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ABSTRACT In this study, the problem of transmitted waveform design for a multiple-input-multiple-output
(MIMO) radar in a heterogeneous clutter environment is considered. Under a Bayesian framework, the
waveform design problem is used to maximize the generalized likelihood ratio for a given false alarm
probability. In addition, the proposed problem is nonconvex under the constant modulus constraint. Hence,
the alternating direction method of multipliers-based and the Broyden–Fletcher–Goldfarb–Shanno method
are adopted to solve this nonconvex optimization problem. Finally, the clutter suppression performance of
the proposed algorithms is evaluated in real-world data by numerical simulations. The simulation results
show that the proposed methods have better performance on clutter suppression and target detection.

INDEX TERMS MIMO radar, constant modulus constraint, waveform design, heterogeneous clutter,
Bayesian framework, nonconvex optimization.

I. INTRODUCTION
In comparison to a phase-array radar, a multiple-input-
multiple-output (MIMO) radar manifests significantly better
performances in target detection and parameter identifica-
tion [1]–[4]. Depending on different antenna configurations,
MIMO radars can be divided into two classes—distributed
MIMO radars that possess widely separated antennas [2] and
colocated MIMO radars that possess closely spaced anten-
nas [4].

Studies on the waveform design for colocated MIMO
radars can be divided into two main classes: In the first
category, MIMO radar waveforms are designed to control the
transmitted power distribution in the spatial domain by setting
the desired beampattern. In order to address this problem, two
main strategies are usually adopted. In the first strategy, the
transmitted beam pattern is synthesized through the optimiza-
tion of a waveform covariance matrix [4]–[8], and then trans-
mitted waveforms are acquired from the obtained covariance
matrix under practical constraints [5], [7], [9]. Lipor et al. [8]
utilized discrete-Fourier-transform (DFT) coefficients and
Toeplitz matrices to form a covariancematrix, whichmatched
the desired beam pattern at low complexity. Finally, with
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the obtained covariance matrix, practical constraints, such as
constant modulus (CM) [9] and the peak to average power
ratio [7], were taken into consideration to synthesize these
transmitted waveforms. In the second strategy, transmitted
waveforms are directly designed to realize the desired beam
pattern [10]–[14]. For example, Cheng et al. [13] tried to
minimize the mean squared error between the synthesized
and desired beam patterns based on the alternating direction
method ofmultipliers (ADMM) algorithm. Fan et al. [14] also
applied the ADMM algorithm; however, paid more attention
to the restrictions of the sidelobe and the main lobe of the
transmitted beam pattern.

In the second category, transmittedwaveforms and receiver
filters are designed jointly. MIMO waveforms are gener-
ally designed to maximize the output signal to interference
plus noise ratio (SINR), which enhances the target detec-
tion performance of a MIMO radar and also suppresses
signal-dependent interferences (clutter) [15]—[17]. In the
literature [15], two sequential optimization procedures were
adopted to design the desired waveform by maximizing the
SINR value under a CM constraint and a similarity constraint.
Sadjad et al. [16], with the given prior information of the
target and interference angle locations, presented an itera-
tive approach to jointly optimize transmitted waveforms and
receiver filters. Tang and Tang [17] applied a cyclic algorithm
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to achieve an improved SINR under practical constraints.
Some researchers [18]–[20] also presented the principle of
MIMO waveform design based on the information theory.
In the literature [18], [19], the minimum mean-square error
(MMSE) was used to optimize MIMO waveforms in colored
noise and clutter. In the study [20], instead of solving the
intractable problem of maximizing the detection probability
for a given false alarm, the relative entropy was employed to
improve the detection performance of a MIMO radar.

Instead of maximizing the SINR value, in this study,
the waveform design problem is performed by maximiz-
ing the likelihood ratio test or generalized likelihood ratio
test (GLRT) for a given false alarm probability. In the
literature [21]–[25], the GLRT expressions of different envi-
ronments with prior information (clutter map, statistical
information of clutters) were discussed. In some earlier stud-
ies [26]–[30], a Bayesian framework was adopted to develop
the GLRT expression without secondary data. Therefore,
we also consider the GLRT with the Bayesian framework.

In this study, considering the CM constraint, the waveform
design problem is nonconvex, and two different approaches
are proposed to accomplish the maximization of GLRT.
In the first approach, the nonconvex problem is solved
by the ADMM method [32]–[34]. In the second approach,
the nonconvex problem is first relaxed as an unconstrained
optimization problem and then solved by the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method [38]. Finally, the
detection probabilities of our designed waveforms the exist-
ing orthogonal linear frequencymodulation (LFM)waveform
are compared through numerical results. In addition, the CM
waveform designed by [17] algorithm 2 is also provided to
compare.

The remaining paper has been organized as follows:
The data model for the proposed problem is formulated in
Section II. The first and second algorithms are introduced
in Sections III and IV, respectively. Numerical results are
presented in Section V, and finally, conclusions are drawn in
Section VI.
Notations: The transpose and conjugate transpose opera-

tors are denoted by (·)T and (·)H , respectively, whereas �
and ⊗ represent the Hadamard product and the Kronecker
product, respectively. The letter j represents the imaginary
unit (j =

√
−1). ‖·‖2 denotes the Euclidean norm of a vector,

and |·| signifies the absolute value. The lower case letter ‘a’
and the upper-case letter ‘A’ denote vectors and matrices,
respectively. vec (A) represents the column vector obtained
by stacking its columns, and IN stands for the N ×N dimen-
sional identity matrix. < {·} and Im {·} respectively imply the
real and imaginary parts of a complex value or amatrix. etr (·)
stands for the exponential of the trace of the matrix argument,
and det (·) denotes the determinant of a matrix.

II. DATA MODELING AND PROBLEM FORMULATION
The system under consideration is a colocated MIMO radar
placed on an airborne platform. The radar is equipped with
NT transmitting antennas and NR receiving antennas. Now,

assume the radar transmits a burst of M pulses at a con-
stant pulse repetition frequency (PRF) fr and sn (l) , l =
1, 2, · · · ,L; n = 1, 2, · · · ,NT denote the discrete time radar
waveform radiated by the n-th antenna (L is the number of
time samples of each radar waveform). Furthermore, sl =
[s1 (l) , . . . , sNT (l)

]T indicates the NT dimensional vector
that collects transmitted waveforms at l th time; thus S =
[s1, s2, . . . , sL]T can be defined as the transmitted waveform
matrix.

Let x be the received signal in the cell under test (CUT).
The problem of detecting targets in the presence of a het-
erogeneous clutter can be formulated through the following
binary hypothesis testing:{

H0 : x = xc
H1 : x = xt + xc,

(1)

where xt and xc are the vectors that contain target signals and
the clutter, respectively.

