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ABSTRACT The quality prediction of stereo images has great challenges without reference images. In this
paper, we propose a novel no-reference stereo image quality assessment (NR-SIQA) model based on
binocular visual characteristics and depth perception, which can effectively evaluate the quality of symmetric
distortion and asymmetric distortion images. To be specific, we discriminate the different binocular behaviors
by analyzing binocular visual characteristics, and construct the corresponding cyclopean view instead of
single cyclopean view to simulate different binocular behaviors. Then, we extract monocular and binocular
visual features from the left view, the right view and the synthetic cyclopean view. Furthermore, in order to
evaluate the depth quality of the stereo image accurately, we extract the depth perception features from the
weighted disparity map and the longitudinal correlation coefficient map. Finally, we construct the mapping
relationship model from quality perception feature domain to quality score domain by training an adaptive
enhancement algorithm based on support vector regression (SVR). We evaluate the performance of the
proposed algorithm on four stereo image databases. The experimental results show that compared with the
state-of-the-art full reference(FR), reduced reference(RR) and NR-SIQA algorithms, the proposed algorithm
achieves highly competitive performance for both symmetric and asymmetric distortions.

INDEX TERMS No reference, stereo image quality assessment, binocular visual characteristics, depth
perception, longitudinal correlation coefficient map.

I. INTRODUCTION
With the rapid development of 3D technology, 3D movies
and television have played an important role in daily life
and attracted attention from all over the world. In the pro-
cess of acquisition, compression, transmission and storage
of 3D images, the left and right views may introduce different
degrees and types of distortion, which affects the visual qual-
ity of experience. There are many image processing meth-
ods, such as image denoising [1] and deblurring [2], which
can improve the image quality. And image quality assess-
ment (IQA) plays an important role in image processing,
because IQA can evaluate whether the method can improve
the image quality.Moreover, compared with 2D images, there
is certain disparity between the left and right views of a
stereopair, which can provide additional depth perception
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for the human visual system (HVS) to enable viewers to
have realistic experience. But too large disparity also causes
an uncomfortable experience for HVS, which also affects
human eyes’ judgment of image quality. Therefore, in order
to provide a good visual experience to people, it is neces-
sary to construct a stereo image quality assessment model
consistent with the subjective score. Similarly to 2D-IQA
metrics, 3D-IQA metrics can be classified into three cate-
gories according to the availability of the pristine reference
image: the FR-SIQA methods [3]–[7] which use the original
undistorted image as a reference to evaluate the quality of
the stereopair; The RR-SIQA methods [8]–[10] which only
utilize part of the pristine image when evaluating the quality
of the image; and the NR-SIQA methods [11]–[17] which
evaluate the quality of the image without any reference infor-
mation. Compared with the first two categories, NR-SIQA
method is more difficult, but it has wider application value in
practical life.
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Different from traditional 2D visual perception, the visual
perception quality of a stereopair depends on the qualities
of the left and right views. The visual psychology research
shows that the HVS can convert different views acquired by
the left and right eyes into a single view, but in the process
of conversion, it is not a simple addition of left and right
eye stimulus to obtain a single view [18]. According to the
degree of similarity/dissimilarity between binocular stimulus,
different binocular phenomena may occur. Binocular fusion
occurs when binocular stimulus are same or very similar
[19]; binocular competition occurs when binocular stimulus
are sufficiently dissimilar [20]. In [21], a study has showed
that the fluctuation amplitude of the primary visual cortex
(V1) activity during the binocular competition is 45-83%
of the fluctuation range of the V1 activity caused by alter-
nating the binocular stimulus. In other words, local inter-
actions between V1 neurons can trigger sensory alternation
during competition. While binocular suppression is a special
case of binocular competition. When binocular stimulus are
sufficiently dissimilar and important information contained
in one view is sufficient to suppress the view acquired by
another eye, the view contains more information dominates
the perceived content. This phenomenon is called binocular
suppression [22].

