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ABSTRACT Considering the limitations such as cost, it is of great significance to use super-resolution
methods to improve image spatial quality in the field of hyperspectral remote sensing. Due to little
dependence on auxiliary information which is difficult to obtain, i.e., multispectral images and natural
images, methods based on single-frame are generally considered to have good flexibility and application
value. In this paper, a three-dimensional convolutional neural network with three branches combined
with an analytical method is proposed, achieving better SR quality and suppressing spectral distortion
as well. Firstly, the wavelet transformation is introduced to decompose the hyperspectral image into a
variety frequency of components effectively and reversibly. Then, these components are fed into different
three-dimensional convolutional branches respectively. Finally, hyperspectral images with high resolution
are obtained by dimension amplification, detail reconstruction and inverse wavelet transformation. The
presence of frequency separation and the architecture of our model having different branches designed
according to frequency make it better than comparable approaches. The method proposed in this paper not
only combines the high efficiency of analytical method and the flexibility of neural network, but inhibits
the influence of spectral distortion as well. Compared with the state-of-art methods on real space-based
hyperspectral image datasets, the effectiveness of the proposed method is demonstrated.

INDEX TERMS Hyperspectral remote sensing, super-resolution, wavelet transformation, neural network.

I. INTRODUCTION
With the development of computer technology and electronic
information technology, the remote sensing information of
natural resources has become one of the core needs of human
beings. Remote sensing technology has a wide range of appli-
cations, such as earth resources exploration [1], marine pro-
tection, forest fire prevention [2]. However, by considering
the limitation such as payload, transmission bandwidth, and
power consumption of equipment, hyperspectral image (HSI)
usually retain higher spectral resolution at the cost of lower
spatial resolution, resulting in the contradiction between the
demand for spatial quality and the performance of HSI acqui-
sition platforms, promoting the development of HSI tech-
nology, especially the technology of super-resolution (SR).
In recent years, a lot of SR methods for HSI have been
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proposed, which makes this direction an important research
focus in the field.

There are many methods to improve the spatial resolution
of HSI, and they can be classified by whether to introduce
auxiliary information or not. Multispectral images (MSI)
and panchromatic images are widely used as auxiliary infor-
mation which has high spatial resolution [3] and can be
utilized as prior knowledge to improve the spatial quality
of HSI. Pan-sharpening methods [4]–[6] utilize high res-
olution (HR) panchromatic images on the same region as
auxiliary information to improve the spatial resolution of
HSI by fusion methods. Combined with deep neural network,
Masi et al. [7] proposed a convolution-based sharpening net-
work PNN. In order to retain spatial details, Yang et al. [8]
proposed a neural network based on high-pass filtering
domain. By means of alternate non-negative matrix factoriza-
tion of the spectral data, Yokoya et al. [9] obtained HR HSI
by reconstruction of the MSI abundance and hyperspectral
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end member. Zhu et al. [10] utilized HR multispectral data
to learn space dictionaries and reconstructed sparse coding
to get HR HSI. Akhtar et al. [11] utilized the low-resolution
(LR) HSI to learn the spectral dictionary, and reconstructed
the multispectral abundance to get HR HSI. Wei et al. [12]
realized a fusion data between MSI and HSI by sparse rep-
resentation. Simoes et al. [13] proposed a convex vector total
variation method based on subspace regularization to realize
the data fusion. Zhang et al. [14] realized the data fusion
by the popular low-rank clustering structure. Yang et al. [15]
proposed a double-branch convolutional neural network to
fuse MSI and HSI data. Xie et al. [16] utilized a deep neural
network based on low-rank priori to fuse MSI and HSI. Due
to the limitation of the acquisition area and timeliness, as well
as much difficulty in reprocessing of the data, it is very
difficult to acquire the auxiliary information, which limits the
application of such methods.

The single-frame based SR methods HSI obtain the prior
information from the LR HSI to predict the HR HSI, which
is very flexible because no auxiliary information is required.
Zhao et al. [17] proposed a hyperspectral SR method of
sparse representation and non-local correlation regulariza-
tion. Li et al. [18] proposed a group sparse representa-
tion based HSI SR method utilizing spatial domain and
spectral domain autocorrelation. Wang et al. [19] proposed
a non-local low-rank tensor approximate SR method based
on tensor representation. Yuan et al. [20] utilized convolu-
tional neural network to realize preliminary SR level by
level, and fine-tuned the preliminary results by collaborative
matrix decomposition. Li et al. [21] proposed the spectral
difference network (SDCNN) to learn the spectral difference
mapping between LR and HR. Hu et al. [22] improved the
SDCNN and integrated it with the spatial error correction
model to correct the human error in HRHSI. Considering that
three-dimensional convolution can simultaneously extract
the spatial spectrum joint features of HSI, Mei et al. [23]
proposed a three-dimensional hyperspectral super-resolution
method, which utilizes three-dimensional feature representa-
tion, to learn the mappings between LR and HR HSI.