A. TARGETS MODEL
We assume the propagation is nondispersive, and the trans-
mitted probing signals are narrowband. Considering there are
I targets in the space, the i-th target is moving with a speed
vti relative to the radar platform, then received target signals
at the direction of arrival (DOA) θti of the m-th pulse can be
expressed as [6],

Xti,m = αie
j2π(m−1)fdiTrb

(
θti
)
aT
(
θti
)
ST , (2)

where αi is the target amplitude, b
(
θti
)
is the received array

steering vector at θti , a
(
θti
)
is the transmit array steering

vector, fdi = 2vti
/
λ is the target Doppler frequency (λ

denotes thewavelength), and Tr = 1
/
fr is the pulse repetition

interval (PRI).
Let xti =

[
vecT

(
Xt,1

)
, . . . , vecT

(
Xt,M

)]T be the i-th
target response, and

vec
(
Xti,m

)
= αiej2π(m−1)fdiTr

(
S⊗ INR

) (
a
(
θti
)
⊗ b

(
θti
))
,

(3)

then we have

xti = αiS̃hti , (4)

where S̃ = IM ⊗ S⊗ INR ,hti = u
(
fdi
)
⊗ a

(
θti
)
⊗ b

(
θti
)
and

u
(
fdi
)
=

[
1, . . . , ej2π(M−1)fdiTr

]T
is the temporal steering

vector at fdi .
Let α = [α1, α2, · · · , αI ]T ,ht =

[
ht1 ,ht2 , · · · ,htI

]
and

xt =
[
xTt1 , x

T
t2 , · · · , x

T
tI

]T , then the targets responses can be
given as

xt = S̃htα. (5)

B. CLUTTER MODEL
Clutter can be described as unwanted echoes from scatters;
hence, it can be regarded as a signal-dependent interference.
In the present study, the measured clutter is modelled as the
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superposition of signals associated with a large number of
patches distributed in the azimuthal direction in the same
range cell of the target. The measured signal–dependent clut-
ter associated with the m-th pulse and the κ-th patch in the
azimuth can be modeled as

Xc,m,κ = δc,m,κej2π(m−1)fc,κTrb
(
θc,κ

)
aT
(
θc,κ

)
ST , (6)

where δc,m,κ is the amplitude associated with the m-th pulse
and the κ-th patch, and the parameters fc,κ and θc,κ , respec-
tively, denote the Doppler frequency and the DOA of the κ-th
patch in the range cell.

Let xc,κ =
[
vecT

(
Xc,1,κ

)
, . . . , vecT

(
Xc,M ,κ

)]T ; hence,
the measured clutter at the κ-th patch in the azimuth can be
expressed as

xc,κ =
(
IM ⊗ S⊗ INR

) (
ũ
(
fc,κ
)
⊗ a

(
θc,κ

)
⊗ b

(
θc,κ

))
= S̃hc,κ (7)

with hc,κ = ũ
(
fc,κ
)
⊗ a

(
θc,κ

)
⊗ b

(
θc,κ

)
and ũ

(
fc,κ
)
=

diag
{
δc,1,κ , . . . , δc,M ,κ

}
u
(
fc,κ
)
.

Now, by taking the clutter from Nc clutter patches, the
measured clutter model can be formulated as

xc =
Nc∑
κ=1

xc,κ . (8)

Furthermore, the clutter covariance matrix RSCM can be
expressed as

RSCM = E
(
xcxHc

)
=

Nc∑
κ=1

S̃hc,κhHc,κ S̃
H

= S̃

( Nc∑
κ=1

hc,κhHc,κ

)
S̃H = S̃4̃S̃H , (9)

where 4 =
∑Nc
κ=1 hc,κh

H
c,κ .

C. PROBLEM FORMULATION
Generally, a heterogeneous clutter can be characterized by the
well-known complex compound-Gaussian model:

xc ∼ CN (0,R) , (10)

where R is the covariance matrix. In the field of the mul-
tivariate statistical analysis, the inverse Wishart distribution
is used as the prior distribution of R [31], and in practi-
cal, the real radar data of SAR and polarimetric SAR (Pol-
SAR) show that the covariance of the radar clutter fits the
inverse Wishart distribution well [26]–[30]. Therefore, it is
assumed that R is a random matrix drawn from a complex
inverseWishart distribution here; namely,R ∼ CW−1 (6, v),
where CW−1 (6, v) signifies the complex inverse Wishart
distribution with the concentration matrix 6 (6 > 0) and the
freedom v (v > MNRL). Moreover, the probability density
function (p.d.f) of the covariance matrix R can be expressed
as

f (R)=
|(ν−MNRL)6|v

0̃NRL (ν) |R|
v+NRL

etr
{
− (ν−MNRL)R−16

}
, (11)

0̃NRL (ν) can be defined as

0̃NRL (ν) = π
NRL(NRL−1)

2

NRL∏
n=1

0 (ν − n+ 1), (12)

where 0 (·) is the Eulerian Gamma function.
Usually, the target amplitude α is unknown in detection

problem. Thus, based on the Neyman − Pearson Theo-
rem [35], the Bayesian GLRT expression for a given false
alarm probability can be written as

L (x) =
max
α

f (x |H1 )

f (x |H0 )
=

max
α

∫
f (x;R |H1 ) f (R) dR∫

f (x;R |H0 ) f (R) dR
.

(13)

In addition,

f
(
x
∣∣Hq ) = ∫ f

(
x;R

∣∣Hq ) f (R) dR
∝ det

[
(x−qxt) (x−qxt)H+(ν−NRL)6

]−(ν+1)
,

q = 0, 1. (14)

Let α̂ denote the maximum likelihood estimate (MLE) of α
underH1, and substitute Eqs. (5) and (14) into Eq. (13), yields

L (x)

=
det

[
(x− xt) (x− xt)H + (ν −MNRL)6

]−(ν+1)
det

[
xxH + (ν −MNRL)6

]−(ν+1)
∝

det
[(
x−S̃ht α̂

) (
x−S̃ht α̂

)H
+(ν−MNRL)6

]−1
det

[
xxH+(ν −MNRL)6

]−1 , (15)

where ∝ implies ‘‘proportional to’’, and according to [30],
the MLE expression of α is given by

α̂ =

[(
S̃ht
)H
6−1S̃ht

]−1 (
S̃ht
)H
6−1x. (16)

Furthermore, let us consider the concentration matrix 6
is unknown, then an alternative model of the concentration
matrix can be modelled as

6 = RSCM + σ ILNT = S̃4̃S̃H + σ I, (17)

where σ is the positive diagonal loading coefficient.
According to the Neyman − Pearson theorem, for a

given false alarm probability, GLRT expresses themaximized
detection probability. Therefore, by substituting (17) into
Eq. (15), it can be noticed that the GLRT value is dependent
on the transmitted waveform S. Hence, the waveform design
problem that maximizes GLRT can be formulated under the
CM constraint as follows:

max
S

det
[(

x− S̃ht α̂
) (

x− S̃ht α̂
)H
+ S̃4̃S̃H + σ Ĩ

]−1
det

[
xxH + S̃4̃S̃H + σ Ĩ

]−1
s.t. |Sli| = 1 l = 1, · · · ,L; i = 1, · · · ,NT (18)
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where 4̃ = (ν − NRL)4, Ĩ = (ν − NRL) I, and Sli is the
element of l-th column and i-th row of S.
Now, by taking logarithm and negative operations to the

cost function of Eq. (18), the equivalent form of Eq. (18) can
be expressed as

min
S

ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
s.t. |Sli| = 1 l = 1, · · · ,L; i = 1, · · · ,NT . (19)

The optimization model in Eq.(19) involves the minimization
of a nonconvex cost function and a nonconvex CM constraint,
so this is an NP-hard problem. In general, iteration system
is used to solve the NP-hard problem. However, the target
amplitude vector is unknown and needs to be estimated first
at each iteration. Therefore, the specific iteration system is
shown in Fig.1, where α̂k is the MLE of the target ampli-
tude vector with k denoting the iteration time. Then two
approaches in Sections III and IV, are proposed to optimize
the waveforms respectively.