Most of the previous studies only constructed a single
cyclopean image to simulate the final view of the left and
right views fused in HVS, which ignores the different effects
of different binocular behaviors on HVS perception. In [23],
when evaluating the quality of stereoscopic video, the sum
channel of binocular vision is constructed in the way of
averaging left and right views directly for analyzing binocular
visual characteristics. In [24]–[27], the Gabor filter responses
of the left and right views are used to weight the left and right
eye stimulus and synthesize a single cyclopean to simulate
the complex binocular vision mechanism in HVS. In NR
stereo image/video quality assessment metrics, although the
performance of these algorithms is improved compared with
the earlier methods of directly averaging the qualities of left
and right views, these methods assume that one view domi-
nates the fusion process of left and right views in HVS, and
ignore the phenomenon that two views alternately dominate
the fusion process in binocular competition. In addition, some
SIQA algorithms [28]–[31] obtain the final qualities of stereo
images by the weighted average of the qualities or features
of left and right views. For example, in [31], the normalized
binocular stimulus intensity is used as the weight of features
extracted on the left and right views, and features are com-
bined by weighted sum, and then the deep learning model is
used to learn the quality prediction model of stereo images.
Although these algorithms can improve the accuracy of stereo
image quality prediction, they still cannot fully simulate the
complex binocular vision mechanism.

In addition to binocular vision characteristics, another
important factor that needs to be considered is depth informa-
tion. Horizontal parallax is the main factor to provide human
eyes with depth information, but excessive parallax can also

cause dizziness and discomfort, which affects the subjective
judgment of image quality [32]. The current SIQA algorithms
have limited research on depth quality measurement. In [33],
Based on the free energy theory and the binocular vision
mechanism, Chen et al. constructs the suppression map by
the phase difference of the luminance channel in the left and
right views, and extracts the disparity entropy feature based
on autoregressive model to construct the depth quality metric
model (DPQM) for stereo video. In [34]–[36], authors extract
statistical features from disparity map to predict the depth
quality of the stereo image, and consider that the contribution
of disparity information to depth quality is same in all regions,
which ignores the influence of the longitudinal depth infor-
mation on the stereo image quality evaluation. The method of
[37], Karimi et al extract features from synthesized phase and
contrast maps and then use a stacked neural network model to
learn the predict model of stereo images. In [38], the predic-
tion performance of the model using stacked auto-encoders
(SAE) to predict stereoscopic image quality is accurate, but
the complexity is high.

To solve the above problems, we propose a blind stereo
image quality evaluation model based on binocular visual
characteristics and depth perception. The main contributions
of this algorithm are: (1) According to the degree of similar-
ity/dissimilarity between binocular stimulus and the compar-
ison of useful information in the left and right views, we con-
struct the different binocular combination models instead
of fixed cyclopean image to simulate different binocular
behaviors, such as binocular fusion, binocular competition
and binocular suppression. (2) In addition, we extract depth
perception features from the weighted disparity map and the
longitudinal correlation coefficient map between the left and
right views, which considers the influence of horizontal and
longitudinal depth information on SIQA.

II. PROPOSED METHOD
The framework of our method is shown in Fig.1. Firstly,
we construct different binocular combination models based
on binocular vision characteristics to simulate the complex
visual mechanism. Then we divide the extraction of quality
perception features into two parts: (1) We extract statisti-
cal distribution features and texture features from the left
and right views as a set of image content quality percep-
tion features, and extract statistical distribution features from
binocular combination model as another set of image content
quality perception features. Then we combine the same fea-
tures extracted from the left and right views by averaging.
(2) We extract depth perception features from the weighted
disparitymap and the longitudinal correlation coefficientmap
between the left and right views. Finally, we use SVR to train
the regression model from feature domain to quality domain.

A. SYNTHETIC CYCLOPEAN MAP
In [39], several subjective experiments show that when the
distortion type of stereo pairs is asymmetric information-loss
distortion(ILD), such as asymmetric Gaussian blur distortion,
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FIGURE 1. The framework of the proposed SIQA model. The monocular and binocular features are extracted from the left, right views and the
cyclopean image. The depth perception features are extracted from the weighted disparity map and the longitudinal correlation coefficient
map. SVR is used to train a prediction model from features to quality score.

the perceived quality of a stereoscopic image pair is domi-
nated by the high-quality component of stereo pairs because
a high-quality component containing sufficient information
can complement the lost information of the other view. On the
other hand, for information-additive distortion (IAD), such
as asymmetric Gaussian noise, the perceptual quality of a
stereoscopic image pair is dominated by the low-quality com-
ponent of stereo pairs since IAD cannot be removed by the
low-quality component. As mentioned in [40], the perceptual
quality of a stereoscopic image pair is dominated by the
view with more information, which is consistent with the
psychophysical findings described in [22]. Therefore, in this
paper, we select the view that contains more information
as the domination view in binocular combination process.
Compared with the reference [41], the proposed method does
not need to classify distortion types, which reduces the com-
plexity of the algorithm. Meanwhile the proposed method is
also applicable to multiply-distorted images which cannot be
classified, and reduces the error which may be caused by the
classification.