As the research on neural networks develops, the cognition
of neural network is more comprehensive. Firstly, the ana-
lytical method relies on prior information such as statistical
law, formula derivation, human experience, etc., whereas the
neural network accumulates prior information from the data
set in the recursive process and corrects the extraction and
utilization of features. Therefore, the extraction and utiliza-
tion of information are realized in different ways. Besides,
a proper combination of two methods will help to obtain a
more flexible, robust and quick model. Additionally, the idea
of processing of different frequency components specifically
has gradually drawn more and more attention in the past
two years. Chen et al. [24] proposed a plug-and-play octave
convolutional layer to process different frequency compo-
nents in the image specifically. It is capable of improving the
performance of the state-of-art models and reduce network
parameters by means of directly replacing the convolutional

layers to octave convolutional layers. Yang et al. [25] pro-
posed a three-dimensional convolutional network based on
two-dimensional wavelet packet (MW-3D-CNN). In this
model, the shallow features are extracted from the LR HSI
cubes, and then the wavelet packet coefficients of the features
are extracted. The author especially emphasizes the internal
relationship between different wavelet packet coefficients.

In this paper, it is proposed that a frequency-separated
three-dimensional neural network combined with an
analytics-combined (FS-3DCNN) is designed for HSI SR.
Firstly, by means of wavelet transformation the LR HSI
is decomposed into three groups of wavelet coefficients,
according to the frequency similarity. The three convolu-
tional branches of FS-3DCNN designed according to the
frequency can suppress the spectral distortion while protect-
ing the high-frequency information. The feature cubes are
up-sampled by three-dimensional deconvolution and recon-
structed in detail by three-dimensional convolution. Finally,
HRHSI is obtained by inversewavelet transformation. Exper-
imental results on four real HSI datasets show that com-
pared with the state-of-art methods, our method has certain
improvement in image quality and spectral distortion.

The structure of this paper is as follows. In Section II, the
related works about HSI SR are presented. In Section III, the
details of FS-3DCNN and valuation metrics are presented.
In Section IV, the experimental settings and results are pre-
sented. In Section V, we propose additional analysis and dis-
cussion about the experiment. In Section VI, the conclusion
as well as our expectation of potential tend of single-frame
HSI SR methods is presented.

II. RELATED WORKS
In this section, the ideas and researches related to this paper
are briefly reviewed. Firstly, we introduce the theory and the
research state of SR methods based on wavelet, and list some
typical SRmethods of wavelet transformation. Then, we enu-
merate some representative single-frame based convolutional
neural network (CNN) solutions for SR.

A. SR METHODS BASED ON WAVELET
It is accepted by the public that time-frequency analysis helps
to analyze and understand the various frequency compo-
nents of signals, which is also suitable for images. Wavelet
transformation overcomes the shortage of short-time Fourier
transformation and is widely deployed in time-frequency
analysis. The wavelet transformation utilizes wavelet func-
tions to decompose images from different directions, obtain-
ing high-frequency and low-frequency components of each
direction.

Anbarjafari et al. [26] proposed an SR method that gen-
erates HR images by inverse wavelet transformation from
LR images combined with the high-frequency sub-bands,
which are obtained by wavelet transformation and then inter-
polated. The method proposed in [27] obtains HR images
via inverse wavelet transformation from high-frequency sub-
bands decomposed from LR images by two types of wavelets.
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In [28], [29], the SR quality was improved by means of
introducing edge prior into the prediction of high-frequency
sub-bands. Additionally, Guo et al. [30] enhanced the details
of images by combining wavelet transformation with CNN,
learning mappings between LR and HR images in the wavelet
domain. It is, however, quite inappropriate to migrate these
methods of one-band-based fashion into HSI SR missions,
on account of inevitable spectral distortion.

B. SR METHODS BASED ON CNN
As an effective operation to extract local information, con-
volution operation is capable of obtaining different fea-
ture representations by changing the convolutional kernel,
which is trainable in neural network. Therefore, CNN is
widely utilized in both image processing and natural language
processing.