FIGURE 1. Flowchart of the Waveform design system.

III. ADMM-BASED WAVEFORM DESIGN
In the present section, the alternation direction method of
multipliers (ADMM) algorithm (a distributed optimization
approach) [32]–[34] is presented to solve Eq. (19).

A. ADMM-BASED ALGORITHM
Let SR = <{S} ,SI = Im {S} and s = vec (S), then
sR = vec (SR), and sI = vec (SI ); thus s = sR + jsI .
Moreover, two auxiliary vectors v =

[
v1, · · · , vLNT

]T and
w =

[
w1, · · · ,wLNT

]T are also introduced. vp is the p -th
element in v and wp is the p-th element in w; therefore,

vp =
{
(SR)li

}2
=
{
(sR)p

}2
,

p = (i− 1)L + l;
l = 1, · · · ,L; i = 1, · · · ,NT

(20a)

wp =
{
(SI )li

}2
=
{
(sI )p

}2
,

p = (i− 1)L + l;
l = 1, · · · ,L; i = 1, · · · ,NT .

(20b)

Hence, the CM constraint in Eq. (19) can be reformulated as

vp + wp = 1,
p = (i− 1)L + l;

l = 1, · · · ,L; i = 1, · · · ,NT .
(21)

Subsequently, Eq. (19) can be transformed into the follow-
ing equivalent problem:

min
S

ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
s.t. v+ w = 1, (22)

where 1 is a LNT dimensional vector in which all elements
are equal to 1.

The augmented Lagrangian (formulated using scaled dual
variables) [32] of Eq. (22) can be defined as

Lρ (sR, sI ,u)

= ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
+
ρ

2

(
‖v+ w− 1+ u‖22 − ‖u‖

2
2

)
, (23)

where ρ > 0 is the step size and u ∈ RLNT×1 is the scaled dual
variable. Finally, ADMM is applied to Eq. (23) to determine
{sR, sI ,u}:

sk+1R := argmin
SR

Lρ
(
SR,SkI ,u

k
)
; (24a)

vk+1p =

{(
sk+1R

)
p

}2
, p = (i− 1)L + l;

l = 1, · · · ,L; i = 1, · · · ,NT ; (24b)

sk+1I := argmin
SI

Lρ
(
Sk+1R ,SI ,uk

)
; (24c)

wk+1p =

{(
sk+1I

)
p

}2
, p = (i− 1)L + l;

l = 1, · · · ,L; i = 1, · · · ,NT ; (24d)

uk+1 := vk+1 + wk+1
− 1+ uk ; (24e)

where k is the time mentioned before in Eq.(19).
Clearly, the constrained optimization problem in Eq. (19)

can be divided into several subproblems (Eqs.24(a−(e)). The
first subproblem of updating sR in Eq. (24a) and the third sub-
problem of updating sI in Eq. (24c) are both unconstrained.
The final step in Eq. (24e) defines common update rules of
scaled dual variables [32].
Let

gA (sR, sI )

= ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
VOLUME 8, 2020 86905
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gB (sR, sI ,u) = ‖v+ w− 1+ u‖22 and both gA (sR, sI ) and
gB (sR, sI ) are implicit functions of sR and sI . The solutions
of the subproblems in Eqs. (24a) and (24c) can be derived as
follows:
Update of sR: If bkR = wk

− 1+ uk , then gC
(
sR, skI ,u

k
)
=∥∥v+ bkR

∥∥2
2. The optimization problem in Eq. (24a) can be

written as

min
SR

Lρ
(
sR, skI ,u

k
)
= gA

(
sR, skI

)
+
ρ

2
gB
(
sR, skI ,u

k
)
.

(25)

Therefore, Eq. (25) is unconstrained. However, it is hard to
obtain sk+1R by directly setting ∂Lρ

(
sR, skI ,u

k
)/
∂sR = 0.

Fortunately, the Quasi-Newton method is one of the most
effective methods to solve unconstrained nonlinear optimiza-
tion problems. Therefore, the BFGS method [38], a type of
quasi-Newton method, is adopted to solve Eq. (25). Further-
more, the key is transformed to calculate the gradient of
Lρ
(
sR, skI ,u

k
)
at sR.

Based on the derivative of a real function with respect to
a complex variable [36], the derivative of gA

(
sR, stI

)
with

respect to sR can be given as

∂gA
(
sR, skI

)
∂sR

=
∂gA

(
sR, skI

)
∂vec (SR)

= 2<

 ∂gA∂s∗
∣∣∣∣sI=skI ,
α̂=α̂k

 ,
(26)

which can be computed from Proposition 1.
Proposition 1: The derivative of gA with respect to vec (S∗)

can be calculated as

∂gA
∂ (s∗)T

=
∂gA

∂vecT (S∗)
=

∂gA(S,S∗)

∂vecT
(
S̃∗
) ∂vec

(
S̃∗
)

∂vecT (S∗)

= vecT
{
−

(
xxH + S̃4̃S̃H

)−1
S̃4̃

+ D−1S̃
(
Ht + 4̃

)
− D−1x

(
ht α̂

)H}
×
(
IM ⊗KNTNR,M ⊗ ILNR

)
× (vec (IM )⊗ P) , (27)

where the matrix D =
(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H +

σ Ĩ,
Ht = ht α̂

(
ht α̂

)H
,P =

(
INt ⊗KNR,L ⊗ INR

)(
INtL ⊗ vec

(
INR
))
, KNR,L is a NRL × NRL commutation

matrix, and KNTNR,M is a MNRNT × MNRNT commutation
matrix [37].

Proof: See Appendix A.
In addition, with the given

{
skI ,u

k
}
, the derivative of

gB
(
sR, skI ,u

k
)
with respect to sR can be written as

∂gB
(
sR, skI ,u

k
)

∂sR
= 4s3R + 4bkR � sR, (28)

where s3R is defined by taking a cube of each element in sR.
Proof: See Appendix B.

By combing Eqs.(26) and (28), the gradient of Lρ
(sR, skI ,u

k ) with respect to sR can be expressed as

∇sRLρ
(
sR, skI ,u

k
)

=
∂Lρ

(
sR, skI ,u

k
)

∂sR

= 2<

 ∂gA∂s∗
∣∣∣∣sI=skI ,
α̂=α̂k

+ 2ρ
(
s3R + bkR � sR

)
. (29)

Herein, let τ be the iteration number andAτ be the approx-
imation to the Hessian matrix of Lρ

(
sR, skI ,u

k
)
with respect

to sR. Then the BFGS method [38] to update sR with a fixed
step length ur is summarized in algorithm 1.

