

∫ t

T ∗
dV (s)ds+ dX (0)

=
√
dλdV (0)T ∗ + dX (0).

Hence,

dX (t) ≤
√
dλdV (0)T ∗ + dX (0) <∞ for all t > 0.

Therefore, the proof is completed by applying Definition 3.
It is worthy remarking that if b = 0 in (11), that is,

ui(t) = −α

 N∑
j=1

aij(vi − vj)+ di(vi − v0)


−βsign

 N∑
j=1

aij(vi − vj)+ di(vi − v0)

 . (25)

Then employing the similar analysis of Theorem 5 and apply-
ing Lemma 4 (ii), one can easily get the following finite-time
flocking result.
Corollary 6: Under the Assumption 1, 2, 3, 4 and

employing (25), then system (4)-(6) has a finite-time
leader-following flocking and the settling time is estimated
as

T0 =
1

2αλmin(H )
ln
λmin(H )+ 2αλmin(H )V (e(0))(1+ ε1)

λmin(H )
.

Remark 7: Theorem 5 shows that under some suitable
conditions, the leader-following fixed-time flocking of a sec-
ond order multi-agent system can be established. Moreover,
the upper bound of the settling time can be estimated only by
the parameters, which is quite different from the finite-time
flocking [8], [35] whose upper bound of settling time heav-
ily depends on the initial data of the systems. In [8], [35],
the authors considered the finite-time flocking of a C-S type
model (without leaders) by using a finite-time stability the-
orem. However, in this paper, combining the graph theory
with a fixed-time stable theorem, we verify that the fixed-time
flocking of a second order leader-following multi-agent sys-
tems can be occurred. Moreover, the methods in [8], [35] can
not directly apply in the present paper.
Remark 8: Although the method we apply to study the

speed convergence is similar to [4], [5], the inherent dynam-
ics in the present paper in quite different from [4], [5],
in which the authors investigated the fixed-time consensus of
a leader-following multi-agent systems. Moreover, under this
new inherent dynamics, we show that the fixed-time flock-
ing can be formed. It should be emphasized that the results
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and the methods in the present paper are distinct from [16],
in which the authors studied the finite-time flocking.

IV. SIMULATIONS
In this section, two numerical examples inherent non-
linear dynamics are given to show the effectiveness of
the theoretical analysis obtained in the previous section.
A multi-agent system consisting N = 7 followers (denot-
ing by 1,2,3,4,5,6,7) and one leader (denoting by 0) in
one-dimensional space (d = 1) is considered. Assume that
the control input of the leader to its followers is set as

u0(t) = 16 sin(13π t).

Then it is bounded by l = 16. Furthermore, assume that the
interaction topology be shown in Figure 1.

FIGURE 1. Interaction topology connected between followers and leader.

Since the weight of the two interacting agents is set to
be 1, and be 0 otherwise (see Part II, B. GRAPH THEORY),
the associated matrix A and matrix H are

A =



0 0 1 0 0 0 0
0 0 1 1 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0


and

H =



2 0 −1 0 0 0 0
0 2 −1 −1 0 0 0
−1 −1 4 −1 0 0 0
0 −1 −1 3 −1 0 0
0 0 0 −1 3 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


,

where diag(d1, · · · , d7) = diag(1, 0, 1, 0, 1, 0, 1) is used.
Then the Assumptions 3 and 4 are satisfied.
Example 1: The discontinuous inherent nonlinear dynam-

ics is given by

f (xi(t), vi(t), t) = 0.03vi − 0.18 sign(vi),

where i = 0, 1, . . . ,N . ε1 = 0.03, ε2 = 0, ν = 2 and µ = 1
such that 2ε1 ≤ ν − 1

µ
which makes sure the establishment

of Assumptions 1 and 2. Set the initial states of the followers
as x(0) = [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30]T and v(0) =
[1,−2,−2, 1, 1, 1,−1]T and those of the leader as x0(0) = 1
and v0(0) = 0.5. Take α = 2.2 and β = 32, a = 4 and
b = 9, then it is can be calculated from (12) that T ∗ =
2.78. By applying Matlab, the following simulation results
(Figures 2–4) are obtained.