Dong et al. [31] proposed an SR convolutional neural
network (SRCNN) for the first time. SRCNN is composed
of only three convolutional layers, in which the outputs
of the first two convolutional layers pass through nonlin-
ear activation layers of rectified linear unit (ReLU). The
LR image was amplified by bicubic interpolation and then
fed to convolutional layers to fit the corresponding HR
image. Dong et al. [32] then proposed FSRCNN, in which
the complex bicubic interpolation was replaced by the de
convolutional layer, reducing the computational complex-
ity of calculation to some extent. Shi et al. [33] proposed
ESPCN, which proposed the sub-pixel convolutional opera-
tion for the first time. The sub-pixel convolutional operation
amplifies the image scale by rearrange the multi-channels
in order, reducing the computational complexity compared
with the deconvolutional operation on the premise of ensuring
the accuracy. Kim et al. [34] proposed VDSR with deeper
network layers. Based on the architecture of VGG-Net [35],
VDSR achieved a great depth and was able to learn local and
global representations. The residual network (ResNet) [36]
had outstanding performance not only in image classifi-
cation tasks, but in SR tasks as well. ResNet learned the
high-frequency portion, i.e., residuals, between the input
image and the real image. Lim et al. [37] proposed EDSR
based on single-scale amplification and MDSR based on
multi-scale amplification. The main architecture of the two
networks are roughly the same. These two networks adopt
the strategy of sharing the parameters of the residual module
to reduce the volume of parameters. Additionally, in order to
increase the robustness of the model, residual proportional
coefficient is added to the network. Lai et al. [38] proposed
LapSRN based on Laplacian pyramid architecture, which is
able to obtain SR images of three scales at one time. After
extracting features from LR images, each level of the network
utilizes deconvolution as amplification.

III. METHODOLOGY
In this section, we present a novel three-dimensional convolu-
tional network architecture combined with wavelet transfor-
mation, i.e., FS-3DCNN. The network is composed of two

main parts, namely, feature extraction subnet and prediction
subnet. For the purpose of reducing the noise introduced in
the preprocessing, the strategy is adopted in FS-3DCNN that
LR HSI is decomposed by wavelet transformation before it
is fed to convolutional layers, and the network predicts the
wavelet coefficients of HR HSI, reconstructing the HR HSI
via the inverse wavelet transformation. We first introduce
the basis of wavelet transformation and three-dimensional
convolutional neural network, and then present the details of
FS-3DCNN, including the architecture and loss function.

A. TWO-DIMENSIONAL WAVELET TRANSFORMATION
The two-dimensional wavelet transformation is able to
decompose by the horizontal and vertical directions of images
by a certain wavelet function, obtaining high-frequency and
low-frequency components of each direction. Four compo-
nents totally are obtained, namely, one approximate compo-
nent of the low-frequency, two high-frequency components
in the horizontal and vertical directions, and the highest
frequency component in the diagonal direction, as shown
in Figure 1.

FIGURE 1. Schematic diagram of wavelet transform. The (a) original
picture is decomposed into (b) approximation, (c) horizontal detail,
(d) vertical detail, and (e) diagonal detail.

Given the scale function ϕ (·) and the wavelet func-
tion ψ (·), the approximate coefficient and the detail coef-
ficient of the two-dimensional wavelet transformation are
capable to be written as:

Wϕ (j0,m, n) =
1
√
MN

M−1∑
x=0

N−1∑
y=0

f (x, y)ϕj0,m,n (x, y)

W i
ψ (j0,m, n) =

1
√
MN

M−1∑
x=0

N−1∑
y=0

f (x, y)ψ i
j0,m,n (x, y) ,

i = {H ,V ,D} (1)

where f (x, y), Wϕ (j0,m, n), and W iϕ (j0,m, n) present the
image with the size of (M , N ), approximate coefficients and
detail coefficients in three directions of level j0, respectively.
Then the image is capable of being reconstructed by the
coefficients:

f (x, y) =
1
√
MN

∑
m

∑
n

Wϕ (j0,m, n)ϕj0,m,n (x, y)

+
1
√
MN

∑
i=H ,V ,D

∞∑
j=j0

∑
m

∑
n

×W i
ψ (j0,m, n)ψ

i
j0,m,n (x, y) (2)
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FIGURE 2. Flowchart of FS-3DCNN at the upscaling factor of two. In the flowchart, the spatial sizes of each image, filter depths, and filter sizes are
presented, whereas the spectral dimension depends on the real datasets. At the factor of four, one more deconvolution layer with the same settings is
added after the existing deconvolution layer. Besides, the spatial sizes of LR HSI and the four corresponding components at the factor of four are half of
the former.