Algorithm 1 Update of sR
Inputs:

{
skR, s

k
I ,u

k
}
, theMLE α̂k of k-th time, step size ur ,

ρ, iteration stop tolerance εr , and the maximum iteration
number τmax.
Initialize: A0 = ILNT , τ = 0;
1: while

∥∥∇sRLρ (sR, skI ,uk)∥∥2 > εr and τ < τmax do
2: Compute ∇sRLρ

(
sτR, s

k
I ,u

k
)
using Eq. (29);

3: Set λRτ = −urB
−1
τ ∇sRLρ

(
SτR,S

k
I ,u

k
)
, update (sR)τ+1 =

(sR)τ + λRτ ;
4: Calculate ∇sRLρ

(
sτ+1R , skI ,u

k
)

using Eq. (29), and
determine:

zτ = ∇sRLρ
(
sτ+1R , skI ,u

k
)
−∇sRLρ

(
sτR, s

k
I ,u

k
)
;

5: if zTτ λ
R
τ > 0, update Aτ+1 with

Aτ+1 = Aτ +
zτ zTτ
zTτ λRτ
−

AτλRτ
(
λRτ
)TATτ

(λRτ )
TAτλRτ

; else Aτ+1 = Aτ ;

6: τ = τ + 1;
7: end while
8: Update v using Eq. (24b)
Outputs:Real part of the MIMO radar waveform sk+1R and
vk+1

Update of sI : Due to the symmetry of sR and sI , the update
method of sI (Eq. 24c) is akin to that of sR (Eq. 24a).
Let bkI = vk+1 − 1 + uk , then gB

(
sk+1R , sI ,uk

)
=∥∥w+ bkI

∥∥2
2. Hence, the derivative of gB

(
sk+1R , sI ,uk

)
with

respect to sI can be expressed as

∂gB
(
sk+1R , sI ,uk

)
∂sI

= 4s3I + 4bkI � sI , (30)

where s3I is defined by taking a cube of each element in sI .
Furthermore, using the expression of Eqs. (27) and the

results of algorithm 1, the derivative of gA
(
sk+1R , sI ,uk

)
with

respect to sI can be written as

∂gA
(
sk+1R , sI

)
∂sI

=

∂gA
(
sk+1R , sI

)
∂vec (SI )

= 2Im

 ∂gA∂s∗
∣∣∣∣sR=sk+1R ,

α̂=α̂k

 , (31)
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Therefore, the gradient of Lρ
(
sk+1R , sI ,uk

)
with respect to

sI can be expressed as

∇SI Lρ
(
sk+1R , sI ,uk

)
= 2ρ

(
s3I + bkI � sI

)
+ 2Im

 ∂gA∂s∗
∣∣∣∣sR=sk+1R ,

α̂=α̂k

 . (32)

In summary, the design process of theADMM-basedwave-
form (ADMM-W) is summarized in algorithm 2.

Algorithm 2 ADMM-Based Waveform (ADMM-W) Design
Inputs: step size ρ, iteration stop tolerance ς , and the
maximum iteration time Kmax
Initialize: sR, sI , s0 = s0R + js

0
I and k = 0;

1: while max
{∣∣∣Lρ (sk+1R , sk+1I ,uk

)
− Lρ

(
skR, s

k
I

,uk
)∣∣ , ∣∣∥∥uk+1∥∥2 − ∥∥uk∥∥2∣∣} < ς and k < Kmax do

2: Compute the MLE of target amplitude α̂k using (16);
3: Update sk+1R , vk+1 of Eq. (24a) and (24b) using Algo-
rithm 1;
4: Update sk+1I ,wk+1 of Eq. (24c) and (24d) using the
method akin to Algorithm 2;
5: Update uk+1 using Eq. (24e);
6: Compute sk+1 = sk+1R + jsk+1I
7: k = k + 1;
8: end while
Output: MIMO radar waveform S

B. CONVERGENCE PERFORMANCE AND
COMPUTATIONAL COMPLEXITY ANALYSIS
First, the convergence performance of the ADMM-based
algorithm is discussed. ADMM can guarantee the global
convergence for a convex optimization problem [32]. The
theoretical proof of convergence for a nonconvex problem
is proposed in Theorem 1 [14], [33], [34]. The following
theorem reveals that sequences generated by the ADMM-W
algorithm are convergent under some mild conditions.
Theorem 1: Let

{
skR, s

k
I ,u

k
}

be a sequence generated
by ADMM-W with ρ > 0 (Eqs.24(a)−(e)). Now,
if limt→∞ uk+1 − uk = 0, then the limit point

{(
s?R, s

?
I ,u

?
)}

is an optimal solution of Eq. (22).
Proof: Since lim

k→∞
uk+1 − uk = 0 and ρ > 0, it can

obtained from Eq. (24e) that

lim
k→∞

vk+1 + wk+1
= 1. (33)

Moreover, from Eqs. (24b), (24d), and (33), the following
expressions can be achieved.

0 ≤ vk ≤ 1,

0 ≤ wk
≤ 1. (34)

Hence, the sequences
{
skR
}
and

{
skI
}
are bounded, and a

stationary point
{(
s?R, s

?
I ,u

?
)}

exists between them.

lim
t→∞

{(
skR, s

k
I ,u

k
)}
=
{(
s?R, s

?
I ,u

?
)}
. (35)

Therefore, Theorem 1 is proved.

Next, we analyze the computational complexity of
ADMM-W algorithm.

As to the computational complexity of ADMM-W,
it mainly depends on the number of (outer) iterations and the
number of operations at each iteration. Herein, we focus on
the analysis of the complexity involved in each (outer) itera-
tion. For Algorithm ADMM-W, the update of α̂(with (16))
requires O

(
(LMNR)3

)
operations, and the optimization of

sR requires O
(
τR (LNT )3

)
operations with τR denoting the

number of (inner) iterations of Algorithm 1. Similarly, the
optimization of sI requires O

(
τI (LNT )3

)
operations with τI

denoting the number of (inner) iterations. Last, the update of
s requires O (LNT ) operations.

IV. PHASE-ONLY WAVEFORM DESIGN
Since the ADMM-W algorithm is sensitive to the parameter ρ
and the algorithm is quite complicated, it is necessary to find a
simpler method to solve the optimization problem (19). In the
present section, the phase-only waveform design algorithm,
also based on the BFGS method [38], is employed to solve
Eq. (19).

A. PHASE-ONLY ALGORITHM
In order to solve this nonconvex problem, CM constraints can
be simplified by introducing auxiliary phase variables.

8 =


ϕ11 ϕ12 · · · ϕ1NT

ϕ21 ϕ22 · · · ϕ2NT
...

...
...

...

ϕL1 ϕL2 · · · ϕLNT

 , (36)

Hence, Eq. (19) is converted into the following optimiza-
tion problem without performing any modulus operation:

min
S

ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
s.t. S = ej8. (37)

Now, by substituting S = ej8 into the cost function of
Eq. (37), the optimization problem can be relaxed as an
unconstrained nonlinear optimization problem gA(ϕ) associ-
ated with 8:

min
8

gA(8)

= ln
{
det

[(
x− S̃ht α̂

) (
x− S̃ht α̂

)H
+ S̃4̃S̃H + σ Ĩ

]}
− ln

{
det

[
xxH + S̃4̃S̃H + σ Ĩ

]}
. (38)

which is an unconstrained problem. Similar to algorithm 1,
the BFGS method is also adopted to solve Eq. (38).

According to the derivative theorem of a scalar real-valued
function with respect to the complex matrix variables Z and
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Z∗ ∈ CN×Q [36], the gradient of gA(8) with respect to8 can
be given as

∇8gA(8) =
∂gA(8)
∂8

=
∂gA
∂S

∂S
∂8
+
∂gA
∂S∗

∂S∗

∂8

=
∂gA
∂S
� (jS)+

∂gA
∂S∗
�
(
−jS∗

)
= 2Im

{
∂gA
∂S∗
� S∗

}
. (39)

And ∂gA
/
∂S∗ can be calculated from Proposition 1.