To discriminate and simulate different binocular behaviors
in HVS, we construct different cyclopean maps to simulate
the binocular combination process. In the calculation pro-
cess, we use the structural similarity model (SSIM) [42]
based on stereo matching algorithm to calculate the similarity
between left and right views and select the domination view
in binocular combination process by comparing the amount
of visual information of the left and right views. In this paper,
we measure the amount of visual information by computing
the entropy.

EL = 1−
1
N
·

∑N

k=1

∑L

i=0
p(xki,l) · log2(

1
p(xki,l)

) (1)

where EL is the amount of information contained in the left
view, N and L are the number of channels in color space and
the maximum pixel value, respectively, and subscripts k and i
represent the kth channel in RGB color space and the ith gray
scale, p(xki,l) is the probability when pixel value x in left view
is equal to i. Similarly, the amount of information contained
in the right view can be calculated as (1).
SL,R denotes the similarity value between left and right

views, we calculate the similarity value of each pixel between
two views based on SSIM [42], and then calculate the struc-
tural similarity value SL,R between two views by averaging
similarity values of all pixels. In addition, reference [19],
[20] and [22] pointed out that different binocular behav-
iors can be distinguished according to the degree of sim-
ilarity/dissimilarity between binocular stimulus, so we set
structural similarity threshold T1 and in [39], S. Ryu et al
demonstrated the view containing more information domi-
nates the perceived quality of stereo image, so we select the
main view by setting the threshold of visual information T2.
The specific calculation is as follows.

1) BINOCULAR FUSION
When SL,R ≥ T1, that indicates that the binocular stimulus are
sufficiently similar. We select the left view as the domination
view which is often used in previous studies. The binocular
fusion model is calculated as follows.

CIf (x, y)=WL(x, y)·IL(x, y)+WR(x+d, y)·IR(x+ d, y) (2)

2) BINOCULAR SUPPRESSION
When SL,R < T1 and EL − ER ≥ T2, that indicates that the
binocular stimulus are sufficiently dissimilar and the left view
contains more information. So the left view dominates the
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perceptual quality of a stereoscopic image pair, and binocular
suppression model is calculated as follows.

CISL(x, y) = WL(x, y) · IL(x, y)+WR(x+d, y) · IR(x+d, y)

(3)

When SL,R < T1 and ER − EL ≥ T2, that indicates that
the binocular stimulus are sufficiently dissimilar and the right
view contains more information. So the right view dominates
the binocular combination process, and binocular suppression
model is calculated as follows.

CISR(x, y) = WL(x+d, y) · IL(x+d, y)+WR(x, y) · IR(x, y)

(4)

3) BINOCULAR COMPETITION
When SL,R < T1 and |EL − ER| < T2, that indicates that the
binocular stimulus are sufficiently dissimilar and the left or
right view does not contain sufficient information to suppress
the other view, so the left and right views alternately dominate
the fusion process, rather than simply taking a view as the
domination view. Based on above analysis, we recombine
the two suppression maps whose domination views are the
left and right views respectively to simulate this alternating
phenomenon. The binocular competition model is calculated
as follows.

CIR(x, y) = WSL(x, y) · CISL(x, y)

+WSR(x + d, y) · CISR(x + d, y) (5)

WeightWL ,WR,WSL ,WSR are calculated as follows.

WL(x, y) =
EL(x, y)

EL(x, y)+ ER(x + d, y)
(6)

WR(x + d, y) =
ER(x + d, y)

EL(x, y)+ ER(x + d, y)
(7)

WSL(x, y) =
ESL(x, y)

ESL(x, y)+ ESR(x + d, y)
(8)

WSR(x, y) =
ESR(x + d, y)

ESL(x, y)+ ESR(x + d, y)
(9)

where IL(x, y) and IR(x, y) are the left and right views, respec-
tively, d(x, y) is the horizontal disparity value in the (x, y)
location. In this paper, the disparity value is calculated by
SSIM-based algorithm utilized in [6]. EL(x, y) and ER(x, y)
are 2D Gabor energy responses in all scales and directions of
the left and right views, respectively, ESL(x, y) and ESR(x, y)
are 2D Gabor energy responses in all scales and directions of
the binocular suppression maps with the left or right view as
the domination view respectively, the specific calculation is
as follows.