This process of decomposition and reconstruction follow-
ing the one-to-one mapping principle, is linearly reversible,
introducing minimal error. Besides, the spatial sizes of the
coefficients are half of the size of the original image.

B. THREE-DIMENSIONAL CONVOLUTION
In the early stage, many HSI SRmethods based on neural net-
work are the migration and improved from related technolo-
gies in the field of computer vision. Ignoring the differences
between natural image and HSI, these methods usually cause
serious spectral distortion. To suppress the spectral distortion,
some methods deploy additional strategies such as dictionary
learning [39] and non-negative matrix decomposition [40].
However, it is more effective to utilize three-dimensional
(3D) convolution to extract spatial-spectrum features of HSI,
which is able to reduce probability of occurrence of spectral
distortion instead of suppressing after occurrence. The output
of the k-th feature cube in the d-th layer following formulation
in [41] can be written as:

Fd,k
(x,y,z) = h

(
bd,k +

∑
c

U−1∑
u=0

V−1∑
v=0

W−1∑
w=0

ω
d,k,c
(u,v,w)F

d−1,c
(x+u,y+v,z+w)

)
(3)

where c indicates feature cubes of the (d-1)-th layer connect-
ing to the k-th feature cube of the d-th layer, ωd,k,c(u, v,w)
indicates the convolutional result at (u, v,w) with the k-th
feature cube with the size of U × V × W , Fd,k(x, y, z)
indicates convolutional result at (x, y, z) with the k-th feature
cube of the d-th layer, h (·) indicates a non-linear activation
function, e.g., ReLU and Hyperbolic Tangent. Therefore,
3D convolution is capable to extract spatial-spectral fea-
tures directly [42], [43], reducing the occurrence of spectral
distortion.

C. ARCHITECTURE OF FS-3DCNN
HSI is constituted of a variety of different frequency compo-
nents. Theoretically, super-resolution tasks for different com-
ponents are different. Thus, dealing these components in one
particular network, which is utilized in most methods, can be
regarded as a multi-task learning. Compared with dealing the
components separately, more parameters and more complex
network architecture are needed because the complexity of
task is increased [24]. Then, the computation complexity
and volume of the network will be increased, the perfor-
mance will be limited in the same conditions of computation,
and the difficulty and uncertainty of training will be greatly
increased. Therefore, HSI is decomposed before it is fed to
convolutional layers in FS-3DCNN, then extracted via 3D
convolutional layers to obtain representations of different
components specifically, effectively suppressing spectral dis-
tortion. The flowchart of the network is shown in Figure 2,
and the number of layers will be introduced in Section IV.

Firstly, the two-dimensional wavelet transformation is
applied to LR HSI, and the introduced noise and spec-
tral distortion are small enough to be negligible. The four
obtained components are divided into three groups according
to frequency similarity, namely, {Approximation}, {Horizon-
tal detail, Vertical detail}, and {Diagonal detail}, which are
exploited as the inputs of one low-frequency branch and two
high-frequency branches of FS-3DCNN, respectively.

Secondly, based on the existing researches of CNN,
we found that convolution not only extracts neighborhood
information, but also leads to the diffusion of information,
and the higher the frequency is, the severer the diffusion of
information is. As the times of convolutions, i.e., the depth
of convolutional layers, increases, the information energy
spreads out over a larger range. However, if convolution is
performedmultiple timeswith a smaller convolutional kernel,
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the energy of information will be more concentrated than the
saturation with a bigger convolutional kernel. In SR tasks,
high-frequency information is of great significance. There-
fore, the two high-frequency branches of FS-3DCNN exploit
less convolutional layers with small convolutional kernels,
whereas in the low-frequency branch, considering the size of
actual samples, more convolutional layers with small convo-
lutional kernels are utilized to obtain better representations of
low-frequency features.

In order to further protect the evanescent high-frequency
information, a large number of skip connections are added
in each branch to transmit the original high-frequency infor-
mation with rich details directly to the deep layers, which
also reduces the gradient disappearance and increases the
robustness of the network.