Let ϕ = vecT (8); thus the gradient of gA(8) with respect
to 8 can be expressed as

∇ϕgA(ϕ) = vec [∇8gA(8)] . (40)

Based on the BFGS method, the phase vector ϕk+1 at
iteration k + 1 can be updated as

ϕk+1 = ϕk − ukB
−1
k ∇ϕkgA(ϕk ), (41)

where uk is the selected step size in the current search
direction and Bk is the approximation to the Hessian matrix
of gA(ϕk ) with respect to ϕk . Algorithm 3 summarizes the
phase-only waveform design (POW) process using the BFGS
method.

Algorithm 3 Phase-Only Waveform (POW) Design
Inputs: step size u, β, u ∈ (0, 1) , β ∈ (0, 0.5), iteration
stop tolerance ε, and the maximum iteration time Kmax;
Initialize: B0 = ILNT , ϕ0, k = 0
1: while

∥∥∇ϕkgA(ϕk )∥∥2 > ε and k < Kmax do
2: Compute the MLE of target amplitude α̂k using Eq.(16);
3: Compute ∇ϕkgA(ϕk ) using Eqs. (39)–(40), and deter-
mine the search direction pk = −B−1k ∇ϕkgA(ϕk );
4: Perform a line search with the Armijo rule [38] to
find the smallest positive integer that holds the following
formula.
gA(ϕk + u

mkpk ) ≤ gA
(
ϕk
)
+ βumk∇ϕgA(ϕk )

Tpk ;
5: Set rk = umkpk to update ϕk+1 = ϕk + rk ;
6: Calculate ∇ϕk+1gA(ϕk+1) with Eqs. (39)–(40), and
determine

yk = ∇ϕk+1gA(ϕk+1)−∇ϕkgA(ϕk );

7: if yTk rk > 0, update Bk+1 = Bk +
ykyTk
yTk rk
−

BkrkrTk B
T
k

rTk Bkrk
; else

Bk+1 = Bk ;
8: k = k + 1;
9: end while
Output: MIMO radar waveform S

B. CONVERGENCE PERFORMANCE AND
COMPUTATIONAL COMPLEXITY ANALYSIS
POW is based on the BFGS method, and the convergence
process of the BFGS can be found in literature [38], thus the
convergence analysis of POW is omitted here.

The computational complexity of POWmainly depends on
the number of (outer) iterations and the number of operations

at each iteration. In precise, at each iteration, the update of
α̂(with (16)), same with ADMM-W, requires O

(
(LMNR)3

)
operations. The optimization ofϕ requiresO

(
(LNT )3

)
. Com-

pared with ADMM-W, the computational complexity of
POW per iteration is lower.

V. SIMULATION
In the current section, a MIMO radar system consisting of 4
transmit antennas (NT ) and 4 receiving antennas (NR) is con-
sidered. The proposed waveforms are tested using MCARM
data (obtained from the MCARM file re050575) [39]. In this
file, datacubes are comprised of 22 channels, 128 pulses, and
630 unambiguous range cells. The element 1:4, the channel
1:4:13, and the pulse 1:16 are, respectively, assumed as the
receiver array, the transmit array, and the number of pulses in
a CPI. The diagonal loading coefficient in Eq. (18) is set as
σ = 0.4.
Some numerical examples are also provided to demon-

strate the performances of the waveforms designed by algo-
rithms 1, 2 and 3. In both algorithms 1 and 3, the phase vector
ϕ, sR, and sI are initialized to be random.

A. MCARM FILE re050575 DATA PREPROCESSING
In the re050575 file of range bin 290, only the clutter data
of 22 channels are available; however, it is indispensable to
obtain the clutter patch in the azimuth dimension. There-
fore, an iterative adaptive approach (IAA) algorithm [40]
is employed to estimate the clutter patch amplitude δc,m,k
described in Eq. (6). Figure 2a displays the origin clutter
distribution at range bin 290, and the estimated clutter patch
amplitude δc,m,k is presented in Fig. 1b. Furthermore, the
clutter sample covariance matrix RSCM in Eq. (9) is obtained
to measure the concentration matrix 6 in Eq. (17).

In this paper, we consider I point targets model with fixed
target amplitudes from trial to trial. In this case, the signal-
to-clutter ratio (SCR) is defined as

SCR =

I∑
i=1
|αi|

2

M∑
m=1

Nc∑
κ=1

∣∣δc,m,κ ∣∣2 . (42)

Besides, the space-time cross-ambiguity can evaluate
the clutter suppression performance of the waveform. And
according to the space-time cross-ambiguity expression
for a target in [17], we can extend that the space-time
cross-ambiguity for multiple targets as

P (θ, fd ) =

∣∣∣∣∣
I∑
i=1

wH
i S̃hti

∣∣∣∣∣
2

, (43)

wherewi = (RSCM + σ I)−1 S̃hti is the optimal receiver filter
for the i-th target.

B. PERFORMANCES OF DIFFERENT ALGORITHMS
FOR A SINGLE TARGET
In the present subsection, the performances of the phase-only
algorithm and the ADMM-based algorithm are evaluated
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FIGURE 2. (a) Origin clutter amplitude distribution at range bin 290 and
(b) estimated clutter patch amplitude.

with a low SCR = 5dB of a target, i.e. I = 1. The target is
artificially injected at Doppler bin 3, range bin 290, and angle
bin 65. Parameters forMCARMdata are presented in Table 1.
The number of time samples and the freedom are considered
as L = 16 and v = MNRL + 2, respectively.

TABLE 1. Parameters for the MCARM file re050575.

1) CONVERGENCE PERFORMANCE AND
CM PROPERTY OF ADMM-W
In the current experiment, the convergence performance and
the CM property of the ADMM waveform (ADMM-W)-
based design algorithm are explored. The step sizes of
algorithm 2 for each parameter ρ are set ur = 0.3,
respectively.

The convergence performance of the ADMM-W-based
design algorithm under different step sizes (ρ) is investigated.

FIGURE 3. Influences of step size (ρ) on the convergence of ADMM-W at
SCR = 5dB for a single target.

Figure 3 presents a comparison between the obtained objec-
tive values Lρ (sR, sI ,u) at different step sizes. It is noticeable
that the ADMM-based algorithm with a smaller step size (for
example, ρ = 0.5) converged faster than that with a larger
step size (for example, ρ = 4); however, a too small step size
(for example, ρ = 0.5) causes a big oscillation in the obtained
objective function values. In addition, the objective function
gradually increases with the increasing step size. It should be
noted that the choice of parameter ρ has a great influence
on the performance of the ADMM-based algorithm. As to
the computational complexity of ADMM-W, the run-time in
each (outer) iteration is about 278s for each parameter ρ.

FIGURE 4. ADMM-W with SCR = 5dB,ρ = 1 for a single target.

Furthermore, the CM property of the obtained waveforms
is analyzed by considering ρ = 1 and the iteration stop
tolerance ς = 0.001. It is evident from Fig.4 that the values
start to converge after 45 iterations. Let the symbol ‘Tx’
denote the transmit antenna. Figure 5 presents the modules,
and the phase values of ADMM-W. We can see that both the
real and imaginary parts exist between −1 and 1. Therefore,
from Fig.5a, it can be inferred that the ADMM-W fulfilled
the constant modulus constraint of the MIMO radar.

2) CONVERGENCE PERFORMANCE AND
CM PROPERTY OF POW
In the current experiment, the convergence performance and
the CM property of the POW algorithm are explored.
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FIGURE 5. (a) modules, and (b) phase values of ADMM-W with
ρ = 1,SCR = 5dB for a single target.