2D-Gabor filter is defined as follows.

g(x, y, λ, θ )=
1

2πσ
exp

[
−
1
2

(
x2 + y2

σ 2

)]
×exp

[
i
(
2πx
λ

)]
(10)

where x = x0 cos θ + y0 sin θ and y = −x0 sin θ + y0 cos θ ,
(x0, y0) is center of the filter, λ is the wavelength, which

controls the scale of the Gabor filter, θ is the orientation, σ
is the standard deviation of an elliptical Gaussian envelope
along x and y axes. Since the simple and complex cells
in primary visual cortex have receptive fields at different
scales, we utilize a multi-scale set of Gabor filter banks with
five scales of frequency domain and four orientations, σ =
0.5λ, λ ∈

(
1,
√
2, 2
√
2, 4

)
, θ ∈

(
1, π/4, π/2, 3π/4

)
.

2D-Gabor energy response is defined as follows.

GEθ,λ (x, y) = I (x, y)⊗ g (x, y, λ, θ) (11)

where ⊗ represents a convolution operation, I (x, y) is input
image.

B. IMAGE CONTENT QUALITY PERCEPTION FEATURES
Although distinctive in contents, natural images inherently
obey a particular statistical characteristic [25], which is mea-
surably modified by the presence of distortions. Motivated by
this, we extract the brightness statistical distribution features
from the left and right views and cyclopean map calculated
according to section 2.1.

Firstly, we use the mean subtracted contrast normalized
method (MSCN) to preprocess images. Fig. 2(a)–(c) give the
left and right views from LIVE 3D Phase I database [43] and
the corresponding synthetic cyclopean view. The statistical
distribution histograms of the MSCN coefficients of these
images are more consistent with the generalized Gaussian
distribution (GGD), as shown in Fig. 2(d)–(f). Therefore,
in this paper, we use the GGD model to fit these statistical
distributions. Given an image I with the size of M ×N, its
MSCN coefficients are calculated by:

Î (i, j) =
I (i, j)− µ(i, j)
σ (i, j)+ 1

,

i ∈ {1, 2, . . . ,M} , j ∈ {1, 2, . . . ,N } (12)

µ(i, j) =
K∑

k=−K

L∑
l=−L

ωk,lIk,l(i, j) (13)

σ (i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l(Ik,l(i, j)− µ(i, j))2 (14)

where I(i,j) denotes the pixel value in the (i,j) spatial location;
ω =

{
ωk,l |k = −K , . . . ,K , l = −L, . . . ,L

}
is a 2D circular

symmetric gaussian weighting function. K and L determine
the size of 2D Gaussian kernel (K = L = 3).

A zero mean GGD is calculated by:

f
(
x, α, ν2

)
=

α

2β0
(
1/
α

) exp
(
−

(
|x|/
β

)2)
(15)

β = ν
√
0 (1/α) /0 (3/α) (16)

with gamma function 0 (·) defined as:

0(α) =
∫
∞

0
tα−1e−tdt, α > 0 (17)

where α and ν2 reflecting the image naturalness, control
the shape and variance of distribution, respectively. x is the
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FIGURE 2. (a)–(c) are left and right views and corresponding synthetic cyclopean view. (d)–(f) are
statistical distributions of MSCN coefficients corresponding to (a)–(c).

MSCN coefficient. In this paper, we use the GGD model
to fit MSCN distributions of left and right views and the
corresponding cyclopean view, and the parameters α and ν2

are regarded as the quality-sensitive features f1 =
{
α, ν2

}
.

In addition to extracting statistical distribution features in
spatial domain, we also extract texture features from left and
right views as another set of image content quality perception
features.

Local binary pattern (LBP) is an efficient local texture
descriptor, which has the significant advantages of small
computation, no training and light invariance. In this paper,
we use rotation-invariant and uniform LBP

(
LBPriu2r,p

)
to

extract texture features from left and right views, respectively.

LBPriu2r,p =


p−1∑
n=0

s(xr,p,n − xc), U (LBPr,p) ≤ 2

p+ 1, otherwise

(18)

where xc is the gray value of the center pixel of the local
neighborhood, xr,p,n is the gray values of p equally spaced
pixels on a circle of radius r(r>0) that form a circularly
symmetric neighbor set, s (x) is a symbolic function, U ≤ 2
represents the two binary values that are adjacent to each
other on a the circularly symmetric neighbor set change by
0/1(1/0) no more than twice, which is in the form of

U
(
LBPr,p

)
=
∣∣s(xr,p,p−1 − xc)− s(x0 − xc)∣∣
+

p−1∑
n=1

∣∣s(xr,p,n − xc)− s(xn−1 − xc)∣∣ (19)

In this paper, we choose p = 8 and r = 1. And then we
use themagnitude of theMSCN coefficient to weight the LBP

histogram to obtain 10-dimensional texture features f2.

f2(k) =
N∑
j=1

wjδ
(
LBPr,p(j), k

)
(20)

δ (x, y) =

{
1, x = y
0, otherwise

(21)

where N is the number of pixels, k ∈ [0, p+1] is LBP pattern,
wj is the magnitude of the MSCN coefficient.