Thirdly, after the joint feature representations of spatial
spectrum of different frequency components are obtained by
three branches of FS-3DCNN, up-sampling and detail recon-
struction are carried out. Since bicubic interpolation simply
exploits spatial information, ignoring the interaction between
spatial and spectral information, there is great chance to
cause spectral distortion while up-sampling, let along the
unobtrusive performance. Therefore, FS-3DCNN utilizes
three-dimensional deconvolution for up-sampling. In the
meantime, two three-dimensional convolutional layers are
deployed in the tail of each branch to fine-tune both
spatial and spectral details. Finally, the predicted HR
wavelet coefficients are obtained through three branches of
FS-3DCNN, corresponding to four wavelet coefficients of
HR HSI. Finally, HR HSI is obtained via inverse wavelet
transformation.

We believe that the novel network architecture of
FS-3DCNN takes the advantages as follows. Firstly, the com-
plex learning task of mappings between LR HSI and HR
HSI is decomposed into four relatively simple tasks, that
is, the frequency components of each sub-band of wavelet
coefficients is relatively simple, which simplifies the over-
all architecture of the network, reduces the quantity of net-
work parameters, decreases difficulty of training, and boosts
converging. Secondly, since the wavelet transformation is a
linear, reversible and lossless decomposition, the spatial and
spectral and errors in the domains in the processing phase
can be considered negligible, improving the accuracy of the
network. Thirdly, the network is designed to extract and
utilize the spatial-spectral joint features of HSI, which can
inhibit the generation of spectral distortion before occurrence,
contributing to certain advantages in spectral accuracy.

D. TRAINING OF FS-3DCNN
In the forward propagation, the network learns the map-
pings between LR wavelet coefficients and corresponding
HR wavelet coefficients. The input LR HSI of FS-3DCNN,
represented by Xl ∈ R2r×2r×L , is then decomposed into
wavelet coefficients CA,CH ,CV ,CD ∈ Rr×r×L , where 2r
and L indicate the length of spatial side and spectral bands,

respectively. Outputs of each branch are as follows:

{m1,m3,m3 . . .mk . . .md} , k = 1, 2, 3 . . . d

{mk} = Fj
(
Ci ⊕ Fj−1

(
Ci ⊕ Fj−2 (· · · )

))
,

i ∈ {A,H ,V ,D} (4)

where mk indicates the k-th feature cube with the same size
as the wavelet coefficients, d indicates the depth of filters
and differs in different branches, ⊕ indicates merging of two
matrixes, and Fj indicates the j-th convolutional layer. Then
the predicted wavelet coefficients are as follows:

ĈV , ĈH , ĈV , ĈD ∈ RSr×Sr×L

Ĉi = FR2
(
FR1

(
FDe (Ci ⊕ md )

))
, i ∈ {A,H ,V ,D} (5)

where S indicates the upscaling factor, ĈV , ĈH , ĈV , ĈD indi-
cate the predicted wavelet coefficients, FR1 and FR2 indicate
the detail reconstruction, and FDe indicates the 3D deconvo-
lution, related to the upscaling factor S. Ultimately, the pre-
dicted HR HSI Ŷh ∈ R2Sr×2Sr×L is obtained by inverse
wavelet transformation, as follows:

Ŷh = IWT
(
ĈV , ĈH , ĈV , ĈD

)
(6)

where IWT (·) indicates the inverse wavelet transformation.
In back propagation, all trainable parameters of the net-

work are computed and iteratively optimized by Charbonnier
loss function, which is a variant of l1-norm, strictly convex
and infinitely differentiable. As Lai et al. proved in [44],
Charbonnier loss function is capable of robustness, better
handling outliers, and improving the performance over the
l2-norm loss functions. The overall loss of the network can
be written as:

Loss
(
Ŷ ,Y ; θ

)
=

1
N

N∑
i=1

ρ
(
Ŷ (i)s − Y

(i)
s

)
ρ (x) =

√
x2 + ε2 (7)

where N indicates the batch size, θ indicates the current
parameters, and ρ (·) indicates Charbonnier penalty function.
Empirically, ε is settled to 1e− 3.

IV. EXPERIMENT RESULTS
In this section, in order to prove the effectiveness and exten-
sibility of the proposed method, we experiment on four real
HSI datasets produced by four different HSI imagers, and
compare FS-3DCNNwith the state-of-art methods, including
methods from computer vision and remote sensing. Secondly,
we conduct comparative experiments on the upscaling factors
of two and four to illustrate the performance of FS-3DCNN at
different magnification scales. Thirdly, the experiment covers
multiple cases, including cases with small sample size to
prove the extensibility and robustness of the model.