FIGURE 6. Influences of step size (µ,β) on the convergence of POW at
SCR = 5dB.

The influences of step size on the convergence of the
POW design algorithm are first examined. The curves of
the objective value gA(8) with different step sizes (µ, β)
and the same initial phase value are plotted in Fig.6. It is
observable that the POW design algorithm has the fastest
convergence rate at µ = 0.4, whereas a large step size µ
results in a large objective function value. In addition, the step
size β has little effect on the objective function. When µ =
0.06, β = 0.01, gA(8) obtained the local minimum value.

FIGURE 7. (a) Real part, (b) imaginary part, and (c) phase values of POW
with µ = 0.06, β = 0.1 for a single target.

As to the computational complexity of POW, the run-time
in each (outer) iteration is about 31s, which is significantly
lower than ADMM-W.

It is evident from Fig.7 that both real (Fig.7a) and imag-
inary parts (Fig.7b) of each antenna existed between −1
and 1. Moreover, the phase values of the POW algorithm are
presented in Fig.7c.
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FIGURE 8. Space-time cross-ambiguity of (a) orthogonal LFM, (b) [17]: Algorithm 2 (c) ADMM-W with ρ = 2, and (d) POW with µ = 0.4, β = 0.01
for a single target.

C. CLUTTER SUPPRESSION PERFORMANCES OF THE
WAVEFORMS DESIGNED FOR SINGLE TARGET
In order to assess the space-time cross-ambiguity of different
waveforms at SCR = 5dB of a target, their clutter suppres-
sion performances are evaluated.

In [17], the authors proposed some algorithms to jointly
optimize the transmit CMwaveform and receive filter for sin-
gle targetMIMO radar systems. Especially, theAlgorithm 2 is
one of the method to design CM waveform. Thus, the wave-
form designed by Algorithm 2 is provided here. In addition,
the orthogonal LFM waveform [15] is also offered to com-
pare, i.e., the corresponding waveform matrix is given by

SLFM (nt , l)=exp
{
j2πnt (l − 1)

/
L
}
exp

{
jπ (l − 1)2

/
L
}
,

(44)

where nt = 1, 2, . . . ,NT and l = 1, 2, . . . ,L.
Fig.8 shows the space-time cross-ambiguity (Eq.43) asso-

ciated with the different waveforms. It is clear from Fig. 8 that
the target is located in the main lobe (Doppler bin 3 and angle
bin 65) for all the waveforms. Compared to Fig.8b, Fig.8c and
Fig.8d, Fig.8a has the biggest region in yellow. Moreover,
as shown in Fig.8b and Fig.8d, the Algorithms 2 of [17]

FIGURE 9. Pd of different waveforms versus SCR for Pfa = 10−3.

has similar performance with POW. As a consequence, our
designed waveforms can suppress the power of clutter to a
desired low level of Doppler bins and angle bins.

D. DETECTION PERFORMANCE TEST FOR SINGLE TARGET
In the current subsection, the detection performances of
our designed waveforms, the waveform designed by the
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FIGURE 10. Space-time cross-ambiguity of (a) orthogonal LFM,
(b) ADMM-W with ρ = 2, and (c) POW with µ = 0.06, β = 0.2 for two
targets.

Algorithm 2 of [17] and the orthogonal LFM waveform
(Eq. 44) are compared. In order to save simulation time,
the value of M is set to 1 and the other parameters are
kept unchanged. According to Eq.(15), under the proposed
Bayesian framework, the detector associated with a trans-
mitted waveform for a given probability of false alarm Pfa
(referred as the Bayesian-Optimal-detector TBayesian) can be

expressed as

TBayesian=
det

[
(x−xt) (x− xt)H+(ν−MNRL)6

]−1
det

[
xxH+(ν −MNRL)6

]−1 H1
>
H0
<
γ,

(45)

where γ is the threshold (estimated from the results of
100

/
Pfa Monte Carlo independent trials). The values of

detection probability (Pd ) are also obtained from these inde-
pendent trials.

Figure 9 displays the detection probability Pd versus SCR
curves of different waveforms for given false alarm prob-
ability Pfa = 10−3. It is evident that the performance of
radar detection is improved obviously by waveforms design.
And the TBayesian detector had the best performance with
POW, better performance with ADMM-W, worst with LFM.
In addition, the waveform designed by Algorithm 2 of [17]
has a close detection performance with POW.

E. CLUTTER SUPPRESSION PERFORMANCES OF THE
WAVEFORMS DESIGNED FOR TWO TARGETS
In the present subsection, the space-time cross-ambiguity
associated with LFM of (44), ADMM-W and POW are eval-
uated in the scenario for two targets, i.e., I = 2. The target
1 is artificially injected at Doppler bin 10, and angle bin 45.
The target 2 is artificially injected at Doppler bin 3, and angle
bin 65. And the rest parameters are not changed.

Since themethod of [17] is only applicable to a single target
scenarios, it is not appropriate to compare Algorithm 2 of [17]
with our algorithm here. Behaviors similar to Fig.8, Fig. 10
assessed the space-time cross-ambiguity associated with the
designed waveforms by ADMM-W with ρ = 2 and POW
with µ = 0.06, β = 0.2. As shown in Fig.10, the space-time
cross-ambiguity function has two mainlobes, such as the first
target is located in Doppler bin 10, angle bin 45, and the
second target is located in Doppler bin 3, and angle bin 65.
We also can see that in Fig.10b, the blue area is the largest and
the yellow area is the smallest, that is, the clutter suppression
effect of ADMM-W is the best. As a result, the waveforms
designed by us manifest significantly better performance in
suppressing the clutter of Doppler bins and angle bins of two
targets.

VI. CONCLUSIONS
In this study, the transmit waveform design for target detec-
tion problems in heterogeneous clutter was addressed for an
airborne colocated MIMO radar. For the signal-dependent
clutter model, a Bayesian framework was considered, and
the corresponding GLRT expression for waveform design
problemwas established. The POWand theADMM-Wmeth-
ods were proposed to solve this problem. Simulation results
revealed that the optimal waveform significantly improved
the detection performance and suppressed the strong clutter
of MCARM dataset; therefore, it can be inferred that the
Bayesian detector manifested a better detection performance.
In addition, for a single target, the ADMM-W method is
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not recommended because of its high complexity, long time
consuming and sometimes not easy to converge. However,
for multiple targets, it should be considered a compromise
between the two methods.

APPENDIX A
PROOF OF PROPOSITION 1
Let we define that

DS̃∗ , gA(S,S∗)
∂gA

∂vecT
(
S̃∗
) , (46)

DS∗t ,
(
S̃∗
) ∂vec (S̃∗)
∂vecT (S∗)

. (47)

and

vec
(
S∗ ⊗ INR

)
=
(
INt ⊗KNR,L ⊗ INR

)
×
[(
INtLvec

(
S∗
))
⊗
(
vec

(
INR
)
1
)]

=
(
INt ⊗KNR,L ⊗ INR

)
×
[(
INtL ⊗ vec

(
INR
)) (

vec
(
S∗
)
⊗ 1

)]
=
(
INt ⊗KNR,L ⊗ INR

)
×
(
INtL ⊗ vec

(
INR
))
vec

(
S∗
)

= Pvec
(
S∗
)

(48)

where P =
(
INt ⊗KNR,L ⊗ INR

) (
INtL ⊗ vec

(
INR
))
.