C. DEPTH PERCEPTION FEATURES
Binocular disparity plays an important role in the depth
perception of stereoscopic images. When human view
stereoscopic images/video content, disparity provides depth
perception for human eyes and improves the quality of the
experience. However, excessive disparity tends to give view-
ers phenomena including eye strain, dizziness, reduced visual
sensitivity, etc. Therefore, it is necessary to statistically ana-
lyze the disparity information of the stereo image pairs. How-
ever, not all regions of disparity information have the same
impact on image quality assessment. As mentioned in [39],
the view with more visual information will attract more atten-
tion of HVS. Therefore, based on the characteristics of human
visual perception, we use the amount of visual information to
weight the disparity map, so as to emphasize the influence
of disparity value in the attention region of HVS on the
estimation of depth quality.

Firstly, we use the visual information of dominant view
to weight the disparity map to obtain a weighted dispar-
ity map De. Then since the existence of distortion will
change the statistical characteristics of the disparity map,
we extract some simple statistical features such as kurtosis
and skewness from the weighted disparity map as depth
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features f3 = {S,K }.

De(i, j) = we (i, j)× d(i, j) (22)

S =
1

M × N

M∑
i=1

N∑
j=1

(De(i, j)− m)3
/

v
3
2 (23)

K =
1

M × N

M∑
i=1

N∑
j=1

(De(i, j)− m)4
/

v2 (24)

where we (i, j) is the weight of the disparity at (i,j), we apply
equation (1) to a 7∗7 image block centered on (i, j), and
calculate the amount of visual information of the image block
as the weight value we (i, j), d(i, j) is the disparity at (i, j)
which is calculated by SSIM-based algorithm utilized in [6],
S, K, m and v are skewness, kurtosis, mean and variance of
the weighted disparity map, respectively, M × N is the size
of weighted disparity map.

In addition, although horizontal disparity is the main rea-
son for generating depth information, it reflects the horizontal
position difference between the left and right retinal projec-
tions of a given point in space, thereby ignoring the influence
of longitudinal differences between the left and right views on
the depth quality assessment. And the longitudinal mismatch
information between left and right views caused by asymmet-
ric distortion will also affect the depth perception, and cause
binocular visual discomfort, which will affect the human
eye’s judgment on depth quality [44]. Therefore, in this paper,
we calculate the degree of linear correlation of longitudinal
changes between left and right views, as a supplement to
horizontal depth information.

Firstly, the disparity compensation maps of the left and
right views are calculated as follows.

Idl(i, j) = Il((i, j)+ dr (i, j)) (25)

Idr (i, j) = Ir ((i, j)+ dl(i, j)) (26)

where dr (x, y) corresponds to the disparity values which
allows to find for each pixel in the left view its the maximum
similarity one in the right, dl(x, y) corresponds to the disparity
values which allows to find for each pixel in the right view its
the maximum similarity one in the left.

Then, the mean subtracted contrast normalized operation is
performed on the left and right views and their corresponding
disparity compensation maps. Finally, the longitudinal cor-
relation coefficient map between the left view and the right
disparity compensation map is calculated as follows.

C = corr {N [Il(i, j)] , {N [Idl(i, j)]} (27)

where corr (X ,Y ) is a correlation function provided byMAT-
LAB. corr (X ,Y ) calculates the pairwise correlation coeffi-
cient between each pair of columns in the matrices X and Y,
N (·) is the mean subtracted contrast normalized operation.

Fig. 3(a)-(d) show the left and right views fromLIVEPhase
II and the statistical distributions of the two longitudinal
correlation coefficient maps calculated by the above method.
We can see from Fig. 3(c)(d), the statistical distributions of

FIGURE 3. (a)-(b) are left and right views from LIVE Phase II database,
(c) statistical distributions of the longitudinal correlation coefficient
between the left view and right disparity compensation map,
(d) longitudinal correlation coefficient between the right view and left
disparity compensation map.

the two longitudinal correlation coefficient maps are consis-
tent with the non-zeromean asymmetric generalized gaussian
distribution AGGD.