FIGURE 2. The velocities of agents.

FIGURE 3. The maximum distance of agents.

Figure 2 shows that the relative velocities are convergent
to zero after about t = 0.15. The result in Figure 3 presents
that the maximum positions of all agents are not changing
after about t = 0.15, which means that the size of the
group is remaining the value about 1.03 after t = 0.15.
Moreover, it can be seen in the Figure 4 that a gradual decline
appears in the value of the minimum distance of the agents
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FIGURE 4. The minimum distance of agents (collision avoidance).

before t = 0.10, but this trend stops and the value of the
minimum distance keeps about 0.008 after t = 0.15, which
means that the agents do not collide during the process of
flocking. Hence, the flocking is achieved before the settling
time T ∗ = 8.78. However, we find that when the followers
are too close each other in the initial states, it will lead to the
collision. For example, the initial position states of the follow-
ers are changed to be x(0) = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]T ,
the agents collides at about t = 0.025 during the process of
the flocking which shown in the Figure 5. So, the simulative
results illustrate the effectiveness of Theorem 5.

FIGURE 5. The minimum distance of agents (collision).

To better illustrate the effects of different inherent dynam-
ics on the flocking, we add the following Example 2.
Example 2: In this example, the discontinuous inherent

nonlinear dynamics is given by

f (xi(t), vi(t), t) = 0.03 sin(vi)− 0.18 sign(vi),

where i = 0, 1, . . . ,N . To better illustrate the effects of
different inherent dynamics on the flocking, we choose the
same parameters as in Example 1, that is, ε1 = 0.03, ε2 = 0,
ν = 2 and µ = 1 such that 2ε1 ≤ ν − 1

µ
which guarantees

the establishment of Assumptions 1 and 2. The initial states

FIGURE 6. The velocities of agents.

FIGURE 7. The maximum distance of agents.

FIGURE 8. The minimum distance of agents (collision avoidance).

of the followers as x(0) = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]T

and v(0) = [1,−2,−2, 1, 1, 1,−1]T and those of the leader
as x0(0) = 1 and v0(0) = 0.5. Set α = 8, β = 15,
a = 4 b = 9 in (12). It follows from (12) that T ∗ = 2.60.
Moreover, the following simulation results (Figures 6–8) are
obtained by Matlab. As analysis in Example 1, we can see
fromFigures 6–8 that the collision-avoidance flocking occurs
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at about t = 0.2. In addition, when the followers are too close
each other in the initial states, it will lead to the collision. For
example, when the initial position states of the followers are
set as x(0) = [0, 0.14, 0.28, 0.42, 0.56, 0.70, 0.84]T , the col-
lision appears at about t = 0.08 which shown in Figure 9.
Hence, the simulative results effectively demonstrate the the-
oretical analysis of Theorem 5.

FIGURE 9. The minimum distance of agents (collision).

V. CONCLUSION
The fixed-time leader-following flocking problem of second-
order multi-agent systems with the discontinuous inherent
dynamics is investigated in the present paper. By using
non-smooth techniques and fixed-time stability theory, a new
class of nonlinear inherent dynamics has been proposed to
ensure that the followers reach the flocking with a leader
within a fixed-time. The main results show that the control
input of the leader to its followers is bounded and at least one
follower obtained the information from the leader directly,
the flocking can be occurred in a fixed time. Moreover,
an upper bound of the settling time is directly estimated by
the system parameters. Comparing with the finite-time flock-
ing, this approach has wider practical applications because
the knowledge of the initial conditions is always unavail-
able in practical scenarios. Although the theoretical analysis
result shows that the fixed-time flocking can be achieved
under same suitable conditions supposed on the parameters,
these conditions can not guarantee the collision avoidance.
To indicate this fact, two examples are provided. The sim-
ulation results demonstrate that the followers can track the
time-varying state of the leader in a fixed-time when the
conditions of Theorem 5 satisfied. And it also shows that
when the initial position of agents are large sufficiently,
the collision does not appear during the process of flocking
(Figures 4 and 8). On the contrary, the agents may collide
(Figures 5 and 9). These simulated results effectively illus-
trate the theoretical analysis of the main theorems.
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