Hence, it can be expressed that

vec
(
S̃∗
)

= vec
(
IM ⊗ S∗ ⊗ INR

)
=
(
IM ⊗KNTNR,M ⊗ ILNR

) (
vec (IM )⊗ vec

(
S∗ ⊗ INR

))
=
(
IM ⊗KNTNR,M ⊗ ILNR

) (
vec (IM )⊗ Pvec

(
S∗
))

=
(
IM ⊗KNTNR,M ⊗ ILNR

)
(vec (IM )⊗ P) vec

(
S∗
)

(49)

Furthermore,

dvec
(
S̃∗
)
=
(
IM ⊗KNTNR,M ⊗ ILNR

)
× (vec (IM )⊗ P)

[
dvec

(
S∗
)]

(50)

Based on Table 3.2 in literature [36], it can be obtained that

DS

(
S̃∗
)
=

∂vec
(
S̃∗
)

∂vecT (S∗)
=
(
IM ⊗KNTNR,M ⊗ ILNR

)
(vec (IM )⊗ P) (51)

Moreover, the differential of gA can be described as

dgA=−Tr
{
4̃S̃H

(
xxH + S̃4̃S̃

)−1
d S̃
}

−Tr
{
4̃T S̃T

(
xxH + S̃4̃S̃H

)−T
d S̃∗

}
+Tr

{
α̂B−1xhHt

(
d S̃H

)}
+Tr

{
B−1

(
d S̃
) (

ht α̂
)
xH
}

−Tr
{
B−1

(
d S̃
) (

Ht + 4̃
)
S̃H
}

−Tr
{
B−1S̃

(
Ht + 4̃

) (
d S̃H

)}
. (52)

According to the definition of the derivative df (Page no. 76 in
literature [36]), the gradient of gA with respect to S̃∗ can be
given as

∂gA

∂vecT
(
S̃∗
) = vecT

[
−

(
xxH + S̃4̃S̃H

)−1
S̃4̃

+ B−1S̃
(
Ht + 4̃

)
−B−1x

(
ht α̂

)H]
. (53)

Now, combing Eqs.(48)−(51), it can be proved that

∂gA
∂vecT (S∗)

= DS̃∗gA(S,S
∗)DS∗

(
S̃∗
)

= vecT
[
−

(
xxH + S̃4̃S̃H

)−1
S̃4̃

+ B−1S̃
(
Ht + 4̃

)
− B−1x

(
ht α̂

)H](
IM ⊗KNTNR,M ⊗ ILNR

)
(vec (IM )⊗ P) .

(54)

Hence, proposition 1 is proved.

APPENDIX B
With the given function gB

(
sR, skI ,u

k
)
, it can be expressed

that

gB
(
sR, skI ,u

k
)
=

∥∥∥v+ bkR
∥∥∥2
2
=

(
v+ bkR

)T (
v+ bkR

)
|

= vT v+ 2
(
bkR
)T

v+ C

=

LNT∑
i=1

(sR)4i + 2
(
bkR
)
i
(sR)2i + C, (55)

where C is unrelated to sR.
Let (sR)i denote the i-th element in sR, then

∂gC
(
sR, skI ,u

k
)

∂ (sR)i
= 4 (sR)3i + 4

(
bkR
)
i
(sR)i . (56)

Hence, the proof is completed.

REFERENCES
[1] P. Stoica, J. Li, and Y. Xie, ‘‘On probing signal design for MIMO radar,’’

IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.
[2] H. Li, Z. Wang, J. Liu, and B. Himed, ‘‘Moving target detection in

distributed MIMO radar on moving platforms,’’ IEEE J. Sel. Topics Signal
Process., vol. 9, no. 8, pp. 1524–1535, Dec. 2015.

[3] H. Li and B. Himed, ‘‘Transmit subaperturing for MIMO radars with
co-located antennas,’’ IEEE J. Sel. Topics Signal Process., vol. 4, no. 1,
pp. 55–65, Feb. 2010.

[4] J. Li and P. Stoica, ‘‘MIMO radar with colocated antennas,’’ IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.

[5] D. R. Fuhrmann and G. San Antonio, ‘‘Transmit beamforming for MIMO
radar systems using signal cross-correlation,’’ IEEE Trans. Aerosp. Elec-
tron. Syst., vol. 44, no. 1, pp. 171–186, Jan. 2008.

[6] P. Stoica, J. Li, and X. Zhu, ‘‘Waveform synthesis for diversity-based
transmit beampattern design,’’ IEEE Trans. Signal Process., vol. 56, no. 6,
pp. 2593–2598, Jun. 2008.

[7] S. Ahmed, J. S. Thompson, Y. R. Petillot, and B.Mulgrew, ‘‘Finite alphabet
constant-envelope waveform design for MIMO radar,’’ IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5326–5337, Nov. 2011.

[8] J. Lipor, S. Ahmed, and M.-S. Alouini, ‘‘Fourier-based transmit beam-
pattern design using MIMO radar,’’ IEEE Trans. Signal Process., vol. 62,
no. 9, pp. 2226–2235, May 2014.

VOLUME 8, 2020 86913



B. Zhang et al.: Waveform Design for MIMO Radar Detection in a Heterogeneous Clutter Environment

[9] X. Yu, G. Cui, T. Zhang, and L. Kong, ‘‘Constrained transmit beampattern
design for colocatedMIMO radar,’’ Signal Process., vol. 144, pp. 145–154,
Mar. 2018.

[10] Y.-C. Wang, X. Wang, H. Liu, and Z.-Q. Luo, ‘‘On the design of constant
modulus probing signals for MIMO radar,’’ IEEE Trans. Signal Process.,
vol. 60, no. 8, pp. 4432–4438, Aug. 2012.

[11] X. Zhang, Z. He, L. Rayman-Bacchus, and J. Yan, ‘‘MIMO radar transmit
beampattern matching design,’’ IEEE Trans. Signal Process., vol. 63, no. 8,
pp. 2049–2056, Apr. 2015.

[12] S. Ahmed and M.-S. Alouini, ‘‘MIMO radar transmit beampattern design
without synthesising the covariance matrix,’’ IEEE Trans. Signal Process.,
vol. 62, no. 9, pp. 2278–2289, May 2014.

[13] Z. Cheng, Z. He, S. Zhang, and J. Li, ‘‘Constant modulus waveform design
for MIMO radar transmit beampattern,’’ IEEE Trans. Signal Process.,
vol. 65, no. 18, pp. 4912–4923, Sep. 2017.

[14] W. Fan, J. Liang, and J. Li, ‘‘Constant modulus MIMO radar waveform
design with minimum peak sidelobe transmit beampattern,’’ IEEE Trans.
Signal Process., vol. 66, no. 16, pp. 4207–4222, Aug. 2018.

[15] G. Cui, H. Li, and M. Rangaswamy, ‘‘MIMO radar waveform design with
constant modulus and similarity constraints,’’ IEEE Trans. Signal Process.,
vol. 62, no. 2, pp. 343–353, Jan. 2014.

[16] S. Imani, M. M. Nayebi, and S. A. Ghorashi, ‘‘Transmit signal design
in colocated MIMO radar without covariance matrix optimization,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 53, no. 5, pp. 2178–2186, Oct. 2017.