Therefore, this paper uses the non-zeromeanAGGDmodel
to fit the longitudinal correlation coefficient map between the
left view and right disparity compensation map. The non-zero
mean AGGD model are calculated as follows.

f (x;α, βl, βr , µ)

=


α

(βl+βr )0
(
1
/
α
) exp (− ((x − µ)/βl)α) , x < µ

α

(βl+βr )0
(
1
/
α
) exp (− ((x − µ)/βl)α) , x < µ

(28)

βl = σl
√
0 (1/α) /0 (3/α) (29)

βr = σr
√
0 (1/α) /0 (3/α) (30)

where α is the shape parameter and controls the shape of
AGGD distribution, βl, βr are the distribution variances of
left and right respectively. µ is the mean value. When µ = 0,
it indicates that the distribution is zero mean AGGD.

Fig. 4(a) shows the statistical distributions of the lon-
gitudinal correlation coefficient maps between the left
views and right disparity compensation maps. These stereo
image pairs are from the LIVE Phase I. Fig. 4(b) shows
the statistical distributions of the longitudinal correlation
coefficient maps of three asymmetric distortion images
in the LIVE Phase II. It can be seen from Fig. 4 that
the correlation coefficient distributions corresponding to
images with different distortion types have different statis-
tical characteristics and are consistent with AGGD. There-
fore, we extract the AGGD parameters of the longitu-
dinal correlation coefficient map between the left view
and right disparity compensation map as depth perception
features f4 = {α, βl, βr , µ}.
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FIGURE 4. Statistical distribution of longitudinal correlation coefficients
of stereo pairs with different distortion types.

D. QUALITY ESTIMATION
In this paper, we extract 44-dimensional features from each
stereo image pairs. Among them, we extract 2×3 = 6 dimen-
sions statistical distribution features f1 and 10× 3 = 30
dimensions texture features f2 from the left and right views
on three scales, respectively. In order to reduce the fea-
ture dimension and simulate the interaction between simple
cells in the visual cortex, we combine the same features
extracted from the left and right views by averaging and
obtain 36-dimensional feature combinations; Then we extract
2-dimensional binocular statistical features f1 from the cyclo-
pean map, 2-dimensional depth features f3 and 4-dimensional
depth features f4.
After obtaining quality-sensitive features, we use support

vector regression (SVR) to construct the mapping relation-
ship from feature domain to quality domain. SVR has been
proved to be an effective tool for solving prediction or non-
linear fitting problems. During training stage, we first extract
quality-sensitive features of training database and then use
the SVR to learn a prediction function from training feature
vector to subjective ratings (e.g., MOS or DMOS). During
testing stage, we first extract the feature vector and then
predict image quality scores of testing images by feeding
feature vector into the well trained prediction function.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In order to test the performance of the proposed algo-
rithm, our method is compared with some state-of-the-art
NR-SIQA and FR-SIQA methods on four publicly available
S3D IQA databases: LIVE 3D Phase I database [43], LIVE
3D Phase II database [6], Waterloo-IVC 3D Phase I database
[45], Waterloo-IVC 3D Phase II database. Table 1 gives the
specific parameters of each database.

A. OVERALL PERFORMANCE COMPARISON
In order to verify the effectiveness of the SIQA model pro-
posed in this paper, the proposed method is compared with
some state-of-the-art SIQA methods, including FR-SIQA
metrics (Lin et al. [4], Khan and Channappayya [5],
Chen et al. [6], SSIM [42], Jiang et al. [46]), RR-SIQA
metrics (Ma et al. [8]) and NR-SIQA metrics (SINQ
[15], Yang et al. [31], Zhou et al. [32], Karimi et al. [37],
Yang et al. [38], Fezza et al. [41], BRISQUE [47]).

TABLE 1. The specific parameters of each database.

In this paper, we utilize three commonly used criteria to
quantify and verify the performance of the proposed method
as well as all competing metrics. They are Spearman rank-
order correlation coefficient (SROCC), Pearson linear cor-
relation coefficient (PLCC), and Root mean square error
(RMSE). Among them, SROCC and PLCC evaluate predic-
tionmonotonicity and consistency of prediction performance,
respectively. Whereas, RMSE reflects the prediction error.
For a perfect metric, the match value between the predicted
scores and associated subjective ratings is close to 1 for PLCC
and SRCC but close to 0 for RMSE. In this paper, the dataset
requires to be randomly split into two non-overlapping sub-
sets: training subset and testing subset. This study takes 80%
dataset as training subset, while the resting is regarded as
testing subset. After training the model on the training subset,
the prediction performance is measured on the test subset.
To avoid the performance bias, the random training-testing
split is repeated 1000 times and the performance is reported
in form of median value.