A. EXPERIMENT SETTINGS
Firstly, we shortly review the real HSI datasets utilized: Pavia
University scene (PaviaU), Kennedy Space Center (KSC),
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TABLE 1. Experimental sampling and batch settings.

Botswana, and one newer dataset Chikusei Hyperspectral
Data [45] (Chikusei). The PaviaU dataset is collected by the
German space-based reflective spectral imager ROSIS-03,
with a spectral range from 0.43 µm to 0.86 µm, spatial
resolution of 1.3 m, spatial size of (610, 340), and spectral
bands of 103 totally. The KSC dataset is collected by NASA
AVIRIS, with spectral bands from 0.4 µm to 2.5 µm, spatial
resolution of 18 m, spatial size of (512, 614), and spectral
bands of 176 totally. The Botswana dataset is collected by
NASA EO-1, with a spectral range from 0.4 µm to 2.5 µm,
spatial size of (1476, 256), spatial resolution of 30 m, and
spectral bands of 145 totally. The Chikusei dataset is collected
by the Headwall Hyperspec-VNIR-C HSI imager, with a
spectral range from 0.363 µm to 1.018 µm, spatial reso-
lution of 2.5 m, spatial size of (2517, 2335), and spectral
bands of 128 totally. These four datasets cover different HSI
imagers, different ground distribution characteristics and dif-
ferent spatial and spectral resolutions.

Secondly, considering that the spatial sizes of wavelet
coefficients are half of the LR HSI, besides, the experi-
ment upscaling factors are two and four, the spatial size of
each sample, therefore, should be settled to a certain size.
Additionally, the number of samples should be kept to a
certain extent to ensure the performance of the model as
well. Considering the above factors, spatial size of HR HSI
samples is set to (64, 64). Besides, Bicubic interpolation
and Gaussian down-sampling are widely accepted as the
methods of down-sampling. As discussed in [9], [46], the
Gaussian down-sampling simulates the real situation bet-
ter, FS-3DCNN uses a Gaussian filter for down-sampling,
with a Gaussian kernel of zero mean and standard deviation
of 0.8493 when the magnification is (2, 2), and when the
magnification is (4, 4), the Gaussian kernel with zero mean
and standard deviation of 1.6986 is used instead of the inter-
polation sampling method used in other studies. The above
parameters are also provided in [9], [46].

After browsing the datasets, the useless parts of the datasets
are removed, e.g., the black edges of zero padding, which
reduces the noise that might be introduced. A linear function
is utilized to compress the data within the range of [0,1),
facilitating the training of the neural network, which can be
written as:

Iprocessed =
10× lg (Iraw + 1)⌈

max
(
log10 (Iraw + 1)× 10

)⌉ (8)

where Iraw and Iprocessed indicate the raw and compressed
HSI, and d · e indicates ceiling. Because the HSI data can vary

from tens to thousands, the purpose of utilizing this logarithm
trick of processing is to compress the hyperspectral data into
a certain range while avoiding too low values to vanish in the
training phase, which is capable of protecting high-frequency
details and reducing training error as well. At the mean-
time, the restoration of data is also simpler compared
with commonly used normalization. The noise introduced
by the function can be considered negligible. Therefore,
the HSI is able to be easily restored backwards by the
function.

Thirdly, in terms of parameter settings, the numbers of 3D
convolutional layers in the feature extraction subnet are 7, 5,
and 3 in order, which are determined by a set of enumeration
experiments. We believe that the more complex the frequency
components of the branch are, the more convolution layers
are demanded to extract features. The kernel size and filter
depth of each 3D convolutional layer are (3, 3, 3) and 64.
And the stride is (1, 1, 1). Each layer is padding with zeros
to maintain the same shape. And ReLU is chosen as the
activation function of each layer.

In the prediction subnet, the up-sampling module consists
of 3D deconvolutional layers according to the upscaling fac-
tor, that is, when the upscaling factors are two and four,
the numbers of convolutional layers are 1 and 2, respectively.
The kernel size and stride of these 3D deconvolutional kernels
are (3, 3, 3) and (2, 2, 1). And filter depth is 16. The recon-
structionmodule consists of two 3D convolutional layers with
kernel size of (3, 3, 3), stride of (1, 1, 1), filter depths of 4
and 1 in order, activation function of ReLU, and padding
with zeros. In addition, in order to sufficiently shuffle the
sample pairs at the beginning of each epoch, and learn the
entire training set, the batch and step per epoch settings are
presented in Table 1.