[17] B. Tang and J. Tang, ‘‘Joint design of transmit waveforms and receive
filters for MIMO radar space-time adaptive processing,’’ IEEE Trans.
Signal Process., vol. 64, no. 18, pp. 4707–4722, Sep. 2016.

[18] T. Naghibi and F. Behnia, ‘‘MIMO radar waveform design in the presence
of clutter,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 770–781,
Apr. 2011.

[19] B. Tang, J. Tang, and Y. Peng, ‘‘Waveform optimization for MIMO radar
in colored noise: Further results for estimation-oriented criteria,’’ IEEE
Trans. Signal Process., vol. 60, no. 3, pp. 1517–1522, Mar. 2012.

[20] B. Tang, M. M. Naghsh, and J. Tang, ‘‘Relative entropy-based waveform
design for MIMO radar detection in the presence of clutter and inter-
ference,’’ IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3783–3796,
Jul. 2015.

[21] M. M. Naghsh, E. H. M. Alian, M. M. Hashemi, and M. M. Nayebi, ‘‘Cog-
nitive MIMO radars: An information theoretic constrained code design
method,’’ in Proc. 24th Eur. Signal Process. Conf. (EUSIPCO), Budapest,
U.K., Aug. 2016, pp. 2215–2219.

[22] W. Huleihel, J. Tabrikian, and R. Shavit, ‘‘Optimal adaptive waveform
design for cognitive MIMO radar,’’ IEEE Trans. Signal Process., vol. 61,
no. 20, pp. 5075–5089, Oct. 2013.

[23] N. Sharaga, J. Tabrikian, and H. Messer, ‘‘Optimal cognitive beamforming
for target tracking in MIMO radar/onar,’’ IEEE J. Sel. Topics Signal
Process., vol. 9, no. 8, pp. 1440–1450, Dec. 2015.

[24] F. Bandiera, O. Besson, and G. Ricci, ‘‘Knowledge-aided covariance
matrix estimation and adaptive detection in compound-Gaussian noise,’’
IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5390–5396, Oct. 2010.

[25] G. T. Capraro, A. Farina, H. Griffiths, and M. C. Wicks, ‘‘Knowledge-
based radar signal and data processing: A tutorial review,’’ IEEE Signal
Process. Mag., vol. 23, no. 1, pp. 18–29, Jan. 2006.

[26] S. Bidon, O. Besson, and J.-Y. Tourneret, ‘‘Knowledge-aided STAP in
heterogeneous clutter using a hierarchical Bayesian algorithm,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 47, no. 3, pp. 1863–1879, Jul. 2011.

[27] F. Bandiera, O. Besson, and G. Ricci, ‘‘Adaptive detection of distributed
targets in compound-Gaussian noise without secondary data: A Bayesian
approach,’’ IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5698–5708,
Dec. 2011.

[28] Y. I. Abramovich, O. Besson, and B. A. Johnson, ‘‘Conditional
expected likelihood technique for compound Gaussian and Gaussian dis-
tributed noise mixtures,’’ IEEE Trans. Signal Process., vol. 64, no. 24,
pp. 6640–6649, Dec. 2016.

[29] A. Turlapaty and Y. Jin, ‘‘Multi-parameter estimation in compound
Gaussian clutter by variational Bayesian,’’ IEEE Trans. Signal Process.,
vol. 64, no. 18, pp. 4663–4678, Sep. 2016.

[30] L. Hong, F. Dai, and X. Wang, ‘‘Knowledge-based wideband radar target
detection in the heterogeneous environment,’’ Signal Process., vol. 144,
pp. 169–179, Oct. 2018.

[31] T. W. Anderson, An Introduction to Multivariate Statistical Analysis,
3rd ed. Hoboken, NJ, USA: Wiley, 2013.

[32] S. Boyd, ‘‘Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,’’ Found. Trends Mach. Learn., vol. 3,
no. 1, pp. 1–122, 2010.

[33] Z. Wen, C. Yang, X. Liu, and S. Marchesini, ‘‘Alternating direction meth-
ods for classical and ptychographic phase retrieval,’’ Inverse Problems,
vol. 28, no. 11, Nov. 2012, Art. no. 115010.

[34] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,’’ SIAM J. Optim., vol. 26, no. 1, pp. 337–364, Jan. 2016.

[35] M. S. Kay, Fundamentals of Statistical Signal Processing, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[36] A. Hjrungnes, Complex-Valued Matrix Derivatives: With Applications in
Signal Processing and Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2011.

[37] B. N. Datta,Numerical Linear Algebra and Applications. Philadelphia, PA,
USA: SIAM, 2010.

[38] J. Nocedal and S. Wright, Numerical optimization. Springer, 2006.
[39] B. Himed, ‘‘MCARM/STAP data analysis,’’ Air Force Res. Lab.,

New York, NY, USA, Tech. Rep. AFRL-SN-RSTR-1999, 1999, vol. 48.
[40] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, ‘‘Source local-

ization and sensing: A nonparametric iterative adaptive approach based on
weighted least squares,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 1,
pp. 425–443, Jan. 2010.

BO ZHANG received the B.S. degree in electronic
engineering from Xidian University, Xi’an, China,
in 2014, where he is currently pursuing the Ph.D.
degree in signal processing with the National Lab-
oratory of Radar Signal Processing. His research
interests include MIMO radar waveform design
and radar target detection.

FENGZHOU DAI received the B.S., M.S., and
Ph.D. degrees in electronic engineering from
Xidian University, Xi’an, China, in 2002, 2005,
and 2010, respectively. He is currently an Asso-
ciate Professor with the National Laboratory of
Radar Signal Processing, Xidian University. His
research interests include radar signal processing
and microwave imaging.

NAN SU received the B.S. degree in electronic
engineering from Xidian University, Xi’an, China,
in 2012, where he is currently pursuing the Ph.D.
degree in signal processing with the National Lab-
oratory of Radar Signal Processing. His research
interests include micromotion feature extraction
and parameter estimation.

86914 VOLUME 8, 2020


	INTRODUCTION
	DATA MODELING AND PROBLEM FORMULATION
	TARGETS MODEL
	CLUTTER MODEL
	PROBLEM FORMULATION

	ADMM-BASED WAVEFORM DESIGN
	ADMM-BASED ALGORITHM
	CONVERGENCE PERFORMANCE AND[-2pt] COMPUTATIONAL COMPLEXITY ANALYSIS

	PHASE-ONLY WAVEFORM DESIGN
	PHASE-ONLY ALGORITHM
	CONVERGENCE PERFORMANCE AND COMPUTATIONAL COMPLEXITY ANALYSIS

	SIMULATION
	 MCARM FILE re050575 DATA PREPROCESSING
	PERFORMANCES OF DIFFERENT ALGORITHMS FOR A SINGLE TARGET
	CONVERGENCE PERFORMANCE AND CM PROPERTY OF ADMM-W
	CONVERGENCE PERFORMANCE AND CM PROPERTY OF POW

	CLUTTER SUPPRESSION PERFORMANCES OF THE WAVEFORMS DESIGNED FOR SINGLE TARGET
	 DETECTION PERFORMANCE TEST FOR SINGLE TARGET
	CLUTTER SUPPRESSION PERFORMANCES OF THE WAVEFORMS DESIGNED FOR TWO TARGETS

	CONCLUSIONS
	REFERENCES
	Biographies
	BO ZHANG
	FENGZHOU DAI
	NAN SU