Tables 2-3 show the overall performance of our method
compared with other SIQA methods on the four publicly
available S3D IQA databases. Top three performance is high-
lighted in boldface for readers’ convenience. Compared with
the comparison algorithms, the overall performance of our
method is ranked in the top three on the four S3D IQA
databases and is close to the best performance. The SROCC,
PLCC and RMSE values of the proposed algorithm on the
four S3D IQA databases are significantly better than most of
the comparison algorithms, and some values achieve the most
superior results on LIVE 3D Phase I database and IVC 3D
Phase II database. It is proved that the proposed method can
effectively evaluate the quality of symmetric and asymmetric
distortion stereo images. In particular, it can be seen from
table 3 that the proposed algorithm can be effectively used to
evaluate complex asymmetric distortions with different types.

B. PERFORMANCE ON INDIVIDUAL TYPES
An excellent IQA metric should not only show its pow-
erful ability on entire database, but also effectively cope
with quality assessment task on each individual distortion
type. In this section, an experiment is further conducted to
investigate and verify the superiority of the proposed method
on estimating the perceived quality of individual distortion

85766 VOLUME 8, 2020



Y. Chen et al.: Blind Stereo IQA Based on Binocular Visual Characteristics and Depth Perception

TABLE 2. Overall performance comparison on LIVE Phase I and Phase II.

TABLE 3. Overall performance comparison on IVC Phase I and IVC Phase II.

type. Given that Waterloo-IVC databases are more complex
and contain mixed distortion types, therefore, they are not
suitable for this task. Tables 4-6 tabulate the experimental
results on LIVE Phase I and Phase II. Similarly, the best
result for SIQA comparisons is also highlighted in bold. It can
be seen from tables 4-6, although the algorithm proposed
in this paper do not work well on all individual distortions,
it shows the best performance on some distortion types and
the top three on others. Moreover, compared with FRmetrics,
the proposed method shows powerful competitiveness with
FR metrics. To this end, these observations verify that the
proposed method can be fully competent to tackle quality
assessment problem of S3D images.

C. PARAMETER SETTING
Section 2.1 analyzes binocular visual characteristics, and dis-
criminates and simulates the binocular combination models
of stereo image pairs in HVS by setting thresholds. In order to
select appropriate thresholds, this paper analyzes the impact

of similarity threshold T1 and amount of information thresh-
old T2 on the performance of the proposedmodel, where T1 ∈
{0.5, 0.6}, T2 ∈ {0.1, 0.2, 0.3}. It can be seen from table 7,
when T1 = 0.5,T2 = 0.3, the PLCC and SROCC values
of the proposed algorithm on the LIVE Phase I database are
the maximum value; The performance on the LIVE Phase II
database is not the best, but it is also the top three, and the
gap with the best performance is small. In addition, when the
value of T1,T2 are increased, the performance of our model
does not change much. Therefore, we set T1 = 0.5,T2 = 0.3.

D. CONTRIBUTE OF DIFFERENT FEATURE
COMBINATIONS
According to different binocular behaviors, the algorithm
proposed in this paper constructs the corresponding cyclo-
pean image by thresholds judgment, and then extracts the
quality perception features on the cyclopean image and the
weighted disparity map to realize the quality prediction of
stereo image. In order to analyze the effect of different feature
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TABLE 4. Performance comparison of the proposed model and other metrics on each individual distortion type in terms of PLCC.

TABLE 5. Performance comparison of the proposed model and other metrics on each individual distortion type in terms of SROCC.

TABLE 6. Performance comparison of the proposed model and other metrics on each individual distortion type in terms of RMSE.

combinations on the performance, table 8 shows the perfor-
mance comparison of these algorithms with different feature
combinations. In table 8, ‘‘Mon’’ represents the model that
extracts shape parameters of GGD and texture features from
the left and right views as monocular features; ‘‘Mon+ Bin’’
represents the model that extracts monocular and binocular
features from the left, right views and corresponding cyclo-
pean map; ‘‘Mon+ EDM’’ represents the model that extracts
monocular and horizontal depth features; ‘‘Bin+ EDM’’ rep-
resents the model that extracts binocular and horizontal depth
features; ‘‘EDM’’ represents the model that extracts horizon-
tal depth features from the weighted disparity map in addition
to monocular and binocular features. In table 8, the per-
formance comparison between ‘‘Mon’’ and ‘‘Mon + Bin’’,

and the performance comparison between ‘‘Mon + EDM’’
and ‘‘Bin+ EDM’’ prove that the synthetic cyclopean image
proposed in this paper can improve the performance of
SIQA model and can be used to simulate the fusion process.
The performance comparison between ‘‘Mon’’ and ‘‘Mon
+ EDM’’ proves the effectiveness of depth features. And
the overall performance of the algorithm has been improved
by extracting binocular features and depth features which
confirms the effectiveness of the features extracted by our
method.