Before each experiment, the sample pairs are fully shuf-
fled, with 10% drawn out for verification, 10% for testing,
and the rest for training. The sampling and batch settings of
the datasets are shown in Table 1. It can be inferred from
Table 1 that the experiment covers both large and small
sample sizes.

Finally, in order to iterate sufficiently and learn the training
set sufficiently, the training epoch is settled to 800, and an
early-stop strategy is utilized, which will stop training when
the performance on the validation set does not improve.
Before each experiment, sample pairs are randomly grouped.
A total of 10 experiments on each dataset are conducted, and
the final result is obtained by averaging the results of the
testing sets.
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TABLE 2. Experimental results at an upscaling factor of two.

TABLE 3. Experimental results at an upscaling factor of four.

B. COMPARED WITH THE STATE-OF-ART METHODS
The method proposed in this paper is compared with sev-
eral state-of-art SR methods, including computer vision and
remote sensing SR methods, i.e., Bicubic, SRCNN [47],
VDSR [34], and 3D-FCNN [23]. SRCNN, VDSR, and
3D-FCNN followed the default settings as described
in [23], [34], [47]. In order to ensure the fairness of the
experiment, the three neural networks and FS-3DCNN are
trained on the same datasets, and stopped until the indicator
of the validating set does not improve.

Evaluation indicators of the experiment are peak-signal-
noise-ratio (PSNR, dB), structural similarity index mea-
surement (SSIM) [48], and spectral angle mapper (SAM),
evaluating image quality, image similarity, and vector sim-
ilarity, respectively. PSNR and SSIM take the average of
indictors on each band of HSI, whereas SAM takes the
average of indictors on each pixel of HSI. The experi-
mental results at an upscaling factor of two is presented
in Table 2.

It can be found that our FS-3DCNN is superior to other
methods in evaluation indicators. VDSR performs well in
SR quality of natural images, but introduces too much
spectral distortion, resulting in relatively poor performance
on HSI. Compared with SRCNN and Bicubic, because of
its three-dimensional convolutional layer, 3D-FCNN can
directly extract the spatial spectral joint information of HSI,
it performs well in both SR quality and suppressing spectral
distortion. However, compared with our method, 3D-FCNN
is less capable of SR quality. On account of the novel network
architecture and data processing fashion, FS-3DCNN has
outstanding performance in three evaluation indices, which
means that FS-3DCNN has outstanding performance not only
in spatial accuracy, but also in spectral accuracy. To explore
the robustness of our method, we also carry out experiments
at an upscaling factor of four, and the experimental results are
shown in Table 3.

It could be inferred from Table 3 that the overall trend
remains the same, although the performance in this case
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FIGURE 3. Change of PSNR with epoch during one training period at an upscaling factor of two on each dataset. (a) Botswana, (b) Chikusei,
(c) KSC, and (d) PaviaU.

FIGURE 4. Change of PSNR with epoch during one training period bat y an upscaling factor of four on each dataset. (a) Botswana, (b) Chikusei,
(c) KSC, and (d) PaviaU.

decreases slightly. In summary, we can give the point that
our method has a certain improvement in SR quality and
spectral accuracy. Additionally, we plot the change of PSNR

metrics with epoch during one training period of FS-3DCNN
at upscaling factors of two and four on each dataset, as shown
in Figure 3 and Figure 4. Obviously, in the training process of
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FS-3DCNN, it is trapped in local optimal conditions rarely,
and can jump out after dozens of epochs. We believe it is
because of the characteristics of Carboniferous loss function.

FIGURE 5. SR results on Botswana at an upscaling factor of two, i.e.,
(a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

FIGURE 6. SR results on Chikusei at an upscaling factor of two, i.e.,
(a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

As shown in Figure 5 to Figure 12, we select a certain band
from SR results, namely, the 75th band of Botswana, the 80th
band of Chikusei, the 85th band of KSC, and the 20th band
of PaviaU, and present a typical region with spatial size of
(256, 256), in order to provide intuitive performances of each
method at upscaling factors of two and four.

It can be found from the above figures that our method is
the closest to the original HR HSI at both upscaling factors.

Table 4 presents the average training time of SRCNN,
VDSR, 3D-FCNN, and FS-3DCNN on four datasets. It could
be inferred from Table 4 that parameter optimization of
FS-3DCNN requires more iterations and time than the others.