E. GENERALIZATION PERFORMANCE
In order to verify the generalization performance of the
algorithm in this paper, a cross-validation experiment
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TABLE 7. The influence of different thresholds on the overall
performance of the model.

TABLE 8. Performance comparison of models with different feature
combinations on LIVE Phase I and LIVE Phase II.

TABLE 9. Performance of model training on LIVE Phase I and testing on
LIVE Phase II.

is performed. The LIVE 3D Phase I and Phase II databases
are used as training sets and test sets, respectively. The
proposed model is trained on LIVE Phase I and tested on
LIVE Phase II. Meanwhile, we train the model on the LIVE
Phase II and test it on LIVE Phase I. The results are listed
in Tables 9 and 10. Because the IVC Phase I and Phase II
databases contain mixed distortion images with different dis-
tortion types, table 11 does not show cross-database testing
for individual distortion. It can be seen that the performance
of training on one database (i.e., Phase I) and testing on
another database (i.e., Phase II) is not good because the
distortion images contained in the training set and the test set
differ greatly in image content, distortion type and distortion
degree. Comparatively speaking, the predictionmodel trained
by the algorithm in this paper has good adaptability to differ-
ent test databases.

F. PERFORMANCE ON SYMMETRIC AND
ASYMMETRIC DISTORTIONS
In order to further test the performance of our algorithm,
we divided the LIVE Phase II database into two separate

TABLE 10. Performance of model training on LIVE Phase II and testing on
LIVE Phase IPerformance of model training on LIVE Phase II and testing
on LIVE Phase I.

TABLE 11. Performance of model on different distortions across
databases(training database /testing database).

TABLE 12. Performance on symmetric and asymmetric distortions on
LIVE Phase II.

TABLE 13. Computational time of evaluating a stereopair in LIVE
Phase I (s).

subsets of only symmetric and asymmetric distortions and
tested the performance of our method on both subsets. The
results are listed in Table 12. It is difficult to simulate the
fusion process happening in the HVS, because of the complex
visual mechanisms. So most IQA models perform signifi-
cantly worse on asymmetric distortions than on symmetric
ones, but our model performs well on both.symmetric and
asymmetric distortions.

G. COMPUTATIONAL COMPLEXITY
In order to evaluate the time complexity, we calculate the
time it takes for our method to evaluate a stereopair in LIVE
Phase I. The complexity of SSIM is very low, because it does
not need to synthesize cyclopean map, and the accuracy is
not as high as ours. It can be seen from Table 13, compared
with reference [6], [37], [38], the complexity of our algorithm
is the lowest, beacause our method extracts spatial domain
features directly, which have lower computational complexity
than the transform domain features. Moreover, we use our
method to evaluate image quality without classifying the dis-
tortion type of images. The models in [37] and [38] use CNN
and stack auto-encoders to predict image quality, although the
overall performance of the models is competitive with ours,
the complexity of this paper is lower than theirs. Compared
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FIGURE 5. Scatter plots of objective scores versus subjective data (DMOS). (a-b) LIVE Phase I
and Phase II. (c-d) IVC Phase I and Phase II.

with [15], the performance of our algorithm is better than it
on LIVE Phase I and IVC Phase II and is competitive with it
on other image databases, but the complexity is higher than
it. In the future work, we should further reduce the algorithm
complexity.

H. ALGORITHM CONSISTENCY
The scatter map of quality prediction value and subjective
score of the proposed algorithm is shown in figure 5. It can be
seen that the scatter distribution of the algorithm in this paper
is closely clustered, indicating that the prediction results of
the algorithm in this paper are highly consistent with human
subjective evaluation.

IV. CONCLUSION
In this paper, we propose a no-reference stereo image quality
assessment model based on binocular visual characteristics
and depth perception. More precisely, we first discriminate
different binocular behaviors based on thresholds and con-
struct corresponding cyclopean images to simulate complex
binocular visual mechanism. Then we extract image content
quality-aware features from the left and right views and the
corresponding cyclopean map and then extract the depth-
aware features from the weighted disparity map and the
longitudinal correlation coefficient map. Finally, we use SVR
to construct a stereo image quality evaluationmodel from fea-
ture domain to quality fraction domain. Experimental results
show the effectiveness of the proposed 3D quality assessment
technique compared to the recent state-of-the-art methods.
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