FIGURE 7. SR results on KSC at an upscaling factor of two, i.e., (a) Bicubic,
(b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and (f) original HR HSI.

FIGURE 8. SR results on PaviaU at an upscaling factor of two,
i.e., (a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

TABLE 4. Average training time of CNN based methods in seconds on
four datasets at upscaling factors of two and four.

V. ANALYSIS AND DISCUSSIONS
A. SENSITIVITY ANALYSIS ON PARAMETERS
In order to explore the influence of the convolutional kernel
size, and filter depth on the performance of FS-3DCNN,
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FIGURE 9. SR results on Botswana at an upscaling factor of four,
i.e., (a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

FIGURE 10. SR results on Chikusei at an upscaling factor of four,
i.e., (a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN.
and (f) original HR HSI.

we give sensitivity analysis of FS-3DCNN over the net-
work parameters. Table 5 resents PSNR of FS-3DCNN on
four datasets in three conditions of convolutional kernels:
(1, 1, 1), (3, 3, 3), and (5, 5, 5).

It can be inferred from Table 5 hat the performance of the
method is best when the size of the convolutional kernel is
(3, 3, 3). This result confirms our analysis of convolutional
characteristics above, that is, the energy of convoluted infor-
mation is more concentrated, which is more conducive to
the extraction and utilization of high-frequency information.
In addition, it limits the model performance when the kernel
size is too small.

Table 6 shows the PSNR performance of FS-3DCNN on
the four datasets when the filter depths of the low-frequency
branch are 32, 48, 64, 80, and 96, respectively. We found

FIGURE 11. SR results on KSC at an upscaling factor of four,
i.e., (a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

FIGURE 12. SR results on PaviaU at an upscaling factor of four,
i.e., (a) Bicubic, (b) SRCNN, (c) VDSR, (d) 3D-FCNN, (e) FS-3DCNN. and
(f) original HR HSI.

that the performance is the highest when the filter depth
is 64. However, when the filter depth continues to increase,
the performance decreased slightly. We believe that the
filter depth can affect the capacity of the model. How-
ever, when the capacity reaches a certain threshold, it will
hardly improve the performance by increasing the filter
depth continuously, and might even lead to the performance
degradation.

B. ROBUSTNESS OVER WAVELET FUNCTIONS
In order to explore the possible impact of different wavelet
functions on model performance, we compare three wavelet
functions, namely Haar wavelet, Debaucheries wavelet (db2),
and Symlets wavelet (sym2), whose support lengths are 1, 3,
and 3, respectively. Table 7 shows the PSNR performances
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TABLE 5. PSNR performance of FS-3DCNN on four datasets at different
convolutional kernels.

TABLE 6. PSNR performance of FS-3DCNN on four datasets at different
filter depths.

TABLE 7. PSNR performance of FS-3DCNN in three wavelet functions.

on four data sets and three wavelet functions. It can be
considered that the slight differences of experiment results on
each data are within the error range. Therefore, a reasonable
choice of wavelet function will not affect the performance of
the model fundamentally.

The experimental platform of this paper is as follows:
Debian 10 operating system, Tensor Flow 2.1 [49] envi-
ronment with python3.7, 16G RAM, NVIDIA GTX 1080Ti
graphic card, with an SSD as storage device.

VI. CONCLUSIONS
In this paper, a novel network for HSI SR, i.e., FS-3DCNN,
is proposed. Firstly, compared with the network which
requires feature embedding before feature extraction, this
processing method effectively reduces the noise introduced
in the spatial domain and spectrum domain, increases the
controllability of the network, and reduces the difficulty of
training. Secondly, the network exploits 3D convolution and
3D deconvolution to extract and utilize the joint features of
spatial-spectral information directly, effectively suppressing
the occurrence of spectral distortion. Thirdly, each branch
utilizes a different number of convolutional layers accord-
ing to the frequency characteristics of the components, and
adds a large number of skip connections to transmit the
high-frequency information to the deep layers, increasing
the robustness of the network and reducing the possibility
of gradient disappearance. The outstanding performance of
FS-3DCNN has been proved by experiments on the condition
of different HSI imagers, different data sizes, and differ-
ent resolutions of space and spectrum. However, wavelet
transform still faces its own limitations, that is, Heisenberg
uncertainty principle. How to break through this limitation is
the future work in this field. In addition, we expect that the
combination of analysis and neural network methods will be
a major focus in this field and will lead to the improvement
of SR performance.
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